212 lines
9.1 KiB
C++
212 lines
9.1 KiB
C++
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2016 Yotam Gingold <yotam@yotamgingold.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#include "seam_edges.h"
|
||
|
#include <unordered_map>
|
||
|
#include <unordered_set>
|
||
|
#include <cassert>
|
||
|
|
||
|
// Yotam has verified that this function produces the exact same output as
|
||
|
// `find_seam_fast.py` for `cow_triangled.obj`.
|
||
|
template <
|
||
|
typename DerivedV,
|
||
|
typename DerivedTC,
|
||
|
typename DerivedF,
|
||
|
typename DerivedFTC,
|
||
|
typename Derivedseams,
|
||
|
typename Derivedboundaries,
|
||
|
typename Derivedfoldovers>
|
||
|
IGL_INLINE void igl::seam_edges(
|
||
|
const Eigen::PlainObjectBase<DerivedV>& V,
|
||
|
const Eigen::PlainObjectBase<DerivedTC>& TC,
|
||
|
const Eigen::PlainObjectBase<DerivedF>& F,
|
||
|
const Eigen::PlainObjectBase<DerivedFTC>& FTC,
|
||
|
Eigen::PlainObjectBase<Derivedseams>& seams,
|
||
|
Eigen::PlainObjectBase<Derivedboundaries>& boundaries,
|
||
|
Eigen::PlainObjectBase<Derivedfoldovers>& foldovers)
|
||
|
{
|
||
|
// Assume triangles.
|
||
|
assert( F.cols() == 3 );
|
||
|
assert( F.cols() == FTC.cols() );
|
||
|
assert( F.rows() == FTC.rows() );
|
||
|
|
||
|
// Assume 2D texture coordinates (foldovers tests).
|
||
|
assert( TC.cols() == 2 );
|
||
|
typedef Eigen::Matrix< typename DerivedTC::Scalar, 2, 1 > Vector2S;
|
||
|
// Computes the orientation of `c` relative to the line between `a` and `b`.
|
||
|
// Assumes 2D vector input.
|
||
|
// Based on: https://www.cs.cmu.edu/~quake/robust.html
|
||
|
const auto& Orientation = [](
|
||
|
const Vector2S& a,
|
||
|
const Vector2S& b,
|
||
|
const Vector2S& c ) -> typename DerivedTC::Scalar
|
||
|
{
|
||
|
const Vector2S row0 = a - c;
|
||
|
const Vector2S row1 = b - c;
|
||
|
return row0(0)*row1(1) - row1(0)*row0(1);
|
||
|
};
|
||
|
|
||
|
seams .setZero( 3*F.rows(), 4 );
|
||
|
boundaries.setZero( 3*F.rows(), 2 );
|
||
|
foldovers .setZero( 3*F.rows(), 4 );
|
||
|
|
||
|
int num_seams = 0;
|
||
|
int num_boundaries = 0;
|
||
|
int num_foldovers = 0;
|
||
|
|
||
|
// A map from a pair of vertex indices to the index (face and endpoints)
|
||
|
// into face_position_indices.
|
||
|
// The following should be true for every key, value pair:
|
||
|
// key == face_position_indices[ value ]
|
||
|
// This gives us a "reverse map" so that we can look up other face
|
||
|
// attributes based on position edges.
|
||
|
// The value are written in the format returned by numpy.where(),
|
||
|
// which stores multi-dimensional indices such as array[a0,b0], array[a1,b1]
|
||
|
// as ( (a0,a1), (b0,b1) ).
|
||
|
|
||
|
// We need to make a hash function for our directed edges.
|
||
|
// We'll use i*V.rows() + j.
|
||
|
typedef std::pair< typename DerivedF::Scalar, typename DerivedF::Scalar >
|
||
|
directed_edge;
|
||
|
const int numV = V.rows();
|
||
|
const int numF = F.rows();
|
||
|
const auto& edge_hasher =
|
||
|
[numV]( directed_edge const& e ) { return e.first*numV + e.second; };
|
||
|
// When we pass a hash function object, we also need to specify the number of
|
||
|
// buckets. The Euler characteristic says that the number of undirected edges
|
||
|
// is numV + numF -2*genus.
|
||
|
std::unordered_map<directed_edge,std::pair<int,int>,decltype(edge_hasher) >
|
||
|
directed_position_edge2face_position_index(2*( numV + numF ), edge_hasher);
|
||
|
for( int fi = 0; fi < F.rows(); ++fi )
|
||
|
{
|
||
|
for( int i = 0; i < 3; ++i )
|
||
|
{
|
||
|
const int j = ( i+1 ) % 3;
|
||
|
directed_position_edge2face_position_index[
|
||
|
std::make_pair( F(fi,i), F(fi,j) ) ] = std::make_pair( fi, i );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// First find all undirected position edges (collect a canonical orientation
|
||
|
// of the directed edges).
|
||
|
std::unordered_set< directed_edge, decltype( edge_hasher ) >
|
||
|
undirected_position_edges( numV + numF, edge_hasher );
|
||
|
for( const auto& el : directed_position_edge2face_position_index )
|
||
|
{
|
||
|
// The canonical orientation is the one where the smaller of
|
||
|
// the two vertex indices is first.
|
||
|
undirected_position_edges.insert( std::make_pair(
|
||
|
std::min( el.first.first, el.first.second ),
|
||
|
std::max( el.first.first, el.first.second ) ) );
|
||
|
}
|
||
|
|
||
|
// Now we will iterate over all position edges.
|
||
|
// Seam edges are the edges whose two opposite directed edges have different
|
||
|
// texcoord indices (or one doesn't exist at all in the case of a mesh
|
||
|
// boundary).
|
||
|
for( const auto& vp_edge : undirected_position_edges )
|
||
|
{
|
||
|
// We should only see canonical edges,
|
||
|
// where the first vertex index is smaller.
|
||
|
assert( vp_edge.first < vp_edge.second );
|
||
|
|
||
|
const auto vp_edge_reverse = std::make_pair(vp_edge.second, vp_edge.first);
|
||
|
// If it and its opposite exist as directed edges, check if their
|
||
|
// texture coordinate indices match.
|
||
|
if( directed_position_edge2face_position_index.count( vp_edge ) &&
|
||
|
directed_position_edge2face_position_index.count( vp_edge_reverse ) )
|
||
|
{
|
||
|
const auto forwards =
|
||
|
directed_position_edge2face_position_index[ vp_edge ];
|
||
|
const auto backwards =
|
||
|
directed_position_edge2face_position_index[ vp_edge_reverse ];
|
||
|
|
||
|
// NOTE: They should never be equal.
|
||
|
assert( forwards != backwards );
|
||
|
|
||
|
// If the texcoord indices match (are similarly flipped),
|
||
|
// this edge is not a seam. It could be a foldover.
|
||
|
if(
|
||
|
std::make_pair(
|
||
|
FTC( forwards.first, forwards.second ),
|
||
|
FTC( forwards.first, ( forwards.second+1 ) % 3 ) )
|
||
|
==
|
||
|
std::make_pair(
|
||
|
FTC( backwards.first, ( backwards.second+1 ) % 3 ),
|
||
|
FTC( backwards.first, backwards.second ) ))
|
||
|
{
|
||
|
// Check for foldovers in UV space.
|
||
|
// Get the edge (a,b) and the two opposite vertices's texture
|
||
|
// coordinates.
|
||
|
const Vector2S a = TC.row( FTC( forwards.first, forwards.second ) );
|
||
|
const Vector2S b =
|
||
|
TC.row( FTC( forwards.first, (forwards.second+1) % 3 ) );
|
||
|
const Vector2S c_forwards =
|
||
|
TC.row( FTC( forwards .first, (forwards .second+2) % 3 ) );
|
||
|
const Vector2S c_backwards =
|
||
|
TC.row( FTC( backwards.first, (backwards.second+2) % 3 ) );
|
||
|
// If the opposite vertices' texture coordinates fall on the same side
|
||
|
// of the edge, we have a UV-space foldover.
|
||
|
const auto orientation_forwards = Orientation( a, b, c_forwards );
|
||
|
const auto orientation_backwards = Orientation( a, b, c_backwards );
|
||
|
if( ( orientation_forwards > 0 && orientation_backwards > 0 ) ||
|
||
|
( orientation_forwards < 0 && orientation_backwards < 0 )
|
||
|
) {
|
||
|
foldovers( num_foldovers, 0 ) = forwards.first;
|
||
|
foldovers( num_foldovers, 1 ) = forwards.second;
|
||
|
foldovers( num_foldovers, 2 ) = backwards.first;
|
||
|
foldovers( num_foldovers, 3 ) = backwards.second;
|
||
|
num_foldovers += 1;
|
||
|
}
|
||
|
}
|
||
|
// Otherwise, we have a non-matching seam edge.
|
||
|
else
|
||
|
{
|
||
|
seams( num_seams, 0 ) = forwards.first;
|
||
|
seams( num_seams, 1 ) = forwards.second;
|
||
|
seams( num_seams, 2 ) = backwards.first;
|
||
|
seams( num_seams, 3 ) = backwards.second;
|
||
|
num_seams += 1;
|
||
|
}
|
||
|
}
|
||
|
// Otherwise, the edge and its opposite aren't both in the directed edges.
|
||
|
// One of them should be.
|
||
|
else if( directed_position_edge2face_position_index.count( vp_edge ) )
|
||
|
{
|
||
|
const auto forwards = directed_position_edge2face_position_index[vp_edge];
|
||
|
boundaries( num_boundaries, 0 ) = forwards.first;
|
||
|
boundaries( num_boundaries, 1 ) = forwards.second;
|
||
|
num_boundaries += 1;
|
||
|
} else if(
|
||
|
directed_position_edge2face_position_index.count( vp_edge_reverse ) )
|
||
|
{
|
||
|
const auto backwards =
|
||
|
directed_position_edge2face_position_index[ vp_edge_reverse ];
|
||
|
boundaries( num_boundaries, 0 ) = backwards.first;
|
||
|
boundaries( num_boundaries, 1 ) = backwards.second;
|
||
|
num_boundaries += 1;
|
||
|
} else {
|
||
|
// This should never happen! One of these two must have been seen.
|
||
|
assert(
|
||
|
directed_position_edge2face_position_index.count( vp_edge ) ||
|
||
|
directed_position_edge2face_position_index.count( vp_edge_reverse )
|
||
|
);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
seams .conservativeResize( num_seams, Eigen::NoChange_t() );
|
||
|
boundaries.conservativeResize( num_boundaries, Eigen::NoChange_t() );
|
||
|
foldovers .conservativeResize( num_foldovers, Eigen::NoChange_t() );
|
||
|
}
|
||
|
|
||
|
#ifdef IGL_STATIC_LIBRARY
|
||
|
// Explicit template instantiation
|
||
|
// generated by autoexplicit.sh
|
||
|
template void igl::seam_edges<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
|
||
|
#endif
|