204 lines
6.2 KiB
C
204 lines
6.2 KiB
C
|
// Copyright (c) 2000,2001
|
||
|
// Utrecht University (The Netherlands),
|
||
|
// ETH Zurich (Switzerland),
|
||
|
// INRIA Sophia-Antipolis (France),
|
||
|
// Max-Planck-Institute Saarbruecken (Germany),
|
||
|
// and Tel-Aviv University (Israel). All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org)
|
||
|
//
|
||
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Kernel_d/include/CGAL/Kernel_d/Ray_d.h $
|
||
|
// $Id: Ray_d.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
|
||
|
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : Michael Seel
|
||
|
|
||
|
#ifndef CGAL_RAY_D_H
|
||
|
#define CGAL_RAY_D_H
|
||
|
|
||
|
#include <CGAL/Kernel_d/Pair_d.h>
|
||
|
#include <CGAL/Kernel_d/Point_d.h>
|
||
|
#include <CGAL/Kernel_d/Direction_d.h>
|
||
|
#include <CGAL/Kernel_d/Segment_d.h>
|
||
|
#include <CGAL/Kernel_d/Line_d.h>
|
||
|
#include <CGAL/Kernel_d/Aff_transformation_d.h>
|
||
|
#include <CGAL/Dimension.h>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
template <class R>
|
||
|
std::istream& operator>>(std::istream&, Ray_d<R>&);
|
||
|
template <class R>
|
||
|
std::ostream& operator<<(std::ostream&, const Ray_d<R>&);
|
||
|
|
||
|
|
||
|
/*{\Manpage {Ray_d}{R}{Rays in d-space}{r}}*/
|
||
|
|
||
|
template <class p_R>
|
||
|
class Ray_d : public Handle_for< Pair_d<p_R> > {
|
||
|
typedef Pair_d<p_R> Pair;
|
||
|
typedef Handle_for<Pair> Base;
|
||
|
typedef Ray_d<p_R> Self;
|
||
|
|
||
|
using Base::ptr;
|
||
|
|
||
|
/*{\Mdefinition
|
||
|
An instance of data type |Ray_d| is a ray in $d$-dimensional
|
||
|
Euclidian space. It starts in a point called the source of |\Mvar| and
|
||
|
it goes to infinity.}*/
|
||
|
|
||
|
public:
|
||
|
|
||
|
typedef CGAL::Dynamic_dimension_tag Ambient_dimension;
|
||
|
typedef CGAL::Dimension_tag<1> Feature_dimension;
|
||
|
|
||
|
/*{\Mtypes 4}*/
|
||
|
typedef p_R R;
|
||
|
/*{\Mtypemember the representation type.}*/
|
||
|
typedef typename p_R::RT RT;
|
||
|
/*{\Mtypemember the ring type.}*/
|
||
|
typedef typename p_R::FT FT;
|
||
|
/*{\Mtypemember the field type.}*/
|
||
|
typedef typename p_R::LA LA;
|
||
|
/*{\Mtypemember the linear algebra layer.}*/
|
||
|
|
||
|
typedef typename Vector_d<R>::Base_vector Base_vector;
|
||
|
|
||
|
friend class Line_d<R>;
|
||
|
friend class Segment_d<R>;
|
||
|
|
||
|
private:
|
||
|
Ray_d(const Base& b) : Base(b) {}
|
||
|
public:
|
||
|
/*{\Mcreation 3}*/
|
||
|
|
||
|
Ray_d() : Base( Pair() ) {}
|
||
|
/*{\Mcreate introduces some ray in $d$-dimensional space }*/
|
||
|
|
||
|
Ray_d(const Point_d<R>& p, const Point_d<R>& q)
|
||
|
/*{\Mcreate introduces a ray through |p| and |q| and starting at |p|.
|
||
|
\precond $p$ and $q$ are distinct and have the same dimension. }*/
|
||
|
: Base( Pair(p,q) )
|
||
|
{ CGAL_assertion_msg(!ptr()->is_degenerate(),
|
||
|
"Ray_d::constructor: the two points must be different." );
|
||
|
CGAL_assertion_msg((p.dimension()==q.dimension()),
|
||
|
"Ray_d::constructor: the two points must have the same dimension." );
|
||
|
}
|
||
|
|
||
|
Ray_d(const Point_d<R>& p, const Direction_d<R>& dir)
|
||
|
/*{\Mcreate introduces a ray starting in |p| with direction |dir|.
|
||
|
\precond |p| and |dir| have the same dimension and |dir| is not
|
||
|
trivial.}*/
|
||
|
: Base( Pair(p,p+dir.vector()) )
|
||
|
{ CGAL_assertion_msg((p.dimension()==dir.dimension()),
|
||
|
"Ray_d::constructor: the p and dir must have the same dimension." );
|
||
|
CGAL_assertion_msg(!dir.is_degenerate(),
|
||
|
"Ray_d::constructor: dir must be non-degenerate." );
|
||
|
}
|
||
|
|
||
|
Ray_d(const Segment_d<R>& s)
|
||
|
/*{\Mcreate introduces a ray through |s.source()| and |s.target()| and
|
||
|
starting at |s.source()|. \precond $s$ is not trivial. }*/
|
||
|
: Base( s )
|
||
|
{ CGAL_assertion_msg(!s.is_degenerate(),
|
||
|
"Ray_d::constructor: segment is trivial.");
|
||
|
}
|
||
|
|
||
|
|
||
|
/*{\Moperations 3 3}*/
|
||
|
|
||
|
int dimension() const { return (ptr()->_p[0].dimension()); }
|
||
|
/*{\Mop returns the dimension of the underlying space.}*/
|
||
|
|
||
|
Point_d<R> source() const { return (ptr()->_p[0]); }
|
||
|
/*{\Mop returns the source point of |\Mvar|. }*/
|
||
|
|
||
|
Point_d<R> point(int i) const
|
||
|
/*{\Mop returns a point on |\Mvar|. |point(0)| is the source.
|
||
|
|point(i)|, with $i>0$, is different from the source. \precond $i
|
||
|
\geq 0$.}*/
|
||
|
{ return (ptr()->_p[i%2]); }
|
||
|
|
||
|
Direction_d<R> direction() const
|
||
|
/*{\Mop returns the direction of |\Mvar|. }*/
|
||
|
{ return ptr()->direction(); }
|
||
|
|
||
|
inline Line_d<R> supporting_line() const;
|
||
|
/*{\Mop returns the supporting line of |\Mvar|.}*/
|
||
|
|
||
|
Ray_d<R> opposite() const
|
||
|
/*{\Mop returns the ray with direction opposite to |\Mvar|
|
||
|
and starting in |source|.}*/
|
||
|
{ return Ray_d<R>(source(),-direction()); }
|
||
|
|
||
|
Ray_d<R> transform(const Aff_transformation_d<R>& t) const
|
||
|
/*{\Mop returns $t(l)$. }*/
|
||
|
{ return Ray_d<R>(point(0).transform(t),point(1).transform(t)); }
|
||
|
|
||
|
Ray_d<R> operator+(const Vector_d<R>& v) const
|
||
|
/*{\Mbinop returns |\Mvar+v|, i.e., |\Mvar| translated by vector $v$.}*/
|
||
|
{ return Ray_d<R>(point(0)+v, point(1)+v); }
|
||
|
|
||
|
bool has_on(const Point_d<R>& p) const
|
||
|
/*{\Mop A point is on |r|, iff it is equal to the source of |r|, or if it is
|
||
|
in the interior of |r|.}*/
|
||
|
{ typename R::Position_on_line_d pos; FT l;
|
||
|
if (pos(p,point(0),point(1),l)) return (FT(0)<=l);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/*{\Mtext \headerline{Non-Member Functions}}*/
|
||
|
|
||
|
bool operator==(const Ray_d<R>& r1) const
|
||
|
{ if ( this->identical(r1) ) return true;
|
||
|
if ( dimension() != r1.dimension() ) return false;
|
||
|
return source() == r1.source() &&
|
||
|
direction() == r1.direction();
|
||
|
}
|
||
|
|
||
|
bool operator!=(const Ray_d<R>& r1)
|
||
|
{ return !operator==(r1); }
|
||
|
|
||
|
friend std::istream& operator>> <>
|
||
|
(std::istream&, Ray_d<R>&);
|
||
|
friend std::ostream& operator<< <>
|
||
|
(std::ostream&, const Ray_d<R>&);
|
||
|
|
||
|
}; // end of class
|
||
|
|
||
|
template <class R>
|
||
|
bool parallel(const Ray_d<R>& r1, const Ray_d<R>& r2)
|
||
|
/*{\Mfunc returns true if the unoriented supporting lines of |r1| and |r2|
|
||
|
are parallel and false otherwise. }*/
|
||
|
{ return (r1.direction() == r2.direction()) ||
|
||
|
(r1.direction() == -(r2.direction()));
|
||
|
}
|
||
|
|
||
|
template <class R>
|
||
|
std::istream& operator>>(std::istream& I, Ray_d<R>& r)
|
||
|
{ r.copy_on_write(); r.ptr()->read(I);
|
||
|
CGAL_assertion_msg(r.point(0)!=r.point(1),
|
||
|
"Line_d::operator>>: trivial ray.");
|
||
|
CGAL_assertion_msg(r.point(0).dimension()==r.point(1).dimension(),
|
||
|
"Ray_d::operator>>: dimensions disagree.");
|
||
|
return I;
|
||
|
}
|
||
|
|
||
|
template <class R>
|
||
|
std::ostream& operator<<(std::ostream& O, const Ray_d<R>& r)
|
||
|
{ r.ptr()->print(O,"Ray_d"); return O; }
|
||
|
|
||
|
/*{\Mimplementation
|
||
|
Rays are implemented by a pair of points as an item type. All
|
||
|
operations like creation, initialization, tests, direction
|
||
|
calculation, input and output on a ray $r$ take time
|
||
|
$O(|r.dimension()|)$. |dimension()|, coordinate and point access, and
|
||
|
identity test take constant time. The space requirement is
|
||
|
$O(|r.dimension()|)$.}*/
|
||
|
|
||
|
|
||
|
} //namespace CGAL
|
||
|
#endif // CGAL_RAYHD_H
|
||
|
//----------------------- end of file ----------------------------------
|