dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Classification/Local_eigen_analysis.h

660 lines
24 KiB
C
Raw Normal View History

// Copyright (c) 2017 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
2020-10-13 12:44:25 +00:00
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Classification/include/CGAL/Classification/Local_eigen_analysis.h $
// $Id: Local_eigen_analysis.h 8bb22d5 2020-03-26T14:23:37+01:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Simon Giraudot
#ifndef CGAL_CLASSIFICATION_LOCAL_EIGEN_ANALYSIS_H
#define CGAL_CLASSIFICATION_LOCAL_EIGEN_ANALYSIS_H
#include <CGAL/license/Classification.h>
#include <vector>
#include <CGAL/Classification/compressed_float.h>
#include <CGAL/Search_traits_3.h>
#include <CGAL/Fuzzy_sphere.h>
#include <CGAL/Orthogonal_k_neighbor_search.h>
#include <CGAL/Default_diagonalize_traits.h>
#include <CGAL/centroid.h>
#include <CGAL/squared_distance_3.h>
#include <CGAL/array.h>
#include <CGAL/PCA_util.h>
#include <CGAL/boost/graph/properties.h>
#include <boost/graph/graph_traits.hpp>
#include <boost/make_shared.hpp>
#ifdef CGAL_LINKED_WITH_TBB
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>
#include <tbb/scalable_allocator.h>
2020-10-13 12:44:25 +00:00
#include <mutex>
#endif // CGAL_LINKED_WITH_TBB
namespace CGAL {
namespace Classification {
/*!
\ingroup PkgClassificationDataStructures
\brief Class that precomputes and stores the eigenvectors and
eigenvalues of the covariance matrices of all points of a point
set using a local neighborhood.
This class can be used to compute eigen features (see
\ref PkgClassificationFeatures) and to estimate local normal vectors
and tangent planes.
*/
class Local_eigen_analysis
{
public:
2020-10-13 12:44:25 +00:00
typedef std::array<float, 3> Eigenvalues; ///< Eigenvalues (sorted in ascending order)
private:
#ifdef CGAL_LINKED_WITH_TBB
template <typename PointRange, typename PointMap, typename NeighborQuery, typename DiagonalizeTraits>
class Compute_eigen_values
{
Local_eigen_analysis& m_eigen;
const PointRange& m_input;
PointMap m_point_map;
const NeighborQuery& m_neighbor_query;
float& m_mean_range;
2020-10-13 12:44:25 +00:00
std::mutex& m_mutex;
public:
2020-10-13 12:44:25 +00:00
Compute_eigen_values (Local_eigen_analysis& eigen,
const PointRange& input,
PointMap point_map,
const NeighborQuery& neighbor_query,
float& mean_range,
2020-10-13 12:44:25 +00:00
std::mutex& mutex)
: m_eigen (eigen), m_input (input), m_point_map (point_map),
m_neighbor_query (neighbor_query), m_mean_range (mean_range), m_mutex (mutex)
{ }
2020-10-13 12:44:25 +00:00
void operator()(const tbb::blocked_range<std::size_t>& r) const
{
std::vector<std::size_t> neighbors;
for (std::size_t i = r.begin(); i != r.end(); ++ i)
{
neighbors.clear();
m_neighbor_query (get(m_point_map, *(m_input.begin()+i)), std::back_inserter (neighbors));
std::vector<typename PointMap::value_type> neighbor_points;
neighbor_points.reserve(neighbors.size());
for (std::size_t j = 0; j < neighbors.size(); ++ j)
neighbor_points.push_back (get(m_point_map, *(m_input.begin()+neighbors[j])));
m_mutex.lock();
m_mean_range += float(CGAL::sqrt
(CGAL::squared_distance (get(m_point_map, *(m_input.begin() + i)),
get(m_point_map, *(m_input.begin() + neighbors.back())))));
m_mutex.unlock();
2020-10-13 12:44:25 +00:00
m_eigen.compute<typename PointMap::value_type,
DiagonalizeTraits> (i, get(m_point_map, *(m_input.begin()+i)), neighbor_points);
}
}
};
template <typename FaceListGraph, typename NeighborQuery, typename DiagonalizeTraits>
class Compute_eigen_values_graph
{
typedef typename boost::graph_traits<FaceListGraph>::face_descriptor face_descriptor;
typedef typename boost::property_map<FaceListGraph, CGAL::face_index_t>::type::value_type face_index;
typedef typename boost::graph_traits<FaceListGraph>::face_iterator face_iterator;
2020-10-13 12:44:25 +00:00
Local_eigen_analysis& m_eigen;
const FaceListGraph& m_input;
const NeighborQuery& m_neighbor_query;
float& m_mean_range;
2020-10-13 12:44:25 +00:00
std::mutex& m_mutex;
public:
2020-10-13 12:44:25 +00:00
Compute_eigen_values_graph (Local_eigen_analysis& eigen,
const FaceListGraph& input,
const NeighborQuery& neighbor_query,
float& mean_range,
2020-10-13 12:44:25 +00:00
std::mutex& mutex)
: m_eigen (eigen), m_input (input),
m_neighbor_query (neighbor_query), m_mean_range (mean_range), m_mutex (mutex)
{ }
2020-10-13 12:44:25 +00:00
void operator()(const tbb::blocked_range<std::size_t>& r) const
{
face_iterator begin = faces(m_input).first;
for (std::size_t i = r.begin(); i != r.end(); ++ i)
{
face_descriptor fd = *(begin + i);
std::vector<face_index> neighbors;
m_neighbor_query (fd, std::back_inserter (neighbors));
m_mutex.lock();
m_mean_range += m_eigen.face_radius(fd, m_input);
m_mutex.unlock();
2020-10-13 12:44:25 +00:00
m_eigen.compute_triangles<FaceListGraph, DiagonalizeTraits>
(m_input, fd, neighbors);
}
}
};
#endif
2020-10-13 12:44:25 +00:00
template <typename ClusterRange, typename DiagonalizeTraits>
class Compute_clusters_eigen_values
{
Local_eigen_analysis& m_eigen;
const ClusterRange& m_input;
2020-10-13 12:44:25 +00:00
public:
2020-10-13 12:44:25 +00:00
Compute_clusters_eigen_values (Local_eigen_analysis& eigen,
const ClusterRange& input)
: m_eigen (eigen), m_input (input)
{ }
#ifdef CGAL_LINKED_WITH_TBB
void operator()(const tbb::blocked_range<std::size_t>& r) const
{
for (std::size_t i = r.begin(); i != r.end(); ++ i)
apply (i);
}
#endif
inline void apply (std::size_t i) const
{
typedef typename ClusterRange::value_type Cluster;
typedef typename Cluster::Item Item;
const Cluster& cluster = m_input[i];
std::vector<typename ClusterRange::value_type::Item> points;
for (std::size_t j = 0; j < cluster.size(); ++ j)
points.push_back (cluster[j]);
m_eigen.compute<Item, DiagonalizeTraits> (i, Item(0.,0.,0.), points);
}
};
2020-10-13 12:44:25 +00:00
typedef std::array<float, 3> float3;
typedef std::array<float, 2> float2;
typedef std::array<compressed_float, 2> cfloat2;
struct Content
{
std::vector<cfloat2> eigenvalues;
std::vector<float3> centroids;
std::vector<float2> smallest_eigenvectors;
float mean_range;
};
boost::shared_ptr<Content> m_content; // To avoid copies with named constructors
2020-10-13 12:44:25 +00:00
public:
/// \cond SKIP_IN_MANUAL
Local_eigen_analysis () { }
/// \endcond
/// \name Named Constructors
/// @{
2020-10-13 12:44:25 +00:00
/*!
\brief Computes the local eigen analysis of an input point set
based on a local neighborhood.
\tparam PointRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator` and its value type is the key type of
`PointMap`.
\tparam PointMap model of `ReadablePropertyMap` whose key
type is the value type of the iterator of `PointRange` and value type
is `CGAL::Point_3`.
\tparam NeighborQuery model of `NeighborQuery`
\tparam ConcurrencyTag enables sequential versus parallel
2020-10-13 12:44:25 +00:00
algorithm. Possible values are `Parallel_tag` (default value if %CGAL
is linked with TBB) or `Sequential_tag` (default value otherwise).
\tparam DiagonalizeTraits model of `DiagonalizeTraits` used for
matrix diagonalization. It can be omitted if Eigen 3 (or greater)
is available and `CGAL_EIGEN3_ENABLED` is defined. In that case,
an overload using `Eigen_diagonalize_traits` is provided.
\param input point range.
\param point_map property map to access the input points.
\param neighbor_query object used to access neighborhoods of points.
*/
template <typename PointRange,
typename PointMap,
typename NeighborQuery,
#if defined(DOXYGEN_RUNNING)
typename ConcurrencyTag,
#else
2020-10-13 12:44:25 +00:00
typename ConcurrencyTag = CGAL::Parallel_if_available_tag,
#endif
#if defined(DOXYGEN_RUNNING)
typename DiagonalizeTraits>
#else
typename DiagonalizeTraits = CGAL::Default_diagonalize_traits<float, 3> >
#endif
static Local_eigen_analysis create_from_point_set(const PointRange& input,
PointMap point_map,
const NeighborQuery& neighbor_query,
const ConcurrencyTag& = ConcurrencyTag(),
const DiagonalizeTraits& = DiagonalizeTraits())
{
Local_eigen_analysis out;
out.m_content = boost::make_shared<Content>();
out.m_content->eigenvalues.resize (input.size());
out.m_content->centroids.resize (input.size());
out.m_content->smallest_eigenvectors.resize (input.size());
2020-10-13 12:44:25 +00:00
out.m_content->mean_range = 0.;
2020-10-13 12:44:25 +00:00
#ifndef CGAL_LINKED_WITH_TBB
CGAL_static_assertion_msg (!(boost::is_convertible<ConcurrencyTag, Parallel_tag>::value),
"Parallel_tag is enabled but TBB is unavailable.");
#else
if (boost::is_convertible<ConcurrencyTag,Parallel_tag>::value)
{
2020-10-13 12:44:25 +00:00
std::mutex mutex;
Compute_eigen_values<PointRange, PointMap, NeighborQuery, DiagonalizeTraits>
f(out, input, point_map, neighbor_query, out.m_content->mean_range, mutex);
tbb::parallel_for(tbb::blocked_range<size_t>(0, input.size ()), f);
}
else
#endif
{
for (std::size_t i = 0; i < input.size(); i++)
{
std::vector<std::size_t> neighbors;
neighbor_query (get(point_map, *(input.begin()+i)), std::back_inserter (neighbors));
std::vector<typename PointMap::value_type> neighbor_points;
for (std::size_t j = 0; j < neighbors.size(); ++ j)
neighbor_points.push_back (get(point_map, *(input.begin()+neighbors[j])));
out.m_content->mean_range += float(CGAL::sqrt (CGAL::squared_distance
(get(point_map, *(input.begin() + i)),
get(point_map, *(input.begin() + neighbors.back())))));
2020-10-13 12:44:25 +00:00
out.compute<typename PointMap::value_type, DiagonalizeTraits>
(i, get(point_map, *(input.begin()+i)), neighbor_points);
}
}
out.m_content->mean_range /= input.size();
return out;
}
2020-10-13 12:44:25 +00:00
/*!
\brief Computes the local eigen analysis of an input face graph
based on a local neighborhood.
2020-10-13 12:44:25 +00:00
\tparam FaceListGraph model of `FaceListGraph`.
\tparam NeighborQuery model of `NeighborQuery`
\tparam ConcurrencyTag enables sequential versus parallel
2020-10-13 12:44:25 +00:00
algorithm. Possible values are `Parallel_tag` (default value if %CGAL
is linked with TBB) or `Sequential_tag` (default value otherwise).
\tparam DiagonalizeTraits model of `DiagonalizeTraits` used for
matrix diagonalization. It can be omitted: if Eigen 3 (or greater)
is available and `CGAL_EIGEN3_ENABLED` is defined then an overload
using `Eigen_diagonalize_traits` is provided. Otherwise, the
internal implementation `Diagonalize_traits` is used.
\param input face graph.
\param neighbor_query object used to access neighborhoods of points.
*/
template <typename FaceListGraph,
typename NeighborQuery,
#if defined(DOXYGEN_RUNNING)
typename ConcurrencyTag,
#else
2020-10-13 12:44:25 +00:00
typename ConcurrencyTag = CGAL::Parallel_if_available_tag,
#endif
#if defined(DOXYGEN_RUNNING)
typename DiagonalizeTraits>
#else
typename DiagonalizeTraits = CGAL::Default_diagonalize_traits<float, 3> >
#endif
static Local_eigen_analysis create_from_face_graph (const FaceListGraph& input,
const NeighborQuery& neighbor_query,
const ConcurrencyTag& = ConcurrencyTag(),
const DiagonalizeTraits& = DiagonalizeTraits())
{
typedef typename boost::graph_traits<FaceListGraph>::face_descriptor face_descriptor;
typedef typename boost::graph_traits<FaceListGraph>::face_iterator face_iterator;
typedef typename CGAL::Iterator_range<face_iterator> Face_range;
typedef typename boost::property_map<FaceListGraph, CGAL::face_index_t>::type::value_type face_index;
Local_eigen_analysis out;
out.m_content = boost::make_shared<Content>();
2020-10-13 12:44:25 +00:00
Face_range range (faces(input));
out.m_content->eigenvalues.resize (range.size());
out.m_content->centroids.resize (range.size());
out.m_content->smallest_eigenvectors.resize (range.size());
2020-10-13 12:44:25 +00:00
out.m_content->mean_range = 0.;
2020-10-13 12:44:25 +00:00
#ifndef CGAL_LINKED_WITH_TBB
CGAL_static_assertion_msg (!(boost::is_convertible<ConcurrencyTag, Parallel_tag>::value),
"Parallel_tag is enabled but TBB is unavailable.");
#else
if (boost::is_convertible<ConcurrencyTag,Parallel_tag>::value)
{
2020-10-13 12:44:25 +00:00
std::mutex mutex;
Compute_eigen_values_graph<FaceListGraph, NeighborQuery, DiagonalizeTraits>
f(out, input, neighbor_query, out.m_content->mean_range, mutex);
tbb::parallel_for(tbb::blocked_range<std::size_t>(0, range.size()), f);
}
else
#endif
{
2020-10-13 12:44:25 +00:00
for(face_descriptor fd : range)
{
std::vector<face_index> neighbors;
neighbor_query (fd, std::back_inserter (neighbors));
out.m_content->mean_range += out.face_radius(fd, input);
2020-10-13 12:44:25 +00:00
out.compute_triangles<FaceListGraph, DiagonalizeTraits>
(input, fd, neighbors);
}
}
2020-10-13 12:44:25 +00:00
out.m_content->mean_range /= range.size();
return out;
}
2020-10-13 12:44:25 +00:00
/*!
\brief Computes the local eigen analysis of an input set of point
clusters based on a local neighborhood.
\tparam ClusterRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator` and its value type is the key type of
`PointMap`.
\tparam ConcurrencyTag enables sequential versus parallel
2020-10-13 12:44:25 +00:00
algorithm. Possible values are `Parallel_tag` (default value if %CGAL
is linked with TBB) or `Sequential_tag` (default value otherwise).
\tparam DiagonalizeTraits model of `DiagonalizeTraits` used for
matrix diagonalization. It can be omitted: if Eigen 3 (or greater)
is available and `CGAL_EIGEN3_ENABLED` is defined then an overload
using `Eigen_diagonalize_traits` is provided. Otherwise, the
internal implementation `Diagonalize_traits` is used.
\param input cluster range.
*/
template <typename ClusterRange,
#if defined(DOXYGEN_RUNNING)
typename ConcurrencyTag,
#else
2020-10-13 12:44:25 +00:00
typename ConcurrencyTag = CGAL::Parallel_if_available_tag,
#endif
#if defined(DOXYGEN_RUNNING)
typename DiagonalizeTraits>
#else
typename DiagonalizeTraits = CGAL::Default_diagonalize_traits<float, 3> >
#endif
static Local_eigen_analysis create_from_point_clusters (const ClusterRange& input,
const ConcurrencyTag& = ConcurrencyTag(),
const DiagonalizeTraits& = DiagonalizeTraits())
{
Local_eigen_analysis out;
out.m_content = boost::make_shared<Content>();
2020-10-13 12:44:25 +00:00
out.m_content->eigenvalues.resize (input.size());
out.m_content->centroids.resize (input.size());
out.m_content->smallest_eigenvectors.resize (input.size());
2020-10-13 12:44:25 +00:00
out.m_content->mean_range = 0.;
Compute_clusters_eigen_values<ClusterRange, DiagonalizeTraits>
f(out, input);
2020-10-13 12:44:25 +00:00
#ifndef CGAL_LINKED_WITH_TBB
CGAL_static_assertion_msg (!(boost::is_convertible<ConcurrencyTag, Parallel_tag>::value),
"Parallel_tag is enabled but TBB is unavailable.");
#else
if (boost::is_convertible<ConcurrencyTag,Parallel_tag>::value)
{
tbb::parallel_for(tbb::blocked_range<size_t>(0, input.size ()), f);
}
else
#endif
{
for (std::size_t i = 0; i < input.size(); ++ i)
f.apply (i);
}
return out;
}
/// @}
/// \name Analysis
/// @{
/*!
\brief Returns the estimated unoriented normal vector of the point at position `index`.
\tparam GeomTraits model of \cgal Kernel.
*/
template <typename GeomTraits>
typename GeomTraits::Vector_3 normal_vector (std::size_t index) const
{
return typename GeomTraits::Vector_3(double(m_content->smallest_eigenvectors[index][0]),
double(m_content->smallest_eigenvectors[index][1]),
double(1. - (m_content->smallest_eigenvectors[index][0] +
m_content->smallest_eigenvectors[index][1])));
}
/*!
\brief Returns the estimated local tangent plane of the point at position `index`.
\tparam GeomTraits model of \cgal Kernel.
*/
template <typename GeomTraits>
typename GeomTraits::Plane_3 plane (std::size_t index) const
{
return typename GeomTraits::Plane_3
(typename GeomTraits::Point_3 (double(m_content->centroids[index][0]),
double(m_content->centroids[index][1]),
double(m_content->centroids[index][2])),
normal_vector<GeomTraits>(index));
}
/*!
\brief Returns the normalized eigenvalues of the point at position `index`.
*/
Eigenvalues eigenvalue (std::size_t index) const
{
const cfloat2& uc = m_content->eigenvalues[index];
Eigenvalues out;
out[1] = decompress_float(uc[0]);
out[2] = decompress_float(uc[1]);
out[0] = 1.f - (out[1] + out[2]);
return out;
}
/// @}
/// \cond SKIP_IN_MANUAL
float mean_range() const { return m_content->mean_range; }
/// \endcond
private:
template <typename FaceListGraph>
float face_radius (typename boost::graph_traits<FaceListGraph>::face_descriptor& fd,
const FaceListGraph& g)
{
typedef typename boost::graph_traits<FaceListGraph>::halfedge_descriptor halfedge_descriptor;
2020-10-13 12:44:25 +00:00
float out = 0.f;
2020-10-13 12:44:25 +00:00
for(halfedge_descriptor hd : halfedges_around_face(halfedge(fd, g), g))
{
out = (std::max)(out,
float(CGAL::squared_distance (get(get (CGAL::vertex_point, g), source(hd,g)),
get(get (CGAL::vertex_point, g), target(hd,g)))));
}
return out;
}
template <typename Point, typename DiagonalizeTraits>
void compute (std::size_t index, const Point& query, std::vector<Point>& neighbor_points)
{
typedef typename Kernel_traits<Point>::Kernel::Vector_3 Vector;
2020-10-13 12:44:25 +00:00
if (neighbor_points.size() == 0)
{
m_content->eigenvalues[index] = make_array (compressed_float(0), compressed_float(0));
m_content->centroids[index] = make_array(float(query.x()), float(query.y()), float(query.z()) );
m_content->smallest_eigenvectors[index] = make_array( 0.f, 0.f );
return;
}
Point centroid = CGAL::centroid (neighbor_points.begin(), neighbor_points.end());
m_content->centroids[index] = make_array( float(centroid.x()), float(centroid.y()), float(centroid.z()) );
2020-10-13 12:44:25 +00:00
std::array<float, 6> covariance = make_array( 0.f, 0.f, 0.f, 0.f, 0.f, 0.f );
for (std::size_t i = 0; i < neighbor_points.size(); ++ i)
{
Vector d = neighbor_points[i] - centroid;
covariance[0] += float(d.x () * d.x ());
covariance[1] += float(d.x () * d.y ());
covariance[2] += float(d.x () * d.z ());
covariance[3] += float(d.y () * d.y ());
covariance[4] += float(d.y () * d.z ());
covariance[5] += float(d.z () * d.z ());
}
2020-10-13 12:44:25 +00:00
std::array<float, 3> evalues = make_array( 0.f, 0.f, 0.f );
std::array<float, 9> evectors = make_array( 0.f, 0.f, 0.f,
0.f, 0.f, 0.f,
0.f, 0.f, 0.f );
DiagonalizeTraits::diagonalize_selfadjoint_covariance_matrix
(covariance, evalues, evectors);
// Normalize
float sum = evalues[0] + evalues[1] + evalues[2];
if (sum > 0.f)
for (std::size_t i = 0; i < 3; ++ i)
evalues[i] = evalues[i] / sum;
2020-10-13 12:44:25 +00:00
m_content->eigenvalues[index] = make_array(compress_float (evalues[1]),
compress_float (evalues[2]));
2020-10-13 12:44:25 +00:00
sum = evectors[0] + evectors[1] + evectors[2];
if (sum > 0.f)
for (std::size_t i = 0; i < 3; ++ i)
evectors[i] = evectors[i] / sum;
m_content->smallest_eigenvectors[index] = make_array( float(evectors[0]), float(evectors[1]) );
}
template <typename FaceListGraph, typename DiagonalizeTraits>
void compute_triangles (const FaceListGraph& g,
typename boost::graph_traits<FaceListGraph>::face_descriptor& query,
std::vector<typename boost::property_map<FaceListGraph, CGAL::face_index_t>::type::value_type>& neighbor_faces)
{
typedef typename boost::property_map<FaceListGraph, boost::vertex_point_t>::type::value_type Point;
typedef typename Kernel_traits<Point>::Kernel Kernel;
typedef typename Kernel::Triangle_3 Triangle;
2020-10-13 12:44:25 +00:00
typedef typename boost::graph_traits<FaceListGraph>::face_descriptor face_descriptor;
typedef typename boost::graph_traits<FaceListGraph>::face_iterator face_iterator;
if (neighbor_faces.size() == 0)
{
m_content->eigenvalues[get(get(CGAL::face_index,g), query)]
= make_array(compressed_float(0), compressed_float(0));
2020-10-13 12:44:25 +00:00
std::array<Triangle,1> tr
= {{ Triangle (get(get (CGAL::vertex_point, g), target(halfedge(query, g), g)),
get(get (CGAL::vertex_point, g), target(next(halfedge(query, g), g), g)),
get(get (CGAL::vertex_point, g), target(next(next(halfedge(query, g), g), g), g))) }};
Point c = CGAL::centroid(tr.begin(),
tr.end(), Kernel(), CGAL::Dimension_tag<2>());
m_content->centroids[get(get(CGAL::face_index,g), query)] = {{ float(c.x()), float(c.y()), float(c.z()) }};
2020-10-13 12:44:25 +00:00
m_content->smallest_eigenvectors[get(get(CGAL::face_index,g), query)] = {{ 0.f, 0.f }};
return;
}
std::vector<Triangle> triangles;
triangles.reserve(neighbor_faces.size());
face_iterator begin = faces(g).first;
for (std::size_t i = 0; i < neighbor_faces.size(); ++ i)
{
face_descriptor fd = *(begin + std::size_t(neighbor_faces[i]));
triangles.push_back
(Triangle (get(get (CGAL::vertex_point, g), target(halfedge(fd, g), g)),
get(get (CGAL::vertex_point, g), target(next(halfedge(fd, g), g), g)),
get(get (CGAL::vertex_point, g), target(next(next(halfedge(fd, g), g), g), g))));
}
2020-10-13 12:44:25 +00:00
std::array<float, 6> covariance = {{ 0.f, 0.f, 0.f, 0.f, 0.f, 0.f }};
Point c = CGAL::centroid(triangles.begin(),
triangles.end(), Kernel(), CGAL::Dimension_tag<2>());
CGAL::internal::assemble_covariance_matrix_3 (triangles.begin(), triangles.end(), covariance,
2020-10-13 12:44:25 +00:00
c, Kernel(), (Triangle*)nullptr, CGAL::Dimension_tag<2>(),
DiagonalizeTraits());
2020-10-13 12:44:25 +00:00
m_content->centroids[get(get(CGAL::face_index,g), query)] = {{ float(c.x()), float(c.y()), float(c.z()) }};
2020-10-13 12:44:25 +00:00
std::array<float, 3> evalues = {{ 0.f, 0.f, 0.f }};
std::array<float, 9> evectors = {{ 0.f, 0.f, 0.f,
0.f, 0.f, 0.f,
0.f, 0.f, 0.f }};
DiagonalizeTraits::diagonalize_selfadjoint_covariance_matrix
(covariance, evalues, evectors);
// Normalize
float sum = evalues[0] + evalues[1] + evalues[2];
if (sum > 0.f)
for (std::size_t i = 0; i < 3; ++ i)
evalues[i] = evalues[i] / sum;
m_content->eigenvalues[get(get(CGAL::face_index,g), query)]
= make_array(compress_float (evalues[1]),
compress_float (evalues[2]));
2020-10-13 12:44:25 +00:00
sum = evectors[0] + evectors[1] + evectors[2];
if (sum > 0.f)
for (std::size_t i = 0; i < 3; ++ i)
evectors[i] = evectors[i] / sum;
m_content->smallest_eigenvectors[get(get(CGAL::face_index,g), query)] = {{ float(evectors[0]), float(evectors[1]), }};
}
2020-10-13 12:44:25 +00:00
};
2020-10-13 12:44:25 +00:00
}
2020-10-13 12:44:25 +00:00
}
#endif // CGAL_CLASSIFICATION_LOCAL_EIGEN_ANALYSIS_H