389 lines
13 KiB
C
389 lines
13 KiB
C
|
// Copyright (c) 1997-2002 Max-Planck-Institute Saarbruecken (Germany).
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org).
|
||
|
//
|
||
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Nef_S2/include/CGAL/Nef_S2/Sphere_segment.h $
|
||
|
// $Id: Sphere_segment.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
|
||
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : Michael Seel <seel@mpi-sb.mpg.de>
|
||
|
|
||
|
#ifndef CGAL_SPHERE_SEGMENT_H
|
||
|
#define CGAL_SPHERE_SEGMENT_H
|
||
|
|
||
|
#include <CGAL/license/Nef_S2.h>
|
||
|
|
||
|
|
||
|
#include <CGAL/basic.h>
|
||
|
#include <CGAL/Handle_for.h>
|
||
|
#include <vector>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
template <class R_> class Sphere_segment_rep
|
||
|
{
|
||
|
typedef typename R_::Point_3 Point_3;
|
||
|
typedef typename R_::Plane_3 Plane_3;
|
||
|
typedef Sphere_point<R_> Point;
|
||
|
typedef Sphere_circle<R_> Circle;
|
||
|
typedef Sphere_segment_rep<R_> Rep;
|
||
|
friend class Sphere_segment<R_>;
|
||
|
public:
|
||
|
Sphere_segment_rep() { ps_ = pt_ = Point(); c_ = Circle(); }
|
||
|
|
||
|
Sphere_segment_rep(const Point& p1, const Point& p2,
|
||
|
bool shorter_arc=true) :
|
||
|
ps_(p1), pt_(p2), c_(Plane_3(p1,p2,Point_3(0,0,0)))
|
||
|
{ // warning stays as reminder that one gets an arbitrary plane equation
|
||
|
// in this degenerate case
|
||
|
CGAL_warning(p1 != p2.antipode());
|
||
|
CGAL_assertion(p1 != p2.antipode());
|
||
|
if ( p1 == p2 ) {
|
||
|
Plane_3 h(Point_3(0,0,0),(p1-CGAL::ORIGIN));
|
||
|
c_ = Sphere_circle<R_>(Plane_3(Point_3(0,0,0),h.base1()));
|
||
|
}
|
||
|
if (!shorter_arc) c_ = c_.opposite();
|
||
|
CGAL_exactness_assertion(c_.has_on(p1) && c_.has_on(p2));
|
||
|
}
|
||
|
|
||
|
Sphere_segment_rep(const Point& p1, const Point& p2, const Circle& c) :
|
||
|
ps_(p1), pt_(p2), c_(c)
|
||
|
{ CGAL_assertion(c.has_on(p1)&&c.has_on(p2)); }
|
||
|
|
||
|
Sphere_segment_rep(const Circle& c1,
|
||
|
const Circle& c2) : c_(c1)
|
||
|
{ CGAL_assertion(!equal_as_sets(c1,c2));
|
||
|
ps_ = intersection(c1,c2);
|
||
|
pt_ = ps_.antipode();
|
||
|
if ( R_::orientation(Point_3(0,0,0),ps_,pt_,
|
||
|
CGAL::ORIGIN + c_.orthogonal_vector()) !=
|
||
|
CGAL::POSITIVE ) std::swap(ps_,pt_);
|
||
|
}
|
||
|
|
||
|
Sphere_segment_rep(const Rep& r) :
|
||
|
ps_(r.ps_), pt_(r.pt_), c_(r.c_) {}
|
||
|
|
||
|
Rep& operator=(const Rep& r)
|
||
|
{ ps_=r.ps_; pt_=r.pt_; c_=r.c_; return *this; }
|
||
|
|
||
|
protected:
|
||
|
Sphere_point<R_> ps_,pt_;
|
||
|
Sphere_circle<R_> c_;
|
||
|
};
|
||
|
|
||
|
|
||
|
/*{\Moptions print_title=yes }*/
|
||
|
/*{\Manpage{Sphere_segment}{R}{Segments on the unit sphere}{s}}*/
|
||
|
|
||
|
template <class R_>
|
||
|
class Sphere_segment :
|
||
|
public Handle_for< Sphere_segment_rep<R_> > {
|
||
|
|
||
|
/*{\Mdefinition An object |\Mvar| of type |\Mname| is a segment in the
|
||
|
surface of a unit sphere that is part of a great circle trough the
|
||
|
origin. Sphere segments are represented by two sphere points $p$ and
|
||
|
$q$ plus an oriented plane $h$ that contains $p$ and $q$. The plane
|
||
|
determines the sphere segment. Let $c$ be the circle in the
|
||
|
intersection of $h$ and $S_2$. Then $s$ is that part of $c$ that is
|
||
|
swept, when we rotate $p$ into $q$ in counterclockwise rotation around
|
||
|
the normal vector of $h$ as seen from the positive halfspace.}*/
|
||
|
|
||
|
public:
|
||
|
|
||
|
/*{\Mtypes 6}*/
|
||
|
|
||
|
typedef R_ R;
|
||
|
/*{\Mtypemember representation class.}*/
|
||
|
typedef typename R_::RT RT;
|
||
|
/*{\Mtypemember ring number type.}*/
|
||
|
|
||
|
typedef Sphere_segment_rep<R_> Rep;
|
||
|
typedef Handle_for<Rep> Base;
|
||
|
|
||
|
typedef typename R_::Point_3 Point_3;
|
||
|
typedef typename R_::Vector_3 Vector_3;
|
||
|
typedef typename R_::Plane_3 Plane_3;
|
||
|
typedef typename R_::Line_3 Line_3;
|
||
|
typedef Sphere_segment<R_> Self;
|
||
|
|
||
|
/*{\Mcreation 4}*/
|
||
|
|
||
|
Sphere_segment() : Base() {}
|
||
|
|
||
|
Sphere_segment(const Sphere_point<R>& p1, const Sphere_point<R>& p2,
|
||
|
bool shorter_arc=true) : Base(Rep(p1,p2,shorter_arc)) {}
|
||
|
/*{\Mcreate creates a spherical segment spanning the shorter arc
|
||
|
from |p1| to |p2| if |shorter_arc == true|. Otherwise the longer
|
||
|
arc is created. \precond |p1 != p2| and |p1 != p2.antipode()|.}*/
|
||
|
|
||
|
|
||
|
Sphere_segment(const Sphere_point<R>& p1, const Sphere_point<R>& p2,
|
||
|
const Sphere_circle<R>& c) : Base(Rep(p1,p2,c)) {}
|
||
|
/*{\Mcreate creates a spherical segment spanning the arc
|
||
|
from |p1| to |p2| as part of the oriented circle |c|
|
||
|
(|p1 == p2| or |p1 == p2.antipode()| are possible.)
|
||
|
\precond |p1| and |p2| are contained in |c|.}*/
|
||
|
|
||
|
Sphere_segment(const Sphere_circle<R>& c1,
|
||
|
const Sphere_circle<R>& c2) : Base(Rep(c1,c2)) {}
|
||
|
/*{\Mcreate creates the spherical segment as part of |c1|
|
||
|
that is part of the halfsphere left of the oriented circle |c2|.
|
||
|
\precond |c1 != c2| as unoriented circles.}*/
|
||
|
|
||
|
// Sphere_segment(const Self& s) : Base(s) {}
|
||
|
|
||
|
/*{\Moperations 4 2}*/
|
||
|
|
||
|
const Sphere_point<R>& source() const { return this->ptr()->ps_; }
|
||
|
/*{\Mop the source point of |\Mvar|.}*/
|
||
|
const Sphere_point<R>& target() const { return this->ptr()->pt_; }
|
||
|
/*{\Mop the target point of |\Mvar|.}*/
|
||
|
const Sphere_circle<R>& sphere_circle() const { return this->ptr()->c_; }
|
||
|
/*{\Mop the great circle supporting |\Mvar|.}*/
|
||
|
|
||
|
Sphere_segment<R> opposite() const
|
||
|
/*{\Mop returns the sperical segment oriented from |target()|
|
||
|
to |source()| with the same point set as |\Mvar|. }*/
|
||
|
{ return Sphere_segment<R>(
|
||
|
target(),source(),sphere_circle().opposite()); }
|
||
|
|
||
|
Sphere_segment<R> complement() const
|
||
|
/*{\Mop returns the sperical segment oriented from |target()|
|
||
|
to |source()| with the point set completing |\Mvar| to a
|
||
|
full circle. }*/
|
||
|
{ return Sphere_segment<R>(target(),source(),sphere_circle()); }
|
||
|
|
||
|
|
||
|
int intersection(const Sphere_circle<R>& c,
|
||
|
std::vector<Sphere_segment<R> >& s) const;
|
||
|
|
||
|
int intersection(const Sphere_circle<R>& c,
|
||
|
Sphere_segment<R>& s1, Sphere_segment<R>& s2) const;
|
||
|
/*{\Mop returns the number of non-trivial connected components
|
||
|
of the intersection of |\Mvar| and the closed halfsphere left of
|
||
|
|c|.}*/
|
||
|
|
||
|
Sphere_point<R> intersection(const Sphere_segment<R>& so) const;
|
||
|
/*{\Mop returns the point of intersection of |\Mvar| and
|
||
|
|so|. \precond |\Mvar| and |so| do intersect.}*/
|
||
|
|
||
|
void split_halfcircle(Sphere_segment<R>& s1,
|
||
|
Sphere_segment<R>& s2) const
|
||
|
/*{\Mop splits a halfcircle into two equally sized segments.
|
||
|
\precond |\Mvar| is a halfcircle.}*/
|
||
|
{ CGAL_assertion( is_halfcircle() );
|
||
|
Plane_3 h(Point_3(0,0,0),(target()-CGAL::ORIGIN));
|
||
|
Sphere_point<R> p =
|
||
|
CGAL::intersection(sphere_circle(),Sphere_circle<R>(h));
|
||
|
if ( !has_on(p) ) p = p.antipode();
|
||
|
s1 = Sphere_segment<R>(this->ptr()->ps_,p,this->ptr()->c_);
|
||
|
s2 = Sphere_segment<R>(p,this->ptr()->pt_,this->ptr()->c_);
|
||
|
}
|
||
|
|
||
|
bool is_short() const
|
||
|
/*{\Mop a segment is short iff it is shorter than a halfcircle.}*/
|
||
|
{
|
||
|
return R().orientation_3_object()(Point_3(0,0,0),
|
||
|
Point_3(source()),
|
||
|
Point_3(target()),
|
||
|
CGAL::ORIGIN +
|
||
|
this->ptr()->c_.orthogonal_vector())
|
||
|
== CGAL::POSITIVE; }
|
||
|
|
||
|
bool is_long() const
|
||
|
/*{\Mop a segment is long iff it is longer than a halfcircle.}*/
|
||
|
{ return R().orientation_3_object()(Point_3(0,0,0),
|
||
|
Point_3(source()),
|
||
|
Point_3(target()),
|
||
|
CGAL::ORIGIN + this->ptr()->c_.orthogonal_vector())
|
||
|
== CGAL::NEGATIVE; }
|
||
|
|
||
|
bool is_degenerate() const { return source() == target(); }
|
||
|
/*{\Mop return true iff |\Mvar| is degenerate.}*/
|
||
|
|
||
|
bool is_halfcircle() const { return source().antipode() == target(); }
|
||
|
/*{\Mop return true iff |\Mvar| is a halfcircle.}*/
|
||
|
|
||
|
bool has_on(const Sphere_point<R>& p) const;
|
||
|
/*{\Mop return true iff |\Mvar| contains |p|.}*/
|
||
|
bool has_on_after_intersection(const Sphere_point<R>& p) const;
|
||
|
|
||
|
bool has_in_relative_interior(const Sphere_point<R>& p) const;
|
||
|
/*{\Mop return true iff |\Mvar| contains |p| in
|
||
|
its relative interior.}*/
|
||
|
|
||
|
bool operator==(const Sphere_segment<R>& so) const
|
||
|
{ return source() == so.source() && target() == so.target() &&
|
||
|
(source() == target() ||
|
||
|
sphere_circle() == so.sphere_circle()); }
|
||
|
|
||
|
bool operator!=(const Sphere_segment<R>& so) const
|
||
|
{ return !operator==(so); }
|
||
|
|
||
|
};
|
||
|
|
||
|
template <typename R>
|
||
|
bool do_intersect_internally(const Sphere_segment<R>& s1,
|
||
|
const Sphere_segment<R>& s2,
|
||
|
Sphere_point<R>& p);
|
||
|
/*{\Mfunc return true iff |s1| and |s2| intersect internally
|
||
|
(non-degenerately). If |true| the parameter |p| returns the point of
|
||
|
intersection.}*/
|
||
|
|
||
|
|
||
|
template <typename R>
|
||
|
std::ostream& operator<<(std::ostream& os,
|
||
|
const CGAL::Sphere_segment<R>& s)
|
||
|
{ os << s.source()<<" "<<s.target()<<" "<<
|
||
|
s.sphere_circle().plane()<<" "; return os; }
|
||
|
|
||
|
template <typename R>
|
||
|
std::istream& operator>>(std::istream& is,
|
||
|
CGAL::Sphere_segment<R>& s)
|
||
|
{ CGAL::Sphere_point<R> p1,p2;
|
||
|
CGAL::Sphere_circle<R> c;
|
||
|
if ( !(is >> p1 >> p2 >> c) ) return is;
|
||
|
s = CGAL::Sphere_segment<R>(p1,p2,c);
|
||
|
return is; }
|
||
|
|
||
|
|
||
|
template <typename R>
|
||
|
std::pair< Sphere_segment<R>,Sphere_segment<R> >
|
||
|
Sphere_circle<R>::split_at(const Sphere_point<R>& p) const
|
||
|
{ CGAL_assertion(has_on(p));
|
||
|
Sphere_point<R> q(p.antipode());
|
||
|
return Sphere_segment_pair(
|
||
|
Sphere_segment<R>(p,q,*this),
|
||
|
Sphere_segment<R>(p,q,this->opposite()));
|
||
|
}
|
||
|
|
||
|
template <typename R>
|
||
|
std::pair< Sphere_segment<R>,Sphere_segment<R> >
|
||
|
Sphere_circle<R>::split_at_xy_plane() const
|
||
|
{ Self xycircle(0,0,1), yzcircle(1,0,0);
|
||
|
if ( !equal_as_sets(xycircle,*this) )
|
||
|
return split_at(intersection(*this,xycircle));
|
||
|
else
|
||
|
return split_at(intersection(*this,yzcircle));
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Contains maps to two orientation checks with the wedge
|
||
|
spanned by the source and the target with planes orthogonal
|
||
|
to the supporting plane of $p$ and $q$. The logic depends on
|
||
|
the segments length: long or short. */
|
||
|
|
||
|
template <typename R>
|
||
|
bool Sphere_segment<R>::
|
||
|
has_on(const CGAL::Sphere_point<R>& p) const
|
||
|
{ if ( !sphere_circle().has_on(p) ) return false;
|
||
|
if ( !is_long() ) {
|
||
|
return orientation(Point_3(0,0,0),
|
||
|
CGAL::ORIGIN + sphere_circle().orthogonal_vector(),
|
||
|
source(),p) !=
|
||
|
CGAL::NEGATIVE &&
|
||
|
orientation(Point_3(0,0,0),target(),
|
||
|
CGAL::ORIGIN +
|
||
|
sphere_circle().orthogonal_vector(),p) !=
|
||
|
CGAL::NEGATIVE;
|
||
|
} else {
|
||
|
return orientation(Point_3(0,0,0),
|
||
|
CGAL::ORIGIN + sphere_circle().orthogonal_vector(),
|
||
|
source(),p) !=
|
||
|
CGAL::NEGATIVE ||
|
||
|
orientation(Point_3(0,0,0),target(),
|
||
|
CGAL::ORIGIN +
|
||
|
sphere_circle().orthogonal_vector(),p) !=
|
||
|
CGAL::NEGATIVE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename R>
|
||
|
bool Sphere_segment<R>::
|
||
|
has_on_after_intersection(const CGAL::Sphere_point<R>& p) const {
|
||
|
return orientation(Point_3(0,0,0),
|
||
|
CGAL::ORIGIN + sphere_circle().orthogonal_vector(),
|
||
|
source(),p) !=
|
||
|
CGAL::NEGATIVE &&
|
||
|
orientation(Point_3(0,0,0),target(),
|
||
|
CGAL::ORIGIN +
|
||
|
sphere_circle().orthogonal_vector(),p) !=
|
||
|
CGAL::NEGATIVE;
|
||
|
}
|
||
|
|
||
|
template <typename R>
|
||
|
bool Sphere_segment<R>::
|
||
|
has_in_relative_interior(const CGAL::Sphere_point<R>& p) const
|
||
|
{ if ( !sphere_circle().has_on(p) ) return false;
|
||
|
if ( !is_long() ) {
|
||
|
return orientation(Point_3(0,0,0),
|
||
|
CGAL::ORIGIN + sphere_circle().orthogonal_vector(),
|
||
|
source(),p) == CGAL::POSITIVE &&
|
||
|
orientation(Point_3(0,0,0),target(),
|
||
|
CGAL::ORIGIN +
|
||
|
sphere_circle().orthogonal_vector(),p) ==
|
||
|
CGAL::POSITIVE;
|
||
|
} else {
|
||
|
return orientation(Point_3(0,0,0),
|
||
|
CGAL::ORIGIN + sphere_circle().orthogonal_vector(),
|
||
|
source(),p) == CGAL::POSITIVE ||
|
||
|
orientation(Point_3(0,0,0),target(),
|
||
|
CGAL::ORIGIN +
|
||
|
sphere_circle().orthogonal_vector(),p) ==
|
||
|
CGAL::POSITIVE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* Intersection of two sphere segments. It does not work if the two
|
||
|
involved planes are equal as sets. */
|
||
|
|
||
|
template <typename R>
|
||
|
Sphere_point<R> Sphere_segment<R>::
|
||
|
intersection(const Sphere_segment<R>& s) const
|
||
|
{
|
||
|
CGAL_assertion(!equal_as_sets(sphere_circle(),s.sphere_circle()));
|
||
|
Sphere_point<R> res =
|
||
|
CGAL::intersection(sphere_circle(),s.sphere_circle());
|
||
|
if ( has_on(res) && s.has_on(res) ) return res;
|
||
|
return res.antipode();
|
||
|
}
|
||
|
|
||
|
template <typename R>
|
||
|
bool do_intersect_internally(const Sphere_segment<R>& s1,
|
||
|
const Sphere_segment<R>& s2,
|
||
|
Sphere_point<R>& p)
|
||
|
{
|
||
|
if ( equal_as_sets(s1.sphere_circle(),s2.sphere_circle()) )
|
||
|
return false;
|
||
|
p = CGAL::intersection(s1.sphere_circle(),s2.sphere_circle());
|
||
|
if ( s1.has_in_relative_interior(p) &&
|
||
|
s2.has_in_relative_interior(p) ) return true;
|
||
|
p = p.antipode();
|
||
|
if ( s1.has_in_relative_interior(p) &&
|
||
|
s2.has_in_relative_interior(p) ) return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
template <typename R>
|
||
|
bool do_intersect_internally(const Sphere_circle<R>& c1,
|
||
|
const Sphere_segment<R>& s2,
|
||
|
Sphere_point<R>& p)
|
||
|
{
|
||
|
if ( equal_as_sets(c1,s2.sphere_circle()) )
|
||
|
return false;
|
||
|
p = CGAL::intersection(c1,s2.sphere_circle());
|
||
|
if ( s2.has_in_relative_interior(p) ) return true;
|
||
|
p = p.antipode();
|
||
|
if ( s2.has_in_relative_interior(p) ) return true;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
} //namespace CGAL
|
||
|
#endif //CGAL_SPHERE_SEGMENT_H
|