dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/iterator.h

1488 lines
42 KiB
C
Raw Normal View History

2020-10-13 12:44:25 +00:00
// Copyright (c) 2003
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
2020-10-13 12:44:25 +00:00
// and Tel-Aviv University (Israel). All rights reserved.
//
2020-10-13 12:44:25 +00:00
// This file is part of CGAL (www.cgal.org)
//
2020-10-13 12:44:25 +00:00
// $URL: https://github.com/CGAL/cgal/blob/v5.1/STL_Extension/include/CGAL/iterator.h $
// $Id: iterator.h c1d8fb6 2020-04-22T13:47:33+02:00 Simon Giraudot
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Michael Hoffmann <hoffmann@inf.ethz.ch>
// Lutz Kettner <kettner@mpi-sb.mpg.de>
// Sylvain Pion
#ifndef CGAL_ITERATOR_H
#define CGAL_ITERATOR_H 1
#include <CGAL/disable_warnings.h>
#include <CGAL/assertions.h>
#include <CGAL/circulator.h>
#include <CGAL/Iterator_range.h>
#include <CGAL/result_of.h>
#include <CGAL/tuple.h>
#include <CGAL/use.h>
#include <boost/variant.hpp>
#include <boost/optional.hpp>
#include <boost/config.hpp>
#include <vector>
#include <map>
2020-10-13 12:44:25 +00:00
#include <utility>
namespace CGAL {
template<typename I>
class Prevent_deref
: public boost::iterator_adaptor<
Prevent_deref<I>
, I // base
, I // value
>
{
public:
typedef boost::iterator_adaptor<
Prevent_deref<I>
, I // base
, I // value
> Base;
typedef typename Base::reference reference;
typedef typename std::pair<I, I> range;
Prevent_deref() : Base() {}
Prevent_deref(const I& i) : Base(i) {}
private:
friend class boost::iterator_core_access;
reference dereference() const { return const_cast<typename boost::remove_reference<reference>::type&>(this->base_reference()); }
};
template<typename I>
Iterator_range<Prevent_deref<I> > make_prevent_deref_range(const Iterator_range<I>& range)
{
return Iterator_range<Prevent_deref<I> >(make_prevent_deref(range.first), make_prevent_deref(range.second));
}
template<typename I>
Prevent_deref<I> make_prevent_deref(const I& i)
{
return Prevent_deref<I>(i);
}
template<typename I>
Iterator_range<Prevent_deref<I> > make_prevent_deref_range(const I& begin, const I& end)
{
return Iterator_range<Prevent_deref<I> >(make_prevent_deref(begin), make_prevent_deref(end));
}
namespace cpp98 {
template<typename Category, typename Tp, typename Distance = std::ptrdiff_t,
typename Pointer = Tp*, typename Reference = Tp&>
struct iterator
{
/// One of the iterator_tags tag types.
typedef Category iterator_category;
/// The type "pointed to" by the iterator.
typedef Tp value_type;
/// Distance between iterators is represented as this type.
typedef Distance difference_type;
/// This type represents a pointer-to-value_type.
typedef Pointer pointer;
/// This type represents a reference-to-value_type.
typedef Reference reference;
};
} // end namespace cpp98
// +----------------------------------------------------------------+
// | Emptyset_iterator
// +----------------------------------------------------------------+
// | sends everything to /dev/null
// +----------------------------------------------------------------+
struct Emptyset_iterator
: public CGAL::cpp98::iterator< std::output_iterator_tag, void, void, void, void >
{
template< class T >
Emptyset_iterator& operator=(const T&) { return *this; }
Emptyset_iterator& operator++() { return *this; }
Emptyset_iterator& operator++(int) { return *this; }
Emptyset_iterator& operator*() { return *this; }
};
// +---------------------------------------------------------------------+
// | Insert_iterator
// +---------------------------------------------------------------------+
// | Insert output iterator, which calls insert(value) on the container.
// | Similar to std::insert_iterator<> except it doesn't pass an iterator.
// +---------------------------------------------------------------------+
template < class Container >
class Insert_iterator
: public CGAL::cpp98::iterator< std::output_iterator_tag, void, void, void, void >
{
protected:
Container *container;
public:
typedef Container container_type;
explicit Insert_iterator(Container &c)
: container(&c) {}
Insert_iterator&
operator=(typename Container::const_reference value)
{
container->insert(value);
return *this;
}
Insert_iterator&
operator*() { return *this; }
Insert_iterator&
operator++() { return *this; }
Insert_iterator
operator++(int) { return *this; }
};
template < class Container >
inline Insert_iterator<Container>
inserter(Container &x)
{ return Insert_iterator<Container>(x); }
// +----------------------------------------------------------------+
// | Oneset_iterator
// +----------------------------------------------------------------+
// | stores a pointer to an object of type T
// | which will be affected by operator*().
// +----------------------------------------------------------------+
template < class T >
class Oneset_iterator
: public CGAL::cpp98::iterator< std::bidirectional_iterator_tag,
void, void, void, void >
{
T* t;
2020-10-13 12:44:25 +00:00
public:
// types
typedef Oneset_iterator<T> Self;
2020-10-13 12:44:25 +00:00
public:
Oneset_iterator(T& t) : t(&t) {}
T& operator*() { return *t; }
const T& operator*() const { return *t; }
T* operator->() { return t; }
const T* operator->() const { return t; }
Self& operator++() { return *this; }
Self& operator++(int) { return *this; }
Self& operator--() { return *this; }
Self& operator--(int) { return *this; }
};
// +----------------------------------------------------------------+
// | Const_oneset_iterator
// +----------------------------------------------------------------+
// | stores an object of type T
// | which will be affected by operator*().
// +----------------------------------------------------------------+
template < typename T >
class Const_oneset_iterator {
public:
2020-10-13 12:44:25 +00:00
// types
typedef std::random_access_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef value_type* pointer;
typedef value_type& reference;
2020-10-13 12:44:25 +00:00
typedef Const_oneset_iterator<T> Self;
typedef difference_type Diff;
typedef value_type Val;
typedef pointer Ptr;
typedef reference Ref;
2020-10-13 12:44:25 +00:00
// construction
Const_oneset_iterator( const T& t = T(), Diff n = 0)
: value( t), index( n)
{ }
2020-10-13 12:44:25 +00:00
// access
Ref operator * ( ) { return value; }
const value_type& operator * ( ) const { return value; }
Ptr operator -> ( ) { return &value; }
const value_type* operator -> ( ) const { return &value; }
2020-10-13 12:44:25 +00:00
// equality operator
bool operator == ( const Self& x) const { return ( index==x.index); }
bool operator != ( const Self& x) const { return ( index!=x.index); }
2020-10-13 12:44:25 +00:00
// forward operations
// ------------------
Self& operator ++ ( ) { ++index; return *this; }
Self operator ++ ( int) { Self tmp = *this; ++index; return tmp; }
2020-10-13 12:44:25 +00:00
// bidirectional operations
// ------------------------
Self& operator -- ( ) { --index; return *this; }
Self operator -- ( int) { Self tmp = *this; --index; return tmp; }
2020-10-13 12:44:25 +00:00
// random access operations
// ------------------------
// access
Ref operator [] ( Diff ) { return value;}
const value_type& operator [] ( Diff ) const { return value;}
2020-10-13 12:44:25 +00:00
// less operator
bool operator < ( const Self& x) const { return ( index < x.index);}
2020-10-13 12:44:25 +00:00
// arithmetic operations
Self& operator += ( Diff n) { index += n; return *this; }
Self& operator -= ( Diff n) { index -= n; return *this; }
2020-10-13 12:44:25 +00:00
Self operator + ( Diff n) const { Self tmp = *this; return tmp+=n; }
Self operator - ( Diff n) const { Self tmp = *this; return tmp-=n; }
2020-10-13 12:44:25 +00:00
Diff operator - ( const Self& x) const { return index - x.index; }
2020-10-13 12:44:25 +00:00
private:
2020-10-13 12:44:25 +00:00
// data members
Val value;
Diff index;
};
// +----------------------------------------------------------------+
// | Counting_output_iterator
// +----------------------------------------------------------------+
// | stores a pointer to an int,
// | which will be incremented by operator=().
// +----------------------------------------------------------------+
// Undocumented, because there is some hope to merge it into Counting_iterator
class Counting_output_iterator
: public CGAL::cpp98::iterator< std::output_iterator_tag, void, void, void, void >
{
std::size_t *c;
public:
Counting_output_iterator(std::size_t *cc) : c(cc) { *c = 0; }
Counting_output_iterator& operator++() { return *this; }
Counting_output_iterator& operator++(int) { return *this; }
Counting_output_iterator& operator*() { return *this; }
template <typename T>
void operator=(const T&) { ++*c; }
std::size_t current_counter() const { return *c; }
};
template < class I,
class Val = typename std::iterator_traits<I>::value_type >
class Counting_iterator {
protected:
I nt; // The internal iterator.
std::size_t d_i; // The internal counter.
public:
typedef I Iterator;
typedef Counting_iterator<I,Val> Self;
typedef std::input_iterator_tag iterator_category;
typedef Val value_type;
typedef std::ptrdiff_t difference_type;
typedef const value_type& reference;
typedef const value_type* pointer;
// CREATION
// --------
Counting_iterator( std::size_t i = 0) : d_i(i) {}
Counting_iterator( Iterator j, std::size_t i = 0) : nt(j), d_i(i) {}
// OPERATIONS Forward Category
// ---------------------------
Iterator current_iterator() const { return nt;}
std::size_t current_counter() const { return d_i;}
bool operator==( const Self& i) const { return ( d_i == i.d_i); }
bool operator!=( const Self& i) const { return !(*this == i); }
reference operator*() const { return *nt; }
pointer operator->() const { return nt.operator->(); }
Self& operator++() {
++nt;
++d_i;
return *this;
}
Self operator++(int) {
Self tmp = *this;
++*this;
return tmp;
}
};
template < class I, int N,
class Ref = typename std::iterator_traits<I>::reference,
class Ptr = typename std::iterator_traits<I>::pointer,
class Val = typename std::iterator_traits<I>::value_type,
class Dist = typename std::iterator_traits<I>::difference_type,
class Ctg = typename std::iterator_traits<I>::iterator_category >
class N_step_adaptor {
protected:
I nt; // The internal iterator.
bool empty;
public:
typedef I Iterator;
typedef N_step_adaptor<I,N> Self;
typedef std::iterator_traits<I> ITI;
typedef typename ITI::reference reference;
typedef typename ITI::pointer pointer;
typedef typename ITI::value_type value_type;
typedef typename ITI::difference_type difference_type;
typedef typename ITI::iterator_category iterator_category;
// Special for circulators.
typedef I_Circulator_size_traits<iterator_category,I> C_S_Traits;
typedef typename C_S_Traits::size_type size_type;
// CREATION
// --------
N_step_adaptor(): empty(true) {}
N_step_adaptor( Iterator j) : nt(j), empty(false) {}
template <class II>
N_step_adaptor( const N_step_adaptor<II,N>& j)
: nt( j.current_iterator()), empty(j.empty) {}
// OPERATIONS Forward Category
// ---------------------------
// Circulator stuff.
typedef I Circulator;
Circulator current_circulator() const { return nt;}
Iterator current_iterator() const { return nt;}
2020-10-13 12:44:25 +00:00
bool operator==( std::nullptr_t p) const {
CGAL_USE(p);
CGAL_assertion( p == 0);
return empty;
}
2020-10-13 12:44:25 +00:00
bool operator!=( std::nullptr_t p) const { return !(*this == p); }
bool operator==( const Self& i) const { return (empty && i.empty) ||( nt == i.nt); }
bool operator!=( const Self& i) const { return !(*this == i); }
reference operator*() const { return *nt; }
pointer operator->() const { return nt.operator->(); }
Self& operator++() {
std::advance( nt, N);
return *this;
}
Self operator++(int) {
Self tmp = *this;
++*this;
return tmp;
}
// OPERATIONS Bidirectional Category
// ---------------------------------
Self& operator--() {
std::advance( nt, -N);
return *this;
}
Self operator--(int) {
Self tmp = *this;
--*this;
return tmp;
}
// OPERATIONS Random Access Category
// ---------------------------------
Self min_circulator() const { return Self( nt.min_circulator()); }
Self& operator+=( difference_type n) {
nt += difference_type(N * n);
return *this;
}
Self operator+( difference_type n) const {
Self tmp = *this;
tmp.nt += difference_type(N * n);
return tmp;
}
Self& operator-=( difference_type n) {
return operator+=( -n);
}
Self operator-( difference_type n) const {
Self tmp = *this;
return tmp += -n;
}
difference_type operator-( const Self& i) const { return (nt-i.nt)/N;}
reference operator[]( difference_type n) const {
Self tmp = *this;
tmp += n;
return tmp.operator*();
}
bool operator<( const Self& i) const { return ( nt < i.nt); }
bool operator>( const Self& i) const { return i < *this; }
bool operator<=( const Self& i) const { return !(i < *this); }
bool operator>=( const Self& i) const { return !(*this < i); }
};
// Microsoft 1300 cannot handle the default template parameters. Hence, ...
2020-10-13 12:44:25 +00:00
template < class I, int N, class Ref, class Ptr,
class Val, class Dist, class Ctg >
inline
N_step_adaptor<I,N,Ref,Ptr,Val,Dist,Ctg>
operator+(typename N_step_adaptor<I,N,Ref,Ptr,Val,Dist,Ctg>::difference_type n,
2020-10-13 12:44:25 +00:00
N_step_adaptor<I,N,Ref,Ptr,Val,Dist,Ctg> i)
{ return i += n; }
template < class I, int N>
class N_step_adaptor_derived : public I {
public:
typedef I Iterator;
typedef I Circulator;
typedef N_step_adaptor_derived<I,N> Self;
typedef typename I::iterator_category iterator_category;
typedef typename I::value_type value_type;
typedef typename I::difference_type difference_type;
typedef typename I::reference reference;
typedef typename I::pointer pointer;
// Special for circulators.
typedef I_Circulator_size_traits<iterator_category,I> C_S_Traits;
typedef typename C_S_Traits::size_type size_type;
// CREATION
// --------
N_step_adaptor_derived() {}
N_step_adaptor_derived( Iterator j) : I(j) {}
template <class II>
N_step_adaptor_derived( const N_step_adaptor_derived<II,N>& j)
: I( j.current_iterator()) {}
// OPERATIONS Forward Category
// ---------------------------
Circulator current_circulator() const { return *this;}
Iterator current_iterator() const { return *this;}
Self& operator++() {
std::advance( (I&)*this, N);
return *this;
}
Self operator++(int) {
Self tmp = *this;
++*this;
return tmp;
}
// OPERATIONS Bidirectional Category
// ---------------------------------
Self& operator--() {
std::advance( (I&)*this, -N);
return *this;
}
Self operator--(int) {
Self tmp = *this;
--*this;
return tmp;
}
// OPERATIONS Random Access Category
// ---------------------------------
Self min_circulator() const { return Self( I::min_circulator()); }
Self& operator+=( difference_type n) {
I::operator+=( difference_type(N * n));
return *this;
}
Self operator+( difference_type n) const {
Self tmp = *this;
tmp += n;
return tmp;
}
Self& operator-=( difference_type n) {
return operator+=( -n);
}
Self operator-( difference_type n) const {
Self tmp = *this;
return tmp += -n;
}
difference_type operator-( const Self& i) const {
return (I::operator-(i)) / N;
}
reference operator[]( difference_type n) const {
Self tmp = *this;
tmp += n;
return tmp.operator*();
}
};
template < class I, int N >
inline
N_step_adaptor_derived<I,N>
operator+( typename N_step_adaptor_derived<I,N>::difference_type n,
N_step_adaptor_derived<I,N> i)
{ return i += n; }
template < class I, class P > struct Filter_iterator;
template < class I, class P >
bool operator==(const Filter_iterator<I,P>&, const Filter_iterator<I,P>&);
template < class I, class P >
bool operator<(const Filter_iterator<I,P>&, const Filter_iterator<I,P>&);
template < class I, class P >
struct Filter_iterator {
typedef I Iterator;
typedef P Predicate;
typedef Filter_iterator<I,P> Self;
typedef std::iterator_traits<I> ITI;
typedef typename ITI::reference reference;
typedef typename ITI::pointer pointer;
typedef typename ITI::value_type value_type;
typedef typename ITI::difference_type difference_type;
typedef typename ITI::iterator_category iterator_category;
// Special for circulators.
typedef I_Circulator_size_traits<iterator_category,I> C_S_Traits;
typedef typename C_S_Traits::size_type size_type;
protected:
Iterator e_; // past-the-end position.
Iterator c_; // current position.
Predicate p_; // Leave out x <==> p_(x).
public:
Filter_iterator() {}
Filter_iterator(Iterator e, const Predicate& p)
: e_(e), c_(e), p_(p) {}
Filter_iterator(Iterator e, const Predicate& p, Iterator c)
: e_(e), c_(c), p_(p)
{
while (c_ != e_ && p_(c_))
++c_;
}
Self& operator++() {
do { ++c_; } while (c_ != e_ && p_(c_));
return *this;
}
Self& operator--() {
do {
--c_;
} while (p_(c_));
return *this;
}
Self operator++(int) {
Self tmp(*this);
++(*this);
return tmp;
}
Self operator--(int) {
Self tmp(*this);
--(*this);
return tmp;
}
2020-10-13 12:44:25 +00:00
reference operator*() const { return *c_; }
pointer operator->() const { return &*c_; }
const Predicate& predicate() const { return p_; }
Iterator base() const { return c_; }
Iterator end() const { return e_; }
bool is_end() const { return (c_ == e_); }
friend bool operator== <>(const Self&, const Self&);
friend bool operator< <>(const Self&, const Self&);
};
template < class I, class P >
inline Filter_iterator< I, P >
filter_iterator(I e, const P& p)
{ return Filter_iterator< I, P >(e, p); }
template < class I, class P >
inline Filter_iterator< I, P >
filter_iterator(I e, const P& p, I c)
{ return Filter_iterator< I, P >(e, p, c); }
template < class I, class P >
inline
bool operator==(const Filter_iterator<I,P>& it1,
const Filter_iterator<I,P>& it2)
{
CGAL_precondition(it1.e_ == it2.e_);
return it1.base() == it2.base();
}
template < class I, class P >
inline
bool operator<(const Filter_iterator<I,P>& it1,
const Filter_iterator<I,P>& it2)
{
return it1.base() < it2.base();
}
template < class I, class P >
inline
bool operator!=(const Filter_iterator<I,P>& it1,
const Filter_iterator<I,P>& it2)
{ return !(it1 == it2); }
template <class I1,class Op>
class Join_input_iterator_1
{
typedef Join_input_iterator_1<I1,Op> Self;
typedef typename std::iterator_traits<I1>::value_type arg_type;
public:
typedef typename std::iterator_traits<I1>::iterator_category iterator_category;
2020-10-13 12:44:25 +00:00
typedef std::decay_t<typename cpp11::result_of<Op(arg_type)>::type> value_type;
typedef typename std::iterator_traits<I1>::difference_type difference_type;
2020-10-13 12:44:25 +00:00
typedef value_type const* pointer;
typedef value_type const& reference;
protected:
I1 i1;
Op op;
mutable value_type val; // Note: mutable is needed because we want to
// return a reference in operator*() and
// operator[](int) below.
public:
Join_input_iterator_1() {}
Join_input_iterator_1(const Join_input_iterator_1& it)
: i1(it.i1), op(it.op) {}
Join_input_iterator_1(I1 i,const Op& o=Op())
: i1(i), op(o) {}
2020-10-13 12:44:25 +00:00
I1 current_iterator1() const { return i1; }
2020-10-13 12:44:25 +00:00
bool operator==(const Self& i) const {
return i1 == i.i1;
}
bool operator!=(const Self& i) const { return !(*this == i); }
bool operator< (const Self& i) const {
return i1 < i.i1;
}
Join_input_iterator_1& operator=(const Join_input_iterator_1& it)
{
i1 = it.i1;
op = it.op;
return *this;
}
2020-10-13 12:44:25 +00:00
const value_type& operator*() const {
val = op(*i1);
return val;
}
2020-10-13 12:44:25 +00:00
Self& operator++( ) {
++i1;
return *this;
}
Self operator++(int) { Self tmp = *this; ++(*this); return tmp; }
Self& operator--( ) {
--i1;
return *this;
}
Self operator--(int) { Self tmp = *this; --(*this); return tmp; }
2020-10-13 12:44:25 +00:00
const value_type& operator[](difference_type i) const {
val = op(i1[i]);
return val;
}
2020-10-13 12:44:25 +00:00
Self& operator+=(difference_type n) {
i1 += n;
return *this;
}
Self& operator-=(difference_type n) {
i1 -= n;
return *this;
}
Self operator+ (difference_type n) const {
Self tmp = *this;
return tmp += n;
}
Self operator- (difference_type n) const {
Self tmp = *this;
return tmp -= n;
}
difference_type operator-(const Self& i) const { return i1 - i.i1; }
};
template <class I1,class I2,class Op>
class Join_input_iterator_2
{
typedef Join_input_iterator_2<I1,I2,Op> Self;
typedef typename std::iterator_traits<I1>::value_type arg_type_1;
typedef typename std::iterator_traits<I2>::value_type arg_type_2;
public:
typedef typename std::iterator_traits<I1>::iterator_category iterator_category;
typedef typename cpp11::result_of<Op(arg_type_1, arg_type_2)>::type value_type;
typedef typename std::iterator_traits<I1>::difference_type difference_type;
typedef value_type* pointer;
typedef value_type& reference;
protected:
I1 i1;
I2 i2;
Op op;
mutable value_type val; // Note: mutable is needed because we want to
// return a reference in operator*() and
// operator[](int) below.
2020-10-13 12:44:25 +00:00
public:
Join_input_iterator_2() {}
Join_input_iterator_2(const Join_input_iterator_2& it)
: i1(it.i1), i2(it.i2), op(it.op) {}
Join_input_iterator_2(I1 i1,I2 i2,const Op& op=Op())
: i1(i1), i2(i2), op(op) {}
2020-10-13 12:44:25 +00:00
I1 current_iterator1() const { return i1; }
I2 current_iterator2() const { return i2; }
2020-10-13 12:44:25 +00:00
bool operator==(const Self& i) const {
return i1 == i.i1 && i2 == i.i2;
}
bool operator!=(const Self& i) const { return !(*this == i); }
bool operator< (const Self& i) const {
return i1 < i.i1 && i2 < i.i2;
}
2020-10-13 12:44:25 +00:00
Join_input_iterator_2& operator=(const Join_input_iterator_2& it)
{
i1 = it.i1;
i2 = it.i2;
op = it.op;
return *this;
}
2020-10-13 12:44:25 +00:00
const value_type& operator*() const {
val = op(*i1,*i2);
return val;
}
2020-10-13 12:44:25 +00:00
Self& operator++( ) {
++i1;
++i2;
return *this;
}
Self operator++(int) { Self tmp = *this; ++(*this); return tmp; }
Self& operator--( ) {
--i1;
--i2;
return *this;
}
Self operator--(int) { Self tmp = *this; --(*this); return tmp; }
2020-10-13 12:44:25 +00:00
const value_type& operator[](difference_type i) const {
val = op(i1[i],i2[i]);
return val;
}
2020-10-13 12:44:25 +00:00
Self& operator+=(difference_type n) {
i1 += n;
i2 += n;
return *this;
}
Self& operator-=(difference_type n) {
i1 -= n;
i2 -= n;
return *this;
}
Self operator+ (difference_type n) const {
Self tmp = *this;
return tmp += n;
}
Self operator- (difference_type n) const {
Self tmp = *this;
return tmp -= n;
}
difference_type operator-(const Self& i) const { return i1 - i.i1; }
};
template <class I1,class I2,class I3,class Op>
class Join_input_iterator_3
{
typedef Join_input_iterator_3<I1,I2,I3,Op> Self;
typedef typename std::iterator_traits<I1>::value_type arg_type_1;
typedef typename std::iterator_traits<I2>::value_type arg_type_2;
typedef typename std::iterator_traits<I3>::value_type arg_type_3;
public:
typedef typename std::iterator_traits<I1>::iterator_category iterator_category;
typedef typename cpp11::result_of<Op(arg_type_1, arg_type_2, arg_type_3)>::type
value_type;
typedef typename std::iterator_traits<I1>::difference_type difference_type;
typedef value_type* pointer;
typedef value_type& reference;
2020-10-13 12:44:25 +00:00
protected:
I1 i1;
I2 i2;
I3 i3;
Op op;
mutable value_type val; // Note: mutable is needed because we want to
// return a reference in operator*() and
// operator[](int) below.
2020-10-13 12:44:25 +00:00
public:
Join_input_iterator_3() {}
Join_input_iterator_3(const Join_input_iterator_3& it)
: i1(it.i1), i2(it.i2), i3(it.i3), op(it.op) {}
Join_input_iterator_3(I1 i1,I2 i2,I3 i3,const Op& op=Op())
: i1(i1), i2(i2), i3(i3), op(op) {}
2020-10-13 12:44:25 +00:00
I1 current_iterator1() const { return i1; }
I2 current_iterator2() const { return i2; }
I2 current_iterator3() const { return i3; }
2020-10-13 12:44:25 +00:00
bool operator==(const Self& i) const {
return i1 == i.i1 && i2 == i.i2 && i3 == i.i3;
}
bool operator!=(const Self& i) const { return !(*this == i); }
bool operator< (const Self& i) const {
return i1 < i.i1 && i2 < i.i2 && i3 < i.i3;
}
2020-10-13 12:44:25 +00:00
Join_input_iterator_3& operator=(const Join_input_iterator_3& it)
{
i1 = it.i1;
i2 = it.i2;
i3 = it.i3;
op = it.op;
return *this;
}
2020-10-13 12:44:25 +00:00
const value_type& operator*() const {
val = op(*i1,*i2,*i3);
return val;
}
2020-10-13 12:44:25 +00:00
Self& operator++( ) {
++i1;
++i2;
++i3;
return *this;
}
Self operator++(int) { Self tmp = *this; ++(*this); return tmp; }
Self& operator--( ) {
--i1;
--i2;
--i3;
return *this;
}
Self operator--(int) { Self tmp = *this; --(*this); return tmp; }
2020-10-13 12:44:25 +00:00
const value_type& operator[](difference_type i) const {
val = op(i1[i],i2[i],i3[i]);
return val;
}
2020-10-13 12:44:25 +00:00
Self& operator+=(difference_type n) {
i1 += n;
i2 += n;
i3 += n;
return *this;
}
Self& operator-=(difference_type n) {
i1 -= n;
i2 -= n;
i3 -= n;
return *this;
}
Self operator+ (difference_type n) const {
Self tmp = *this;
return tmp += n;
}
Self operator- (difference_type n) const {
Self tmp = *this;
return tmp -= n;
}
difference_type operator-(const Self& i) const { return i1 - i.i1; }
};
template < class IC>
class Inverse_index {
// DEFINITION
//
// The class Inverse_index<IC,T> constructs an inverse index for a
// given range [i,j) of two iterators or circulators of type `IC' with the
// value type `T'. The first element I in the
// range [i,j) has the index 0. Consecutive elements are numbered
// incrementally. The inverse index provides a query for a given iterator
// or circulator k to retrieve its index number. For random access
// iterators or circulators, it is done in constant time by subtracting i.
// For other iterator categories, an STL `map' is used, which results in a
// log j-i query time. A comparison operator `operator<' is needed for
// `T*'.
//
// CREATION
protected:
typedef std::map< const void*, std::size_t > Index;
Index idx;
IC start;
typedef typename Index::iterator Index_iterator;
typedef typename Index::const_iterator Index_const_iterator;
typedef typename Index::value_type Item;
protected:
void ini_idx( IC i, const IC& j, std::input_iterator_tag);
void ini_idx( const IC& i, const IC& j, std::forward_iterator_tag){
ini_idx( i, j, std::input_iterator_tag());
}
void ini_idx(const IC& i,const IC& j, std::bidirectional_iterator_tag){
ini_idx( i, j, std::input_iterator_tag());
}
void ini_idx( const IC& i, const IC& j, Forward_circulator_tag) {
ini_idx( i, j, std::input_iterator_tag());
}
void ini_idx( const IC& i, const IC& j, Bidirectional_circulator_tag){
ini_idx( i, j, std::input_iterator_tag());
}
void ini_idx( const IC&, const IC&, std::random_access_iterator_tag){}
void ini_idx( const IC&, const IC&, Random_access_circulator_tag){}
public:
void init_index( const IC& i, const IC& j) {
typedef typename std::iterator_traits<IC>::iterator_category ICC;
ini_idx( i, j, ICC());
}
protected:
void push_back( const IC& k, std::input_iterator_tag) {
std::size_t d = idx.size();
idx[ &*k] = d;
}
void push_back( const IC& k, std::forward_iterator_tag){
push_back( k, std::input_iterator_tag());
}
void push_back( const IC& k, std::bidirectional_iterator_tag){
push_back( k, std::input_iterator_tag());
}
void push_back( const IC& k, Forward_circulator_tag){
push_back( k, std::input_iterator_tag());
}
void push_back( const IC& k, Bidirectional_circulator_tag){
push_back( k, std::input_iterator_tag());
}
void push_back( const IC&, std::random_access_iterator_tag){}
void push_back( const IC&, Random_access_circulator_tag){}
public:
void push_back( const IC& k) {
// adds k at the end of the indices.
typedef typename std::iterator_traits<IC>::iterator_category ICC;
push_back( k, ICC());
}
std::size_t find( const IC& k, std::random_access_iterator_tag) const {
return std::size_t(k - start);
}
std::size_t find( const IC& k, Random_access_circulator_tag) const {
return std::size_t(k - start);
}
std::size_t find( const IC& k, std::input_iterator_tag) const {
// returns inverse index of k.
Index_const_iterator i = idx.find( &*k);
CGAL_assertion( i != idx.end());
return (*i).second;
}
std::size_t find( const IC& k, std::forward_iterator_tag) const {
return find( k, std::input_iterator_tag());
}
std::size_t find( const IC& k, std::bidirectional_iterator_tag) const {
return find( k, std::input_iterator_tag());
}
std::size_t find( const IC& k, Forward_circulator_tag) const {
return find( k, std::input_iterator_tag());
}
std::size_t find( const IC& k, Bidirectional_circulator_tag) const {
return find( k, std::input_iterator_tag());
}
typedef IC iterator;
typedef IC Circulator;
typedef std::size_t size_type;
Inverse_index() : start(IC()) {}
// invalid index.
Inverse_index( const IC& i) : start(i) {};
// empty inverse index initialized to start at i.
Inverse_index( const IC& i, const IC& j) : start(i) {
// inverse index initialized with range [i,j).
init_index( i, j);
}
// OPERATIONS
std::size_t operator[]( const IC& k) const {
// returns inverse index of k.
typedef typename std::iterator_traits<IC>::iterator_category
category;
return find( k, category());
}
};
template < class IC>
void
Inverse_index< IC>::ini_idx( IC i, const IC& j, std::input_iterator_tag) {
std::size_t n = 0;
Index_iterator hint = idx.begin();
if ( ! is_empty_range( i, j)) {
do {
hint = idx.insert( hint, Item( &*i, n));
n++;
} while ((++i) != (j));
}
}
template < class IC>
class Random_access_adaptor {
// DEFINITION
//
// The class Random_access_adaptor<IC> provides a random access
// for data structures. Either the data structure supports random access
// iterators or circulators where this class maps function calls to the
// iterator or circulator, or a STL `vector' is used to provide the random
// access. The iterator or circulator of the data structure are of type
// `IC'.
//
// CREATION
protected:
typedef std::vector< IC> Index;
Index index;
IC start;
public:
typedef typename Index::size_type size_type;
void init_index( IC i, const IC& j, std::forward_iterator_tag);
void init_index( const IC& i, const IC& j,
std::bidirectional_iterator_tag){
init_index( i, j, std::forward_iterator_tag());
}
void init_index( const IC& i, const IC&,
std::random_access_iterator_tag){
start = i;
}
void init_index( const IC& i, const IC& j) {
typedef typename std::iterator_traits<IC>::iterator_category ICC;
init_index( i, j, ICC());
}
void reserve( size_type r, std::forward_iterator_tag) {
index.reserve( r);
}
void reserve( size_type r, std::bidirectional_iterator_tag){
reserve( r, std::forward_iterator_tag());
}
void reserve( size_type, std::random_access_iterator_tag){}
void push_back( const IC& k, std::forward_iterator_tag) {
index.push_back(k);
}
void push_back( const IC& k, std::bidirectional_iterator_tag){
push_back( k, std::forward_iterator_tag());
}
void push_back( const IC&, std::random_access_iterator_tag){}
const IC& find( size_type n, std::forward_iterator_tag) const {
// returns inverse index of k.
CGAL_assertion( n < index.size());
return index[n];
}
const IC& find( size_type n, std::bidirectional_iterator_tag) const {
return find( n, std::forward_iterator_tag());
}
IC find( size_type n, std::random_access_iterator_tag) const {
return start + n;
}
typedef IC iterator;
typedef IC Circulator;
Random_access_adaptor() : start(IC()) {}
// invalid index.
Random_access_adaptor( const IC& i) : start(i) {}
// empty random access index initialized to start at i.
Random_access_adaptor( const IC& i, const IC& j) : start(i) {
// random access index initialized with range [i,j).
init_index( i, j);
}
void reserve( size_type r) {
// reserve r entries, if a `vector' is used internally.
typedef typename std::iterator_traits<IC>::iterator_category ICC;
reserve( r, ICC());
}
// OPERATIONS
IC find( size_type n) const {
// returns inverse index of k.
typedef typename std::iterator_traits<IC>::iterator_category ICC;
return find( n, ICC());
}
IC operator[]( size_type n) const { return find(n); }
void push_back( const IC& k) {
// adds k at the end of the indices.
typedef typename std::iterator_traits<IC>::iterator_category ICC;
push_back( k, ICC());
}
};
template < class IC>
void
Random_access_adaptor< IC>::init_index( IC i, const IC& j,
std::forward_iterator_tag) {
if ( ! is_empty_range( i, j)) {
do {
index.push_back( i);
} while ((++i) != (j));
}
}
template < class IC, class T >
class Random_access_value_adaptor : public Random_access_adaptor<IC> {
public:
typedef typename Random_access_adaptor<IC>::size_type size_type;
Random_access_value_adaptor() {}
// invalid index.
Random_access_value_adaptor( const IC& i)
: Random_access_adaptor<IC>(i) {}
// empty random access index initialized to start at i.
Random_access_value_adaptor( const IC& i, const IC& j)
: Random_access_adaptor<IC>(i,j) {}
// random access index initialized with range [i,j).
// OPERATIONS
T& operator[]( size_type n) const {
// returns inverse index of k.
return *(Random_access_adaptor<IC>::operator[](n));
}
};
template<typename _Iterator, typename Predicate>
class Filter_output_iterator
: public CGAL::cpp98::iterator<std::output_iterator_tag, void, void, void, void>
{
protected:
_Iterator iterator;
Predicate predicate;
public:
typedef _Iterator iterator_type;
2020-10-13 12:44:25 +00:00
explicit Filter_output_iterator(_Iterator& __x, const Predicate& pred)
: iterator(__x), predicate(pred)
{}
template <typename T>
Filter_output_iterator&
operator=(const T& t)
{
2020-10-13 12:44:25 +00:00
if(! predicate(t))
*iterator = t;
return *this;
}
Filter_output_iterator&
operator*()
{ return *this; }
Filter_output_iterator&
operator++()
2020-10-13 12:44:25 +00:00
{
++iterator;
2020-10-13 12:44:25 +00:00
return *this;
}
Filter_output_iterator
operator++(int)
{
Filter_output_iterator res(*this);
++iterator;
2020-10-13 12:44:25 +00:00
return res;
}
};
template < class I, class P >
inline Filter_output_iterator< I, P >
filter_output_iterator(I e, const P& p)
{ return Filter_output_iterator< I, P >(e, p); }
namespace internal {
template<typename OutputIterator>
struct Output_visitor : boost::static_visitor<OutputIterator&> {
Output_visitor(OutputIterator* it) : out(it) {}
OutputIterator* out;
2020-10-13 12:44:25 +00:00
template<typename T>
OutputIterator& operator()(const T& t) {
*(*out)++ = t;
return *out;
}
};
} // internal
namespace internal {
2020-10-13 12:44:25 +00:00
template < typename D, typename V = std::tuple<>, typename O = std::tuple<> >
struct Derivator
{
typedef Derivator<D, V, O> Self;
Self& operator=(const Self&) = delete;
template <class Tuple>
void tuple_dispatch(const Tuple&)
{}
};
template < typename D, typename V1, typename O1, typename... V, typename... O>
2020-10-13 12:44:25 +00:00
struct Derivator<D, std::tuple<V1, V...>, std::tuple<O1, O...> >
: public Derivator<D, std::tuple<V...>, std::tuple<O...> >
{
2020-10-13 12:44:25 +00:00
typedef Derivator<D, std::tuple<V1, V...>, std::tuple<O1, O...> > Self;
typedef Derivator<D, std::tuple<V...>, std::tuple<O...> > Base;
Self& operator=(const Self&) = delete;
using Base::operator=;
2020-10-13 12:44:25 +00:00
D& operator=(const V1& v)
{
2020-10-13 12:44:25 +00:00
* std::get< D::size - sizeof...(V) - 1 >(static_cast<typename D::Iterator_tuple&>(static_cast<D&>(*this))) ++ = v;
return static_cast<D&>(*this);
}
template <class Tuple>
void tuple_dispatch(const Tuple& t)
{
2020-10-13 12:44:25 +00:00
* std::get< D::size - sizeof...(V) - 1 >(static_cast<typename D::Iterator_tuple&>(static_cast<D&>(*this))) ++ =
std::get< D::size - sizeof...(V) - 1 >(t);
static_cast<Base&>(*this).tuple_dispatch(t);
}
};
} // internal
2020-10-13 12:44:25 +00:00
namespace tuple_internal {
template <typename ...Args, std::size_t ...Is>
auto to_tuple(std::tuple<Args...> &t, std::index_sequence<Is...>)
{
return std::tuple<Args&...>(std::get<Is>(t)...);
}
}//end namespace tuple_internal
// OutputIterator which accepts several types in *o++= and dispatches,
// wraps several other output iterators, and dispatches accordingly.
template < typename V, typename O >
class Dispatch_output_iterator;
template < typename... V, typename... O >
2020-10-13 12:44:25 +00:00
class Dispatch_output_iterator < std::tuple<V...>, std::tuple<O...> >
: private internal::Derivator<Dispatch_output_iterator< std::tuple<V...>, std::tuple<O...> >, std::tuple<V...>, std::tuple<O...> >
, public std::tuple<O...>
{
CGAL_static_assertion_msg(sizeof...(V) == sizeof...(O),
"The number of explicit template parameters has to match the number of arguments");
static const int size = sizeof...(V);
template <typename D, typename V_, typename O_>
friend struct internal::Derivator;
public:
2020-10-13 12:44:25 +00:00
typedef std::tuple<O...> Iterator_tuple;
typedef std::tuple<V...> Value_type_tuple;
typedef std::output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
private:
typedef Dispatch_output_iterator Self;
typedef internal::Derivator<Self, Value_type_tuple, Iterator_tuple > Base;
public:
using Base::operator=;
using Base::tuple_dispatch;
2020-10-13 12:44:25 +00:00
Dispatch_output_iterator(O... o) : std::tuple<O...>(o...) {}
Dispatch_output_iterator(const Dispatch_output_iterator&)=default;
Self& operator=(const Self& s)
{
static_cast<Iterator_tuple&>(*this) = static_cast<const Iterator_tuple&>(s);
return *this;
}
template<BOOST_VARIANT_ENUM_PARAMS(typename T)>
Self& operator=(const boost::variant<BOOST_VARIANT_ENUM_PARAMS(T) >& t) {
internal::Output_visitor<Self> visitor(this);
#if BOOST_VERSION==105800
t.apply_visitor(visitor);
#else
boost::apply_visitor(visitor, t);
#endif
return *this;
}
template<BOOST_VARIANT_ENUM_PARAMS(typename T)>
Self& operator=(const boost::optional< boost::variant<BOOST_VARIANT_ENUM_PARAMS(T) > >& t) {
internal::Output_visitor<Self> visitor(this);
#if BOOST_VERSION==105800
if(t) t->apply_visitor(visitor);
#else
if(t) boost::apply_visitor(visitor, *t);
#endif
return *this;
}
Self& operator++() { return *this; }
Self& operator++(int) { return *this; }
Self& operator*() { return *this; }
const Iterator_tuple& get_iterator_tuple() const { return *this; }
2020-10-13 12:44:25 +00:00
Self& operator=(const std::tuple<V...>& t)
{
tuple_dispatch(t);
return *this;
}
2020-10-13 12:44:25 +00:00
operator std::tuple<O&...>()
{
return tuple_internal::to_tuple(*this, std::index_sequence_for<O...>{});
}
operator std::tuple<const O&...>()const
{
return tuple_internal::to_tuple(*this, std::index_sequence_for<O...>{});
}
};
template < typename... V, typename... O>
2020-10-13 12:44:25 +00:00
Dispatch_output_iterator<std::tuple<V...>, std::tuple<O...> >
dispatch_output(O... o)
{
2020-10-13 12:44:25 +00:00
return Dispatch_output_iterator<std::tuple<V...>, std::tuple<O...> > (o...);
}
// Same as Dispatch_output_iterator, but has a dummy *o++= for all other types
// that drops the data (same as Emptyset_iterator).
template < typename V, typename O >
class Dispatch_or_drop_output_iterator;
template < typename... V, typename... O >
2020-10-13 12:44:25 +00:00
class Dispatch_or_drop_output_iterator < std::tuple<V...>, std::tuple<O...> >
: public Dispatch_output_iterator< std::tuple<V...>, std::tuple<O...> >
{
typedef Dispatch_or_drop_output_iterator Self;
2020-10-13 12:44:25 +00:00
typedef Dispatch_output_iterator< std::tuple<V...>, std::tuple<O...> > Base;
template <typename D, typename V_, typename O_>
friend struct internal::Derivator;
public:
Dispatch_or_drop_output_iterator(O... o) : Base(o...) {}
2020-10-13 12:44:25 +00:00
Dispatch_or_drop_output_iterator(const Dispatch_or_drop_output_iterator&)=default;
Dispatch_or_drop_output_iterator& operator=(const Dispatch_or_drop_output_iterator&)=default;
using Base::operator=;
Self& operator*() { return *this; }
Self& operator++() { return *this; }
Self& operator++(int) { return *this; }
template <class T>
Self& operator=(const T&) { return *this; }
2020-10-13 12:44:25 +00:00
};
template < typename... V, typename... O>
inline
2020-10-13 12:44:25 +00:00
Dispatch_or_drop_output_iterator<std::tuple<V...>, std::tuple<O...> >
dispatch_or_drop_output(O... o)
{
2020-10-13 12:44:25 +00:00
return Dispatch_or_drop_output_iterator<std::tuple<V...>, std::tuple<O...> >(o...);
}
2020-10-13 12:44:25 +00:00
// Trick to select iterator or const_iterator depending on the range constness
template <typename RangeRef>
struct Range_iterator_type;
template <typename RangeRef>
struct Range_iterator_type<RangeRef&> { typedef typename RangeRef::iterator type; };
template <typename RangeRef>
struct Range_iterator_type<const RangeRef&> { typedef typename RangeRef::const_iterator type; };
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // CGAL_ITERATOR_H