dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/structure_point_set.h

1606 lines
59 KiB
C
Raw Normal View History

// Copyright (c) 2015 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
2020-10-13 12:44:25 +00:00
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Point_set_processing_3/include/CGAL/structure_point_set.h $
// $Id: structure_point_set.h c253679 2020-04-18T16:27:58+02:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Florent Lafarge, Simon Giraudot
//
#ifndef CGAL_STRUCTURE_POINT_SET_3_H
#define CGAL_STRUCTURE_POINT_SET_3_H
#include <CGAL/license/Point_set_processing_3.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/property_map.h>
#include <CGAL/point_set_processing_assertions.h>
#include <CGAL/assertions.h>
#include <CGAL/intersections.h>
#include <CGAL/centroid.h>
#include <CGAL/Kd_tree.h>
#include <CGAL/Fuzzy_sphere.h>
#include <CGAL/Search_traits_d.h>
#include <CGAL/Search_traits_3.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_vertex_base_with_info_3.h>
2020-10-13 12:44:25 +00:00
#include <CGAL/boost/graph/Named_function_parameters.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <boost/iterator/counting_iterator.hpp>
#include <iterator>
#include <list>
#include <limits>
namespace CGAL {
/*!
2020-10-13 12:44:25 +00:00
\ingroup PkgPointSetProcessing3Algorithms
\brief A 3D point set with structure information based on a set of
detected planes.
Given a point set in 3D space along with a set of fitted planes, this
class stores a simplified and structured version of the point
set. Each output point is assigned to one, two or more primitives
2020-10-13 12:44:25 +00:00
(depending whether it belongs to a planar section, an edge or a if it
is a vertex). The implementation follow \cgalCite{cgal:la-srpss-13}.
2020-10-13 12:44:25 +00:00
\tparam Kernel a model of `EfficientRANSACTraits` that must provide in
addition a function `Intersect_3 intersection_3_object() const` and a
functor `Intersect_3` with:
- `boost::optional< boost::variant< Traits::Plane_3, Traits::Line_3 > > operator()(typename Traits::Plane_3, typename Traits::Plane_3)`
- `boost::optional< boost::variant< Traits::Line_3, Traits::Point_3 > > operator()(typename Traits::Line_3, typename Traits::Plane_3)`
*/
template <typename Kernel>
class Point_set_with_structure
{
typedef Point_set_with_structure<Kernel> Self;
typedef typename Kernel::FT FT;
typedef typename Kernel::Segment_3 Segment;
typedef typename Kernel::Line_3 Line;
typedef typename Kernel::Point_2 Point_2;
enum Point_status { POINT, RESIDUS, PLANE, EDGE, CORNER, SKIPPED };
public:
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
typedef typename Kernel::Plane_3 Plane;
/// Tag classifying the coherence of a triplet of points with
/// respect to an inferred surface
enum Coherence_type
{
INCOHERENT = -1, ///< Incoherent (facet violates the underlying structure)
FREEFORM = 0, ///< Free-form coherent (facet is between 3 free-form points)
VERTEX = 1, ///< Structure coherent, facet adjacent to a vertex
CREASE = 2, ///< Structure coherent, facet adjacent to an edge
PLANAR = 3 ///< Structure coherent, facet inside a planar section
};
2020-10-13 12:44:25 +00:00
private:
class My_point_property_map{
const std::vector<Point>& points;
public:
typedef Point value_type;
typedef const value_type& reference;
typedef std::size_t key_type;
2020-10-13 12:44:25 +00:00
typedef boost::lvalue_property_map_tag category;
My_point_property_map (const std::vector<Point>& pts) : points (pts) {}
reference operator[] (key_type k) const { return points[k]; }
2020-10-13 12:44:25 +00:00
friend inline reference get (const My_point_property_map& ppmap, key_type i)
{ return ppmap[i]; }
};
struct Edge
{
2020-10-13 12:44:25 +00:00
std::array<std::size_t, 2> planes;
std::vector<std::size_t> indices; // Points belonging to intersection
Line support;
bool active;
Edge (std::size_t a, std::size_t b)
: support (Point (FT(0.), FT(0.), FT(0.)),
Vector (FT(0.), FT(0.), FT(0.)))
, active(true)
{ planes[0] = a; planes[1] = b; }
};
struct Corner
{
std::vector<std::size_t> planes;
std::vector<std::size_t> edges;
std::vector<Vector> directions;
Point support;
bool active;
Corner (std::size_t p1, std::size_t p2, std::size_t p3,
std::size_t e1, std::size_t e2, std::size_t e3)
{
planes.resize (3); planes[0] = p1; planes[1] = p2; planes[2] = p3;
edges.resize (3); edges[0] = e1; edges[1] = e2; edges[2] = e3;
active = true;
}
};
2020-10-13 12:44:25 +00:00
std::vector<Point> m_points;
std::vector<Vector> m_normals;
std::vector<std::size_t> m_indices;
std::vector<Point_status> m_status;
2020-10-13 12:44:25 +00:00
std::vector<Plane> m_planes;
std::vector<std::vector<std::size_t> > m_indices_of_assigned_points;
std::vector<Edge> m_edges;
std::vector<Corner> m_corners;
2020-10-13 12:44:25 +00:00
public:
/*!
Constructs a structured point set based on the input points and the
associated shape detection object.
\tparam PointRange is a model of `ConstRange`. The value type of
its iterator is the key type of the named parameter `point_map`.
\tparam PlaneRange is a model of `ConstRange`. The value type of
its iterator is the key type of the named parameter `plane_map`.
\param points input point range.
\param planes input plane range.
\param epsilon size parameter.
2020-10-13 12:44:25 +00:00
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
\cgalNamedParamsBegin
2020-10-13 12:44:25 +00:00
\cgalParamNBegin{point_map}
\cgalParamDescription{a property map associating points to the elements of the point set `points`}
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`}
\cgalParamDefault{`CGAL::Identity_property_map<geom_traits::Point_3>`}
\cgalParamNEnd
\cgalParamNBegin{normal_map}
\cgalParamDescription{a property map associating normals to the elements of the point set `points`}
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
of the iterator of `PointRange` and whose value type is `geom_traits::Vector_3`}
\cgalParamNEnd
\cgalParamNBegin{plane_index_map}
\cgalParamDescription{a property map associating the index of a point in the input range
to the index of plane (`-1` if the point is not assigned to a plane)}
\cgalParamType{a class model of `ReadablePropertyMap` with `std::size_t` as key type and `int` as value type}
\cgalParamDefault{unused}
\cgalParamNEnd
\cgalParamNBegin{plane_map}
\cgalParamDescription{a property map containing the planes associated to the elements of the plane range `planes`}
\cgalParamType{a class model of `ReadablePropertyMap` with `PlaneRange::iterator::value_type`
as key type and `geom_traits::Plane_3` as value type}
\cgalParamDefault{`CGAL::Identity_property_map<Kernel::Plane_3>`}
\cgalParamNEnd
\cgalParamNBegin{attraction_factor}
\cgalParamDescription{multiple of a tolerance `epsilon` used to connect simplices}
\cgalParamType{floating scalar value}
\cgalParamDefault{`3`}
\cgalParamNEnd
\cgalNamedParamsEnd
*/
template <typename PointRange,
typename PlaneRange,
typename NamedParameters>
Point_set_with_structure (const PointRange& points,
const PlaneRange& planes,
double epsilon,
const NamedParameters& np)
{
init (points, planes, epsilon, np);
}
/// \cond SKIP_IN_MANUAL
template <typename PointRange,
typename PlaneRange,
typename NamedParameters>
void init (const PointRange& points,
const PlaneRange& planes,
double epsilon,
const NamedParameters& np)
{
2020-10-13 12:44:25 +00:00
using parameters::choose_parameter;
using parameters::get_parameter;
// basic geometric types
2020-10-13 12:44:25 +00:00
typedef typename CGAL::GetPointMap<PointRange, NamedParameters>::type PointMap;
typedef typename Point_set_processing_3::GetNormalMap<PointRange, NamedParameters>::type NormalMap;
typedef typename Point_set_processing_3::GetPlaneMap<PlaneRange, NamedParameters>::type PlaneMap;
typedef typename Point_set_processing_3::GetPlaneIndexMap<NamedParameters>::type PlaneIndexMap;
CGAL_static_assertion_msg(!(boost::is_same<NormalMap,
typename Point_set_processing_3::GetNormalMap<PointRange, NamedParameters>::NoMap>::value),
"Error: no normal map");
CGAL_static_assertion_msg(!(boost::is_same<PlaneIndexMap,
typename Point_set_processing_3::GetPlaneIndexMap<NamedParameters>::NoMap>::value),
"Error: no plane index map");
2020-10-13 12:44:25 +00:00
PointMap point_map = choose_parameter<PointMap>(get_parameter(np, internal_np::point_map));
NormalMap normal_map = choose_parameter<NormalMap>(get_parameter(np, internal_np::normal_map));
PlaneMap plane_map = choose_parameter<PlaneMap>(get_parameter(np, internal_np::plane_map));
PlaneIndexMap index_map = choose_parameter<PlaneIndexMap>(get_parameter(np, internal_np::plane_index_map));
double attraction_factor = choose_parameter(get_parameter(np, internal_np::attraction_factor), 3.);
m_points.reserve(points.size());
m_normals.reserve(points.size());
m_indices_of_assigned_points.resize (planes.size());
m_indices.resize (points.size (), (std::numeric_limits<std::size_t>::max)());
m_status.resize (points.size (), POINT);
std::size_t idx = 0;
for (typename PointRange::const_iterator it = points.begin();
it != points.end(); ++ it)
{
m_points.push_back (get(point_map, *it));
m_normals.push_back (get(normal_map, *it));
int plane_index = get (index_map, idx);
if (plane_index != -1)
{
m_indices_of_assigned_points[std::size_t(plane_index)].push_back(idx);
m_indices[idx] = std::size_t(plane_index);
m_status[idx] = PLANE;
}
++ idx;
}
m_planes.reserve (planes.size());
for (typename PlaneRange::const_iterator it = planes.begin();
it != planes.end(); ++ it)
m_planes.push_back (get (plane_map, *it));
run (epsilon, attraction_factor);
clean ();
}
/// \endcond
std::size_t size () const { return m_points.size (); }
std::pair<Point, Vector> operator[] (std::size_t i) const
{ return std::make_pair (m_points[i], m_normals[i]); }
const Point& point (std::size_t i) const { return m_points[i]; }
const Vector& normal (std::size_t i) const { return m_normals[i]; }
/*!
Returns all `Plane_shape` objects that are adjacent to the point
with index `i`.
\note Points not adjacent to any plane are free-form points,
points adjacent to 1 plane are planar points, points adjacent to 2
planes are edge points and points adjacent to 3 or more planes are
vertices.
*/
template <typename OutputIterator>
void adjacency (std::size_t i, OutputIterator output) const
{
if (m_status[i] == PLANE || m_status[i] == RESIDUS)
*(output ++) = m_planes[m_indices[i]];
else if (m_status[i] == EDGE)
{
*(output ++) = m_planes[m_edges[m_indices[i]].planes[0]];
*(output ++) = m_planes[m_edges[m_indices[i]].planes[1]];
}
else if (m_status[i] == CORNER)
{
for (std::size_t j = 0; j < m_corners[m_indices[i]].planes.size(); ++ j)
*(output ++) = m_planes[m_corners[m_indices[i]].planes[j]];
}
}
/*!
Computes the coherence of a facet between the 3 points indexed by
`f` with respect to the underlying structure.
*/
2020-10-13 12:44:25 +00:00
Coherence_type facet_coherence (const std::array<std::size_t, 3>& f) const
{
// O- FREEFORM CASE
if (m_status[f[0]] == POINT &&
m_status[f[1]] == POINT &&
m_status[f[2]] == POINT)
return FREEFORM;
2020-10-13 12:44:25 +00:00
// 1- PLANAR CASE
if (m_status[f[0]] == PLANE &&
m_status[f[1]] == PLANE &&
m_status[f[2]] == PLANE)
{
if (m_indices[f[0]] == m_indices[f[1]] &&
m_indices[f[0]] == m_indices[f[2]])
return PLANAR;
else
return INCOHERENT;
}
for (std::size_t i = 0; i < 3; ++ i)
{
Point_status sa = m_status[f[(i+1)%3]];
Point_status sb = m_status[f[(i+2)%3]];
Point_status sc = m_status[f[(i+3)%3]];
std::size_t a = m_indices[f[(i+1)%3]];
std::size_t b = m_indices[f[(i+2)%3]];
std::size_t c = m_indices[f[(i+3)%3]];
// O- FREEFORM CASE
if (sa == POINT && sb == POINT && sc == PLANE)
return FREEFORM;
if (sa == POINT && sb == PLANE && sc == PLANE)
{
if (b == c)
return FREEFORM;
else
return INCOHERENT;
}
2020-10-13 12:44:25 +00:00
// 2- CREASE CASES
if (sa == EDGE && sb == EDGE && sc == PLANE)
{
if ((c == m_edges[a].planes[0] ||
c == m_edges[a].planes[1]) &&
(c == m_edges[b].planes[0] ||
c == m_edges[b].planes[1]))
return CREASE;
else
return INCOHERENT;
}
if (sa == EDGE && sb == PLANE && sc == PLANE)
{
if (b == c &&
(b == m_edges[a].planes[0] ||
b == m_edges[a].planes[1]))
return CREASE;
else
return INCOHERENT;
}
// 3- CORNER CASES
if (sc == CORNER)
{
if (sa == EDGE && sb == EDGE)
{
bool a0 = false, a1 = false, b0 = false, b1 = false;
if ((m_edges[a].planes[0] != m_edges[b].planes[0] &&
m_edges[a].planes[0] != m_edges[b].planes[1] &&
m_edges[a].planes[1] != m_edges[b].planes[0] &&
m_edges[a].planes[1] != m_edges[b].planes[1]))
return INCOHERENT;
2020-10-13 12:44:25 +00:00
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
{
if (m_corners[c].planes[j] == m_edges[a].planes[0])
a0 = true;
else if (m_corners[c].planes[j] == m_edges[a].planes[1])
a1 = true;
if (m_corners[c].planes[j] == m_edges[b].planes[0])
b0 = true;
else if (m_corners[c].planes[j] == m_edges[b].planes[1])
b1 = true;
}
if (a0 && a1 && b0 && b1)
return VERTEX;
else
return INCOHERENT;
}
else if (sa == PLANE && sb == PLANE)
{
if (a != b)
return INCOHERENT;
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
if (m_corners[c].planes[j] == a)
return VERTEX;
2020-10-13 12:44:25 +00:00
return INCOHERENT;
}
else if (sa == PLANE && sb == EDGE)
{
bool pa = false, b0 = false, b1 = false;
if (a != m_edges[b].planes[0] && a != m_edges[b].planes[1])
return INCOHERENT;
2020-10-13 12:44:25 +00:00
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
{
if (m_corners[c].planes[j] == a)
pa = true;
if (m_corners[c].planes[j] == m_edges[b].planes[0])
b0 = true;
else if (m_corners[c].planes[j] == m_edges[b].planes[1])
b1 = true;
}
if (pa && b0 && b1)
return VERTEX;
else
return INCOHERENT;
}
else if (sa == EDGE && sb == PLANE)
{
bool a0 = false, a1 = false, pb = false;
if (b != m_edges[a].planes[0] && b != m_edges[a].planes[1])
return INCOHERENT;
2020-10-13 12:44:25 +00:00
for (std::size_t j = 0; j < m_corners[c].planes.size (); ++ j)
{
if (m_corners[c].planes[j] == b)
pb = true;
if (m_corners[c].planes[j] == m_edges[a].planes[0])
a0 = true;
else if (m_corners[c].planes[j] == m_edges[a].planes[1])
a1 = true;
}
if (a0 && a1 && pb)
return VERTEX;
else
return INCOHERENT;
}
else
return INCOHERENT;
}
}
return INCOHERENT;
}
2020-10-13 12:44:25 +00:00
/// \cond SKIP_IN_MANUAL
private:
void clean ()
{
std::vector<Point> points;
std::vector<Vector> normals;
std::vector<std::size_t> indices;
std::vector<Point_status> status;
2020-10-13 12:44:25 +00:00
for (std::size_t i = 0; i < m_points.size (); ++ i)
if (m_status[i] != SKIPPED)
{
points.push_back (m_points[i]);
normals.push_back (m_normals[i]);
status.push_back (m_status[i]);
if (m_status[i] == RESIDUS)
status.back () = PLANE;
indices.push_back (m_indices[i]);
}
2020-10-13 12:44:25 +00:00
m_points.swap (points);
m_normals.swap (normals);
m_indices.swap (indices);
m_status.swap (status);
}
void run (double epsilon, double attraction_factor = 3.)
{
if (m_planes.empty ())
return;
2020-10-13 12:44:25 +00:00
double radius = epsilon * attraction_factor;
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Computing planar points... " << std::endl;
#endif
2020-10-13 12:44:25 +00:00
project_inliers ();
resample_planes (epsilon);
2020-10-13 12:44:25 +00:00
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Done" << std::endl;
std::cerr << "Finding adjacent primitives... " << std::endl;
#endif
2020-10-13 12:44:25 +00:00
find_pairs_of_adjacent_primitives (radius);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Found " << m_edges.size () << " pair(s) of adjacent primitives." << std::endl;
std::cerr << "Computing edges... " << std::endl;
#endif
2020-10-13 12:44:25 +00:00
compute_edges (epsilon);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Done" << std::endl;
std::cerr << "Creating edge-anchor points... " << std::endl;
{
std::size_t size_before = m_points.size ();
#endif
create_edge_anchor_points (radius, epsilon);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> " << m_points.size () - size_before << " anchor point(s) created." << std::endl;
}
std::cerr << "Computating first set of corners... " << std::endl;
#endif
2020-10-13 12:44:25 +00:00
compute_corners (radius);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Found " << m_corners.size () << " triple(s) of adjacent primitives/edges." << std::endl;
std::cerr << "Merging corners... " << std::endl;
{
std::size_t size_before = m_points.size ();
#endif
2020-10-13 12:44:25 +00:00
merge_corners (radius);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> " << m_points.size () - size_before << " corner point(s) created." << std::endl;
}
std::cerr << "Computing corner directions... " << std::endl;
#endif
2020-10-13 12:44:25 +00:00
compute_corner_directions (epsilon);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Done" << std::endl;
std::cerr << "Refining sampling... " << std::endl;
#endif
2020-10-13 12:44:25 +00:00
refine_sampling (epsilon);
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Done" << std::endl;
std::cerr << "Cleaning data set... " << std::endl;
#endif
2020-10-13 12:44:25 +00:00
clean ();
#ifdef CGAL_PSP3_VERBOSE
std::cerr << " -> Done" << std::endl;
#endif
}
void project_inliers ()
{
for(std::size_t i = 0; i < m_indices_of_assigned_points.size (); ++ i)
for (std::size_t j = 0; j < m_indices_of_assigned_points[i].size(); ++ j)
{
std::size_t ind = m_indices_of_assigned_points[i][j];
m_points[ind] = m_planes[i].projection (m_points[ind]);
}
}
void resample_planes (double epsilon)
{
double grid_length = epsilon * (std::sqrt(2.) - 1e-3);
for (std::size_t c = 0; c < m_planes.size (); ++ c)
{
//plane attributes and 2D projection vectors
const Plane& plane = m_planes[c];
Vector vortho = plane.orthogonal_vector();
Vector b1 = plane.base1();
Vector b2 = plane.base2();
2020-10-13 12:44:25 +00:00
b1 = b1 / std::sqrt (b1 * b1);
b2 = b2 / std::sqrt (b2 * b2);
std::vector<Point_2> points_2d;
//storage of the 2D points in "pt_2d"
for (std::size_t j = 0; j < m_indices_of_assigned_points[c].size(); ++ j)
{
std::size_t ind = m_indices_of_assigned_points[c][j];
const Point& pt = m_points[ind];
points_2d.push_back (Point_2 (b1.x() * pt.x() + b1.y() * pt.y() + b1.z() * pt.z(),
b2.x() * pt.x() + b2.y() * pt.y() + b2.z() * pt.z()));
}
//creation of a 2D-grid with cell width = grid_length, and image structures
CGAL::Bbox_2 box_2d = CGAL::bbox_2 (points_2d.begin(), points_2d.end());
std::size_t Nx = static_cast<std::size_t>((box_2d.xmax() - box_2d.xmin()) / grid_length) + 1;
std::size_t Ny = static_cast<std::size_t>((box_2d.ymax() - box_2d.ymin()) / grid_length) + 1;
2020-10-13 12:44:25 +00:00
std::vector<std::vector<bool> > Mask (Nx, std::vector<bool> (Ny, false));
std::vector<std::vector<bool> > Mask_border (Nx, std::vector<bool> (Ny, false));
std::vector<std::vector<std::vector<std::size_t> > >
point_map (Nx, std::vector<std::vector<std::size_t> > (Ny, std::vector<std::size_t>()));
//storage of the points in the 2D-grid "point_map"
for (std::size_t i = 0; i < points_2d.size(); ++ i)
{
std::size_t ind_x = static_cast<std::size_t>((points_2d[i].x() - box_2d.xmin()) / grid_length);
std::size_t ind_y = static_cast<std::size_t>((points_2d[i].y() - box_2d.ymin()) / grid_length);
Mask[ind_x][ind_y] = true;
point_map[ind_x][ind_y].push_back (m_indices_of_assigned_points[c][i]);
}
//hole filing in Mask in 4-connexity
for (std::size_t j = 1; j < Ny - 1; ++ j)
for (std::size_t i = 1; i < Nx - 1; ++ i)
if( !Mask[i][j]
&& Mask[i-1][j] && Mask[i][j-1]
&& Mask[i][j+1] && Mask[i+1][j] )
Mask[i][j]=true;
2020-10-13 12:44:25 +00:00
//finding mask border in 8-connexity
for (std::size_t j = 1; j < Ny - 1; ++ j)
for (std::size_t i = 1; i < Nx - 1; ++ i)
if( Mask[i][j] &&
( !Mask[i-1][j-1] || !Mask[i-1][j] ||
!Mask[i-1][j+1] || !Mask[i][j-1] ||
!Mask[i][j+1] || !Mask[i+1][j-1] ||
!Mask[i+1][j]|| !Mask[i+1][j+1] ) )
Mask_border[i][j]=true;
2020-10-13 12:44:25 +00:00
for (std::size_t j = 0; j < Ny; ++ j)
{
if (Mask[0][j])
Mask_border[0][j]=true;
if (Mask[Nx-1][j])
Mask_border[Nx-1][j]=true;
}
for (std::size_t i = 0; i < Nx; ++ i)
{
if(Mask[i][0])
Mask_border[i][0]=true;
if(Mask[i][Ny-1])
Mask_border[i][Ny-1]=true;
}
//saving of points to keep
for (std::size_t j = 0; j < Ny; ++ j)
for (std::size_t i = 0; i < Nx; ++ i)
if( point_map[i][j].size()>0)
{
2020-10-13 12:44:25 +00:00
//inside: recenter (cell center) the first point of the cell and desactivate the others points
if (!Mask_border[i][j] && Mask[i][j])
{
double x2pt = (i+0.5) * grid_length + box_2d.xmin();
double y2pt = (j+0.4) * grid_length + box_2d.ymin();
2020-10-13 12:44:25 +00:00
if (i%2 == 1)
{
x2pt = (i+0.5) * grid_length + box_2d.xmin();
y2pt = (j+0.6) * grid_length + box_2d.ymin();
}
FT X1 = x2pt * b1.x() + y2pt * b2.x() - plane.d() * vortho.x();
FT X2 = x2pt * b1.y() + y2pt * b2.y() - plane.d() * vortho.y();
FT X3 = x2pt * b1.z() + y2pt * b2.z() - plane.d() * vortho.z();
std::size_t index_pt = point_map[i][j][0];
m_points[index_pt] = Point (X1, X2, X3);
m_normals[index_pt] = m_planes[c].orthogonal_vector();
m_status[index_pt] = PLANE;
for (std::size_t np = 1; np < point_map[i][j].size(); ++ np)
m_status[point_map[i][j][np]] = SKIPPED;
}
//border: recenter (barycenter) the first point of the cell and desactivate the others points
else if (Mask_border[i][j] && Mask[i][j])
{
std::vector<Point> pts;
for (std::size_t np = 0; np < point_map[i][j].size(); ++ np)
pts.push_back (m_points[point_map[i][j][np]]);
m_points[point_map[i][j][0]] = CGAL::centroid (pts.begin (), pts.end ());
m_status[point_map[i][j][0]] = PLANE;
for (std::size_t np = 1; np < point_map[i][j].size(); ++ np)
m_status[point_map[i][j][np]] = SKIPPED;
}
}
// point use to filling 4-connexity holes are store in HPS_residus
else if (point_map[i][j].size()==0 && !Mask_border[i][j] && Mask[i][j])
{
double x2pt = (i+0.5) * grid_length + box_2d.xmin();
double y2pt = (j+0.49) * grid_length + box_2d.ymin();
if(i%2==1)
{
x2pt = (i+0.5) * grid_length + box_2d.xmin();
y2pt = (j+0.51) * grid_length + box_2d.ymin();
}
FT X1 = x2pt * b1.x() + y2pt * b2.x() - plane.d() * vortho.x();
FT X2 = x2pt * b1.y() + y2pt * b2.y() - plane.d() * vortho.y();
FT X3 = x2pt * b1.z() + y2pt * b2.z() - plane.d() * vortho.z();
m_points.push_back (Point (X1, X2, X3));
m_normals.push_back (m_planes[c].orthogonal_vector());
m_indices.push_back (c);
m_status.push_back (RESIDUS);
}
}
}
void find_pairs_of_adjacent_primitives (double radius)
{
typedef typename CGAL::Search_traits_3<Kernel> Search_traits_base;
typedef Search_traits_adapter <std::size_t, typename Pointer_property_map<Point>::type, Search_traits_base> Search_traits;
typedef CGAL::Kd_tree<Search_traits> Tree;
typedef CGAL::Fuzzy_sphere<Search_traits> Fuzzy_sphere;
typename Pointer_property_map<Point>::type pmap = make_property_map(m_points);
Tree tree (boost::counting_iterator<std::size_t, boost::use_default, std::ptrdiff_t> (0),
boost::counting_iterator<std::size_t, boost::use_default, std::ptrdiff_t> (m_points.size()),
typename Tree::Splitter(),
Search_traits (pmap));
std::vector<std::vector<bool> > adjacency_table (m_planes.size (),
std::vector<bool> (m_planes.size (), false));
//compute a basic adjacency relation (two primitives are neighbors
//if at least one point of the primitive 1 is a k-nearest neighbor
//of a point of the primitive 2 and vice versa)
for (std::size_t i = 0; i < m_points.size (); ++ i)
{
std::size_t ind_i = m_indices[i];
if (ind_i == (std::numeric_limits<std::size_t>::max)())
continue;
Fuzzy_sphere query (i, radius, 0., tree.traits());
2020-10-13 12:44:25 +00:00
std::vector<std::size_t> neighbors;
tree.search (std::back_inserter (neighbors), query);
2020-10-13 12:44:25 +00:00
for (std::size_t k = 0; k < neighbors.size(); ++ k)
{
std::size_t ind_k = m_indices[neighbors[k]];
if (ind_k != (std::numeric_limits<std::size_t>::max)() && ind_k != ind_i)
adjacency_table[ind_i][ind_k] = true;
}
}
//verify the symmetry and store the pairs of primitives in
//m_edges
for (std::size_t i = 0; i < adjacency_table.size() - 1; ++ i)
for (std::size_t j = i + 1; j < adjacency_table[i].size(); ++ j)
if ((adjacency_table[i][j]) && (adjacency_table[j][i]))
m_edges.push_back (Edge (i, j));
}
void compute_edges (double epsilon)
{
for (std::size_t i = 0; i < m_edges.size(); ++ i)
{
const Plane& plane1 = m_planes[m_edges[i].planes[0]];
2020-10-13 12:44:25 +00:00
const Plane& plane2 = m_planes[m_edges[i].planes[1]];
double angle_A = std::acos (CGAL::abs (plane1.orthogonal_vector() * plane2.orthogonal_vector()));
double angle_B = CGAL_PI - angle_A;
typename cpp11::result_of<typename Kernel::Intersect_3(Plane, Plane)>::type
result = CGAL::intersection(plane1, plane2);
if (!result)
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
#endif
continue;
}
if (const Line* l = boost::get<Line>(&*result))
m_edges[i].support = *l;
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
#endif
continue;
}
2020-10-13 12:44:25 +00:00
Vector direction_p1 (0., 0., 0.);
for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[0]].size(); ++ k)
{
std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[0]][k];
2020-10-13 12:44:25 +00:00
const Point& point = m_points[index_point];
Point projected = m_edges[i].support.projection (point);
if (std::sqrt (CGAL::squared_distance (point, projected))
< 2 * (std::min) (4., 1 / std::sin (angle_A)) * epsilon
&& m_status[index_point] != SKIPPED)
direction_p1 = direction_p1 + Vector (projected, point);
}
if (direction_p1.squared_length() > 0)
direction_p1 = direction_p1 / std::sqrt (direction_p1 * direction_p1);
Vector direction_p2 (0., 0., 0.);
for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[1]].size(); ++ k)
{
std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[1]][k];
2020-10-13 12:44:25 +00:00
const Point& point = m_points[index_point];
Point projected = m_edges[i].support.projection (point);
if (std::sqrt (CGAL::squared_distance (point, projected))
< 2 * (std::min) (4., 1 / std::sin (angle_A)) * epsilon
&& m_status[index_point] != SKIPPED)
direction_p2 = direction_p2 + Vector (projected, point);
}
if (direction_p2.squared_length() > 0)
direction_p2 = direction_p2 / std::sqrt (direction_p2 * direction_p2);
double angle = std::acos (direction_p1 * direction_p2);
2020-10-13 12:44:25 +00:00
if (direction_p1.squared_length() == 0
|| direction_p2.squared_length() == 0
|| (CGAL::abs (angle - angle_A) > 1e-2
&& CGAL::abs (angle - angle_B) > 1e-2 ))
{
m_edges[i].active = false;
}
}
}
void create_edge_anchor_points (double radius, double epsilon)
{
double d_DeltaEdge = std::sqrt (2.) * epsilon;
double r_edge = d_DeltaEdge / 2.;
2020-10-13 12:44:25 +00:00
for (std::size_t i = 0; i < m_edges.size(); ++ i)
{
const Plane& plane1 = m_planes[m_edges[i].planes[0]];
const Plane& plane2 = m_planes[m_edges[i].planes[1]];
const Line& line = m_edges[i].support;
if (!(m_edges[i].active))
{
continue;
}
Vector normal = 0.5 * plane1.orthogonal_vector () + 0.5 * plane2.orthogonal_vector();
2020-10-13 12:44:25 +00:00
//find set of points close (<attraction_radius) to the edge and store in intersection_points
std::vector<std::size_t> intersection_points;
for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[0]].size(); ++ k)
{
std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[0]][k];
const Point& point = m_points[index_point];
Point projected = line.projection (point);
if (CGAL::squared_distance (point, projected) < radius * radius)
intersection_points.push_back (index_point);
}
for (std::size_t k = 0; k < m_indices_of_assigned_points[m_edges[i].planes[1]].size(); ++ k)
{
std::size_t index_point = m_indices_of_assigned_points[m_edges[i].planes[1]][k];
const Point& point = m_points[index_point];
Point projected = line.projection (point);
if (CGAL::squared_distance (point, projected) < radius * radius)
intersection_points.push_back (index_point);
}
if (intersection_points.empty ())
{
continue;
}
const Point& t0 = m_points[intersection_points[0]];
Point t0p = line.projection (t0);
double dmin = 0.;
double dmax = 0.;
Point Pmin = t0p;
Point Pmax = t0p;
Vector dir = line.to_vector ();
2020-10-13 12:44:25 +00:00
//compute the segment of the edge
for (std::size_t k = 0; k < intersection_points.size(); ++ k)
{
std::size_t ind = intersection_points[k];
const Point& point = m_points[ind];
Point projected = line.projection (point);
double d = Vector (t0p, projected) * dir;
2020-10-13 12:44:25 +00:00
if (d < dmin)
{
dmin = d;
Pmin = projected;
}
else if (d > dmax)
{
dmax = d;
Pmax = projected;
}
}
// make a partition in a 1D image by voting if at the same
// time at least one point of plane1 and one of point2 fall in
// the same cell (same step as for planes)
Segment seg (Pmin,Pmax);
std::size_t number_of_division = static_cast<std::size_t>(std::sqrt (seg.squared_length ()) / d_DeltaEdge) + 1;
std::vector<std::vector<std::size_t> > division_tab (number_of_division);
for (std::size_t k = 0; k < intersection_points.size(); ++ k)
{
std::size_t ind = intersection_points[k];
const Point& point = m_points[ind];
Point projected = line.projection (point);
std::size_t tab_index = static_cast<std::size_t>(std::sqrt (CGAL::squared_distance (seg[0], projected))
/ d_DeltaEdge);
division_tab[tab_index].push_back (ind);
}
//C1-CREATE the EDGE
std::vector<int> index_of_edge_points;
for (std::size_t j = 0; j < division_tab.size(); ++ j)
{
bool p1found = false, p2found = false;
for (std::size_t k = 0; k < division_tab[j].size () && !(p1found && p2found); ++ k)
{
if (m_indices[division_tab[j][k]] == m_edges[i].planes[0])
p1found = true;
if (m_indices[division_tab[j][k]] == m_edges[i].planes[1])
p2found = true;
}
if (!(p1found && p2found))
{
division_tab[j].clear();
continue;
}
Point perfect (seg[0].x() + (seg[1].x() - seg[0].x()) * (j + 0.5) / double(number_of_division),
seg[0].y() + (seg[1].y() - seg[0].y()) * (j + 0.5) / double(number_of_division),
seg[0].z() + (seg[1].z() - seg[0].z()) * (j + 0.5) / double(number_of_division));
// keep closest point, replace it by perfect one and skip the others
double dist_min = (std::numeric_limits<double>::max)();
std::size_t index_best = 0;
for (std::size_t k = 0; k < division_tab[j].size(); ++ k)
{
std::size_t inde = division_tab[j][k];
if (CGAL::squared_distance (line, m_points[inde]) < d_DeltaEdge * d_DeltaEdge)
m_status[inde] = SKIPPED; // Deactive points too close (except best, see below)
2020-10-13 12:44:25 +00:00
double distance = CGAL::squared_distance (perfect, m_points[inde]);
if (distance < dist_min)
{
dist_min = distance;
index_best = inde;
}
}
m_points[index_best] = perfect;
m_normals[index_best] = normal;
m_status[index_best] = EDGE;
m_indices[index_best] = i;
m_edges[i].indices.push_back (index_best);
}
//C2-CREATE the ANCHOR
Vector direction_p1(0,0,0);
Vector direction_p2(0,0,0);
for (std::size_t j = 0; j < division_tab.size() - 1; ++ j)
{
if (division_tab[j].empty () || division_tab[j+1].empty ())
continue;
Point anchor (seg[0].x() + (seg[1].x() - seg[0].x()) * (j + 1) / double(number_of_division),
seg[0].y() + (seg[1].y() - seg[0].y()) * (j + 1) / double(number_of_division),
seg[0].z() + (seg[1].z() - seg[0].z()) * (j + 1) / double(number_of_division));
2020-10-13 12:44:25 +00:00
Plane ortho = seg.supporting_line().perpendicular_plane(anchor);
std::vector<Point> pts1, pts2;
//Computation of the permanent angle and directions
for (std::size_t k = 0; k < division_tab[j].size(); ++ k)
2020-10-13 12:44:25 +00:00
{
std::size_t inde = division_tab[j][k];
std::size_t plane = m_indices[inde];
if (plane == m_edges[i].planes[0])
pts1.push_back (m_points[inde]);
else if (plane == m_edges[i].planes[1])
pts2.push_back (m_points[inde]);
}
typename cpp11::result_of<typename Kernel::Intersect_3(Plane, Plane)>::type
result = CGAL::intersection (plane1, ortho);
if (result)
{
if (const Line* l = boost::get<Line>(&*result))
{
if (!(pts1.empty()))
{
Vector vecp1 = l->to_vector();
vecp1 = vecp1/ std::sqrt (vecp1 * vecp1);
Vector vtest1 (anchor, CGAL::centroid (pts1.begin (), pts1.end ()));
if (vtest1 * vecp1<0)
vecp1 = -vecp1;
direction_p1 = direction_p1+vecp1;
Point anchor1 = anchor + vecp1 * r_edge;
m_points.push_back (anchor1);
m_normals.push_back (m_planes[m_edges[i].planes[0]].orthogonal_vector());
m_indices.push_back (m_edges[i].planes[0]);
m_status.push_back (PLANE);
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
#endif
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
#endif
}
2020-10-13 12:44:25 +00:00
result = CGAL::intersection (plane2,ortho);
if (result)
{
if (const Line* l = boost::get<Line>(&*result))
{
if (!(pts2.empty()))
{
Vector vecp2 = l->to_vector();
vecp2 = vecp2 / std::sqrt (vecp2 * vecp2);
Vector vtest2 (anchor, CGAL::centroid (pts2.begin (), pts2.end ()));
if (vtest2 * vecp2 < 0)
vecp2 =- vecp2;
direction_p2 = direction_p2+vecp2;
Point anchor2 = anchor + vecp2 * r_edge;
m_points.push_back (anchor2);
m_normals.push_back (m_planes[m_edges[i].planes[1]].orthogonal_vector());
m_indices.push_back (m_edges[i].planes[1]);
m_status.push_back (PLANE);
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
#endif
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr<<"Warning: bad plane/plane intersection"<<std::endl;
#endif
}
}
2020-10-13 12:44:25 +00:00
//if not information enough (not enough edges to create
//anchor) we unactivate the edge, else we update the angle
//and directions
if ( !(direction_p1.squared_length()>0 || direction_p2.squared_length()>0) )
{
m_edges[i].active = false;
for (std::size_t j = 0; j < m_edges[i].indices.size (); ++ j)
m_status[m_edges[i].indices[j]] = SKIPPED;
}
}
}
void compute_corners (double radius)
{
if (m_edges.size () < 3)
return;
std::vector<std::vector<std::size_t> > plane_edge_adj (m_planes.size());
for (std::size_t i = 0; i < m_edges.size (); ++ i)
if (m_edges[i].active)
{
plane_edge_adj[m_edges[i].planes[0]].push_back (i);
plane_edge_adj[m_edges[i].planes[1]].push_back (i);
}
std::vector<std::set<std::size_t> > edge_adj (m_edges.size ());
for (std::size_t i = 0; i < plane_edge_adj.size (); ++ i)
{
if (plane_edge_adj[i].size () < 2)
continue;
2020-10-13 12:44:25 +00:00
for (std::size_t j = 0; j < plane_edge_adj[i].size ()- 1; ++ j)
for (std::size_t k = j + 1; k < plane_edge_adj[i].size (); ++ k)
{
edge_adj[plane_edge_adj[i][j]].insert (plane_edge_adj[i][k]);
edge_adj[plane_edge_adj[i][k]].insert (plane_edge_adj[i][j]);
}
}
for (std::size_t i = 0; i < edge_adj.size (); ++ i)
{
if (edge_adj[i].size () < 2)
continue;
std::set<std::size_t>::iterator end = edge_adj[i].end();
end --;
2020-10-13 12:44:25 +00:00
for (std::set<std::size_t>::iterator jit = edge_adj[i].begin ();
jit != end; ++ jit)
{
std::size_t j = *jit;
if (j < i)
continue;
std::set<std::size_t>::iterator begin = jit;
begin ++;
for (std::set<std::size_t>::iterator kit = begin;
kit != edge_adj[i].end (); ++ kit)
{
std::size_t k = *kit;
if (k < j)
continue;
2020-10-13 12:44:25 +00:00
std::set<std::size_t> planes;
planes.insert (m_edges[i].planes[0]);
planes.insert (m_edges[i].planes[1]);
planes.insert (m_edges[j].planes[0]);
planes.insert (m_edges[j].planes[1]);
planes.insert (m_edges[k].planes[0]);
planes.insert (m_edges[k].planes[1]);
if (planes.size () == 3) // Triple found
{
std::vector<std::size_t> vecplanes (planes.begin (), planes.end ());
m_corners.push_back (Corner (vecplanes[0], vecplanes[1], vecplanes[2],
i, j, k));
}
}
}
}
for (std::size_t i = 0; i < m_corners.size (); ++ i)
{
//calcul pt d'intersection des 3 plans
const Plane& plane1 = m_planes[m_corners[i].planes[0]];
const Plane& plane2 = m_planes[m_corners[i].planes[1]];
const Plane& plane3 = m_planes[m_corners[i].planes[2]];
typename cpp11::result_of<typename Kernel::Intersect_3(Plane, Plane)>::type
result = CGAL::intersection(plane1, plane2);
2020-10-13 12:44:25 +00:00
if (result)
{
if (const Line* l = boost::get<Line>(&*result))
{
typename cpp11::result_of<typename Kernel::Intersect_3(Line, Plane)>::type
result2 = CGAL::intersection(*l, plane3);
if (result2)
{
if (const Point* p = boost::get<Point>(&*result2))
m_corners[i].support = *p;
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/line intersection" << std::endl;
#endif
m_corners[i].active = false;
continue;
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/line intersection" << std::endl;
#endif
m_corners[i].active = false;
continue;
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
#endif
m_corners[i].active = false;
continue;
}
}
else
{
#ifdef CGAL_PSP3_VERBOSE
std::cerr << "Warning: bad plane/plane intersection" << std::endl;
#endif
m_corners[i].active = false;
continue;
}
// test if point is in bbox + delta
CGAL::Bbox_3 bbox = CGAL::bbox_3 (m_points.begin (), m_points.end ());
2020-10-13 12:44:25 +00:00
double margin_x = 0.1 * (bbox.xmax() - bbox.xmin());
double X_min = bbox.xmin() - margin_x;
2020-10-13 12:44:25 +00:00
double X_max = bbox.xmax() + margin_x;
double margin_y = 0.1 * (bbox.ymax() - bbox.ymin());
double Y_min = bbox.ymin() - margin_y;
2020-10-13 12:44:25 +00:00
double Y_max = bbox.ymax() + margin_y;
double margin_z = 0.1* (bbox.zmax() - bbox.zmin());
double Z_min = bbox.zmin() - margin_z;
double Z_max = bbox.zmax() + margin_z;
2020-10-13 12:44:25 +00:00
if ((m_corners[i].support.x() < X_min) || (m_corners[i].support.x() > X_max)
|| (m_corners[i].support.y() < Y_min) || (m_corners[i].support.y() > Y_max)
|| (m_corners[i].support.z() < Z_min) || (m_corners[i].support.z() > Z_max))
{
m_corners[i].active = false;
continue;
}
// test if corner is in neighborhood of at least one point each of the 3 planes
std::vector<bool> neighborhood (3, false);
for (std::size_t k = 0; k < 3; ++ k)
{
for (std::size_t j = 0; j < m_edges[m_corners[i].edges[k]].indices.size(); ++ j)
{
const Point& p = m_points[m_edges[m_corners[i].edges[k]].indices[j]];
if (CGAL::squared_distance (m_corners[i].support, p) < radius * radius)
{
neighborhood[k] = true;
break;
}
}
}
if ( !(neighborhood[0] && neighborhood[1] && neighborhood[2]) )
m_corners[i].active = false;
}
}
void merge_corners (double radius)
{
for (std::size_t k = 0; k < m_corners.size(); ++ k)
{
if (!(m_corners[k].active))
continue;
int count_plane_number=3;
2020-10-13 12:44:25 +00:00
for (std::size_t kb = k + 1; kb < m_corners.size(); ++ kb)
{
if (!(m_corners[kb].active))
continue;
int count_new_plane = 0;
if (CGAL::squared_distance (m_corners[kb].support, m_corners[k].support) >= radius * radius)
continue;
for (std::size_t i = 0; i < m_corners[kb].planes.size (); ++ i)
{
2020-10-13 12:44:25 +00:00
bool testtt = true;
for (std::size_t l = 0; l < m_corners[k].planes.size(); ++ l)
if (m_corners[kb].planes[i] == m_corners[k].planes[l])
{
testtt = false;
break;
}
if (!testtt)
continue;
m_corners[k].planes.push_back (m_corners[kb].planes[i]);
++ count_new_plane;
m_corners[kb].active = false;
std::vector<bool> is_edge_in (3, false);
for (std::size_t l = 0; l < m_corners[k].edges.size(); ++ l)
{
for (std::size_t j = 0; j < 3; ++ j)
if (m_corners[k].edges[l] == m_corners[kb].edges[j])
is_edge_in[j] = true;
}
for (std::size_t j = 0; j < 3; ++ j)
if (!(is_edge_in[j]))
m_corners[k].edges.push_back (m_corners[kb].edges[j]);
}
2020-10-13 12:44:25 +00:00
//update barycenter
m_corners[k].support = CGAL::barycenter (m_corners[k].support, count_plane_number,
m_corners[kb].support, count_new_plane);
count_plane_number += count_new_plane;
}
// Compute normal vector
Vector normal (0., 0., 0.);
for (std::size_t i = 0; i < m_corners[k].planes.size(); ++ i)
normal = normal + (1. / (double)(m_corners[k].planes.size()))
* m_planes[m_corners[k].planes[i]].orthogonal_vector();
2020-10-13 12:44:25 +00:00
m_points.push_back (m_corners[k].support);
m_normals.push_back (normal);
m_indices.push_back (k);
m_status.push_back (CORNER);
}
}
void compute_corner_directions (double epsilon)
{
for (std::size_t k = 0; k < m_corners.size(); ++ k)
{
for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed)
{
if (m_corners[k].edges[ed] < m_edges.size())
2020-10-13 12:44:25 +00:00
{
const Edge& edge = m_edges[m_corners[k].edges[ed]];
Vector direction (0., 0., 0.);
for (std::size_t i = 0; i < edge.indices.size(); ++ i)
{
std::size_t index_pt = edge.indices[i];
if (std::sqrt (CGAL::squared_distance (m_corners[k].support,
m_points[index_pt])) < 5 * epsilon)
direction = direction + Vector (m_corners[k].support, m_points[index_pt]);
}
if (direction.squared_length() > 1e-5)
m_corners[k].directions.push_back (direction / std::sqrt (direction * direction));
else
m_corners[k].directions.push_back (Vector (0., 0., 0.));
}
else
m_corners[k].directions.push_back (Vector (0., 0., 0.));
}
}
}
2020-10-13 12:44:25 +00:00
void refine_sampling (double epsilon)
{
double d_DeltaEdge = std::sqrt (2.) * epsilon;
for (std::size_t k = 0; k < m_corners.size(); ++ k)
{
if (!(m_corners[k].active))
continue;
2020-10-13 12:44:25 +00:00
for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed)
{
const Edge& edge = m_edges[m_corners[k].edges[ed]];
for (std::size_t i = 0; i < edge.indices.size(); ++ i)
{
//if too close from a corner, ->remove
if (CGAL::squared_distance (m_corners[k].support, m_points[edge.indices[i]])
< d_DeltaEdge * d_DeltaEdge)
m_status[edge.indices[i]] = SKIPPED;
2020-10-13 12:44:25 +00:00
//if too close from a corner (non dominant side), ->remove
if (m_corners[k].directions[ed].squared_length() > 0
&& (m_corners[k].directions[ed]
* Vector (m_corners[k].support, m_points[edge.indices[i]]) < 0)
&& (CGAL::squared_distance (m_corners[k].support, m_points[edge.indices[i]])
< 4 * d_DeltaEdge * d_DeltaEdge))
m_status[edge.indices[i]] = SKIPPED;
}
2020-10-13 12:44:25 +00:00
}
}
for (std::size_t k = 0; k < m_corners.size(); ++ k)
{
if (!(m_corners[k].active))
continue;
2020-10-13 12:44:25 +00:00
for (std::size_t ed = 0; ed < m_corners[k].edges.size(); ++ ed)
{
if (m_corners[k].directions[ed].squared_length() <= 0.)
continue;
2020-10-13 12:44:25 +00:00
Edge& edge = m_edges[m_corners[k].edges[ed]];
//rajouter un edge a epsilon du cote dominant si pas de point entre SS_edge/2 et 3/2*SS_edge
bool is_in_interval = false;
for (std::size_t i = 0; i < edge.indices.size(); ++ i)
{
std::size_t index_pt = edge.indices[i];
double dist = CGAL::squared_distance (m_corners[k].support,
m_points[index_pt]);
if (m_status[index_pt] != SKIPPED
&& dist < 1.5 * d_DeltaEdge && dist > d_DeltaEdge / 2)
{
Vector move (m_corners[k].support,
m_points[index_pt]);
if (move * m_corners[k].directions[ed] > 0.)
{
is_in_interval = true;
break;
}
}
}
//rajouter un edge a 1 epsilon du cote dominant si pas de point entre SS_edge/2 et 3/2*SS_edge
if (!is_in_interval)
{
Point new_edge = m_corners[k].support + m_corners[k].directions[ed] * d_DeltaEdge;
m_points.push_back (new_edge);
m_normals.push_back (0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[0]].orthogonal_vector()
+ 0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[1]].orthogonal_vector());
m_status.push_back (EDGE);
m_indices.push_back (m_corners[k].edges[ed]);
edge.indices.push_back (m_points.size() - 1);
}
2020-10-13 12:44:25 +00:00
//rajouter un edge a 1/3 epsilon du cote dominant
Point new_edge = m_corners[k].support + m_corners[k].directions[ed] * d_DeltaEdge / 3;
m_points.push_back (new_edge);
m_normals.push_back (0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[0]].orthogonal_vector()
+ 0.5 * m_planes[m_edges[m_corners[k].edges[ed]].planes[1]].orthogonal_vector());
m_status.push_back (EDGE);
m_indices.push_back (m_corners[k].edges[ed]);
edge.indices.push_back (m_points.size() - 1);
}
}
}
2020-10-13 12:44:25 +00:00
/// \endcond
};
2020-10-13 12:44:25 +00:00
// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------
2020-10-13 12:44:25 +00:00
/**
\ingroup PkgPointSetProcessing3Algorithms
This is an implementation of the Point Set Structuring algorithm. This
algorithm takes advantage of a set of detected planes: it detects adjacency
relationships between planes and resamples the detected planes, edges and
corners to produce a structured point set.
The size parameter `epsilon` is used both for detecting adjacencies and for
setting the sampling density of the structured point set.
For more details, please refer to \cgalCite{cgal:la-srpss-13}.
\tparam PointRange is a model of `ConstRange`. The value type of
its iterator is the key type of the named parameter `point_map`.
\tparam PlaneRange is a model of `ConstRange`. The value type of
its iterator is the key type of the named parameter `plane_map`.
\tparam OutputIterator Type of the output iterator. The type of the
objects put in it is `std::pair<Kernel::Point_3, Kernel::Vector_3>`.
Note that the user may use a
2020-10-13 12:44:25 +00:00
<A HREF="https://www.boost.org/libs/iterator/doc/function_output_iterator.html">function_output_iterator</A>
to match specific needs.
\param points input point range.
\param planes input plane range.
\param output output iterator where output points are written
\param epsilon size parameter.
2020-10-13 12:44:25 +00:00
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
\cgalNamedParamsBegin
2020-10-13 12:44:25 +00:00
\cgalParamNBegin{point_map}
\cgalParamDescription{a property map associating points to the elements of the point set `points`}
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`}
\cgalParamDefault{`CGAL::Identity_property_map<geom_traits::Point_3>`}
\cgalParamNEnd
\cgalParamNBegin{normal_map}
\cgalParamDescription{a property map associating normals to the elements of the point set `points`}
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
of the iterator of `PointRange` and whose value type is `geom_traits::Vector_3`}
\cgalParamNEnd
\cgalParamNBegin{plane_index_map}
\cgalParamDescription{a property map associating the index of a point in the input range
to the index of plane (`-1` if the point is not assigned to a plane)}
\cgalParamType{a class model of `ReadablePropertyMap` with `std::size_t` as key type and `int` as value type}
\cgalParamDefault{unused}
\cgalParamNEnd
\cgalParamNBegin{plane_map}
\cgalParamDescription{a property map containing the planes associated to the elements of the plane range `planes`}
\cgalParamType{a class model of `ReadablePropertyMap` with `PlaneRange::iterator::value_type`
as key type and `geom_traits::Plane_3` as value type}
\cgalParamDefault{`CGAL::Identity_property_map<Kernel::Plane_3>`}
\cgalParamNEnd
\cgalParamNBegin{attraction_factor}
\cgalParamDescription{multiple of a tolerance `epsilon` used to connect simplices}
\cgalParamType{floating scalar value}
\cgalParamDefault{`3`}
\cgalParamNEnd
\cgalParamNBegin{geom_traits}
\cgalParamDescription{an instance of a geometric traits class}
\cgalParamType{a model of `Kernel`}
\cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
\cgalParamNEnd
\cgalNamedParamsEnd
*/
template <typename PointRange,
typename PlaneRange,
typename OutputIterator,
typename NamedParameters
>
OutputIterator
structure_point_set (const PointRange& points,
const PlaneRange& planes,
OutputIterator output,
double epsilon,
const NamedParameters& np)
{
2020-10-13 12:44:25 +00:00
using parameters::choose_parameter;
using parameters::get_parameter;
typedef typename Point_set_processing_3::GetK<PointRange, NamedParameters>::Kernel Kernel;
Point_set_with_structure<Kernel> pss (points, planes, epsilon, np);
for (std::size_t i = 0; i < pss.size(); ++ i)
*(output ++) = pss[i];
return output;
}
/// \cond SKIP_IN_MANUAL
// variant with default NP
template <typename PointRange,
typename PlaneRange,
typename OutputIterator>
OutputIterator
structure_point_set (const PointRange& points, ///< range of points.
const PlaneRange& planes, ///< range of planes.
OutputIterator output, ///< output iterator where output points are written.
double epsilon) ///< size parameter.
{
return structure_point_set
(points, planes, output, epsilon,
CGAL::Point_set_processing_3::parameters::all_default(points));
}
/// \endcond
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // CGAL_STRUCTURE_POINT_SET_3_H