345 lines
10 KiB
C
345 lines
10 KiB
C
|
// Copyright (c) 2012 INRIA Bordeaux Sud-Ouest (France), All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public License as
|
||
|
// published by the Free Software Foundation; either version 3 of the License,
|
||
|
// or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: LGPL-3.0+
|
||
|
//
|
||
|
// Author(s) : Gael Guennebaud
|
||
|
|
||
|
#ifndef CGAL_EIGEN_MATRIX_H
|
||
|
#define CGAL_EIGEN_MATRIX_H
|
||
|
|
||
|
#include <CGAL/basic.h> // include basic.h before testing #defines
|
||
|
|
||
|
#include <Eigen/Sparse>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
/*!
|
||
|
\ingroup PkgSolver
|
||
|
|
||
|
The class `Eigen_sparse_matrix` is a wrapper around \ref thirdpartyEigen "Eigen" matrix type
|
||
|
<a href="http://eigen.tuxfamily.org/dox/classEigen_1_1SparseMatrix.html">`Eigen::SparseMatrix`</a>
|
||
|
that represents general matrices, be they symmetric or not.
|
||
|
|
||
|
\cgalModels `SparseLinearAlgebraTraits_d::Matrix`
|
||
|
|
||
|
\tparam T Number type.
|
||
|
|
||
|
\sa `CGAL::Eigen_vector<T>`
|
||
|
\sa `CGAL::Eigen_matrix<T>`
|
||
|
\sa `CGAL::Eigen_sparse_symmetric_matrix<T>`
|
||
|
*/
|
||
|
template<class T>
|
||
|
struct Eigen_sparse_matrix
|
||
|
{
|
||
|
// Public types
|
||
|
public:
|
||
|
/// \name Types
|
||
|
/// @{
|
||
|
|
||
|
/// The internal matrix type from \ref thirdpartyEigen "Eigen".
|
||
|
typedef Eigen::SparseMatrix<T> EigenType;
|
||
|
|
||
|
typedef T NT;
|
||
|
/// @}
|
||
|
|
||
|
// Public operations
|
||
|
public:
|
||
|
/// Create a square matrix initialized with zeros.
|
||
|
Eigen_sparse_matrix(std::size_t dim, ///< Matrix dimension.
|
||
|
bool is_symmetric = false) ///< Symmetric/hermitian?
|
||
|
:
|
||
|
m_is_already_built(false),
|
||
|
m_matrix(static_cast<int>(dim), static_cast<int>(dim))
|
||
|
{
|
||
|
CGAL_precondition(dim > 0);
|
||
|
|
||
|
m_is_symmetric = is_symmetric;
|
||
|
m_triplets.reserve(dim); // reserve memory for a regular 3D grid
|
||
|
}
|
||
|
|
||
|
/// Create a square matrix initialized with zeros.
|
||
|
Eigen_sparse_matrix(int dim, ///< Matrix dimension.
|
||
|
bool is_symmetric = false) ///< Symmetric/hermitian?
|
||
|
: m_is_already_built(false),
|
||
|
m_matrix(dim, dim)
|
||
|
{
|
||
|
CGAL_precondition(dim > 0);
|
||
|
|
||
|
m_is_symmetric = is_symmetric;
|
||
|
// reserve memory for a regular 3D grid
|
||
|
m_triplets.reserve(dim);
|
||
|
}
|
||
|
|
||
|
/// Create a rectangular matrix initialized with zeros.
|
||
|
///
|
||
|
/// \pre rows == columns if `is_symmetric` is true.
|
||
|
Eigen_sparse_matrix(std::size_t rows, ///< Number of rows.
|
||
|
std::size_t columns, ///< Number of columns.
|
||
|
bool is_symmetric = false) ///< Symmetric/hermitian?
|
||
|
: m_is_already_built(false),
|
||
|
m_matrix(static_cast<int>(rows), static_cast<int>(columns))
|
||
|
{
|
||
|
CGAL_precondition(rows > 0);
|
||
|
CGAL_precondition(columns > 0);
|
||
|
if(m_is_symmetric)
|
||
|
{
|
||
|
CGAL_precondition(rows == columns);
|
||
|
}
|
||
|
|
||
|
m_is_symmetric = is_symmetric;
|
||
|
// reserve memory for a regular 3D grid
|
||
|
m_triplets.reserve(rows);
|
||
|
}
|
||
|
|
||
|
/// Delete this object and the wrapped matrix.
|
||
|
~Eigen_sparse_matrix() { }
|
||
|
|
||
|
/// Create a rectangular matrix initialized with zeros.
|
||
|
///
|
||
|
/// \pre rows == columns if `is_symmetric` is true.
|
||
|
Eigen_sparse_matrix(int rows, ///< Number of rows.
|
||
|
int columns, ///< Number of columns.
|
||
|
bool is_symmetric = false) ///< Symmetric/hermitian?
|
||
|
: m_is_already_built(false),
|
||
|
m_matrix(rows,columns)
|
||
|
{
|
||
|
CGAL_precondition(rows > 0);
|
||
|
CGAL_precondition(columns > 0);
|
||
|
if(is_symmetric)
|
||
|
{
|
||
|
CGAL_precondition(rows == columns);
|
||
|
}
|
||
|
|
||
|
m_is_symmetric = is_symmetric;
|
||
|
// reserve memory for a regular 3D grid
|
||
|
m_triplets.reserve(rows);
|
||
|
}
|
||
|
|
||
|
/// Return the matrix number of rows
|
||
|
int row_dimension() const { return static_cast<int>(m_matrix.rows()); }
|
||
|
/// Return the matrix number of columns
|
||
|
int column_dimension() const { return static_cast<int>(m_matrix.cols()); }
|
||
|
|
||
|
/// Write access to a matrix coefficient: a_ij <- val.
|
||
|
///
|
||
|
/// Users can optimize calls to this function by setting 'new_coef' to `true`
|
||
|
/// if the coefficient does not already exist in the matrix.
|
||
|
///
|
||
|
/// \warning For symmetric matrices, `Eigen_sparse_matrix` only stores the lower triangle
|
||
|
/// and `set_coef()` does nothing if (i, j) belongs to the upper triangle.
|
||
|
///
|
||
|
/// \pre 0 <= i < row_dimension().
|
||
|
/// \pre 0 <= j < column_dimension().
|
||
|
void set_coef(std::size_t i_, std::size_t j_, T val, bool new_coef = false)
|
||
|
{
|
||
|
int i = static_cast<int>(i_);
|
||
|
int j = static_cast<int>(j_);
|
||
|
CGAL_precondition(i < row_dimension());
|
||
|
CGAL_precondition(j < column_dimension());
|
||
|
|
||
|
if (m_is_symmetric && (j > i))
|
||
|
return;
|
||
|
|
||
|
if(m_is_already_built)
|
||
|
{
|
||
|
m_matrix.coeffRef(i,j) = val;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if(new_coef == false)
|
||
|
{
|
||
|
assemble_matrix();
|
||
|
m_matrix.coeffRef(i,j) = val;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_triplets.push_back(Triplet(i,j,val));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// Write access to a matrix coefficient: a_ij <- a_ij + val.
|
||
|
///
|
||
|
/// \warning For symmetric matrices, Eigen_sparse_matrix only stores the lower triangle
|
||
|
/// `add_coef()` does nothing if (i, j) belongs to the upper triangle.
|
||
|
///
|
||
|
/// \pre 0 <= i < row_dimension().
|
||
|
/// \pre 0 <= j < column_dimension().
|
||
|
void add_coef(int i, int j, T val)
|
||
|
{
|
||
|
CGAL_precondition(i < row_dimension());
|
||
|
CGAL_precondition(j < column_dimension());
|
||
|
|
||
|
if(m_is_symmetric && (j > i))
|
||
|
return;
|
||
|
|
||
|
if(m_is_already_built)
|
||
|
m_matrix.coeffRef(i,j) += val;
|
||
|
else
|
||
|
m_triplets.push_back(Triplet(i,j,val));
|
||
|
}
|
||
|
|
||
|
/// Read access to a matrix coefficient.
|
||
|
///
|
||
|
/// \warning Complexity:
|
||
|
/// - O(log(n)) if the matrix is already built.
|
||
|
/// - O(n) if the matrix is not built.
|
||
|
/// `n` being the number of entries in the matrix.
|
||
|
///
|
||
|
/// \pre 0 <= i < row_dimension().
|
||
|
/// \pre 0 <= j < column_dimension().
|
||
|
NT get_coef (unsigned int i, unsigned int j) const
|
||
|
{
|
||
|
CGAL_precondition(i < row_dimension());
|
||
|
CGAL_precondition(j < column_dimension());
|
||
|
|
||
|
if(m_is_symmetric && j > i)
|
||
|
std::swap(i, j);
|
||
|
|
||
|
if (m_is_already_built)
|
||
|
return m_matrix.coeffRef(i,j);
|
||
|
else
|
||
|
{
|
||
|
NT val = 0;
|
||
|
for(std::size_t t=0; t<m_triplets.size(); ++t)
|
||
|
{
|
||
|
if(m_triplets[t].col() == j &&
|
||
|
m_triplets[t].row() == i)
|
||
|
val += m_triplets[t].value();
|
||
|
}
|
||
|
return val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// \cond SKIP_IN_MANUAL
|
||
|
void assemble_matrix() const
|
||
|
{
|
||
|
m_matrix.setFromTriplets(m_triplets.begin(), m_triplets.end());
|
||
|
m_is_already_built = true;
|
||
|
m_triplets.clear(); // the matrix is built and will not be rebuilt
|
||
|
}
|
||
|
/// \endcond
|
||
|
|
||
|
/// Return the internal matrix, with type `EigenType`.
|
||
|
const EigenType& eigen_object() const
|
||
|
{
|
||
|
if(!m_is_already_built)
|
||
|
assemble_matrix();
|
||
|
|
||
|
// turns the matrix into compressed mode:
|
||
|
// -> release some memory
|
||
|
// -> required for some external solvers
|
||
|
m_matrix.makeCompressed();
|
||
|
return m_matrix;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
/// Eigen_sparse_matrix cannot be copied (yet)
|
||
|
Eigen_sparse_matrix(const Eigen_sparse_matrix& rhs);
|
||
|
Eigen_sparse_matrix& operator=(const Eigen_sparse_matrix& rhs);
|
||
|
|
||
|
// Fields
|
||
|
private:
|
||
|
mutable bool m_is_already_built;
|
||
|
|
||
|
typedef Eigen::Triplet<T,int> Triplet;
|
||
|
mutable std::vector<Triplet> m_triplets;
|
||
|
|
||
|
mutable EigenType m_matrix;
|
||
|
|
||
|
// Symmetric/hermitian?
|
||
|
bool m_is_symmetric;
|
||
|
}; // Eigen_sparse_matrix
|
||
|
|
||
|
/*!
|
||
|
\ingroup PkgSolver
|
||
|
|
||
|
The class `Eigen_sparse_symmetric_matrix` is a wrapper around \ref thirdpartyEigen "Eigen" matrix type
|
||
|
<a href="http://eigen.tuxfamily.org/dox/classEigen_1_1SparseMatrix.html">`Eigen::SparseMatrix` </a>
|
||
|
|
||
|
Since the matrix is symmetric, only the lower triangle part is stored.
|
||
|
|
||
|
\cgalModels `SparseLinearAlgebraTraits_d::Matrix`
|
||
|
|
||
|
\tparam T Number type.
|
||
|
|
||
|
\sa `CGAL::Eigen_vector<T>`
|
||
|
\sa `CGAL::Eigen_sparse_matrix<T>`
|
||
|
*/
|
||
|
|
||
|
template<class T>
|
||
|
struct Eigen_sparse_symmetric_matrix
|
||
|
: public Eigen_sparse_matrix<T>
|
||
|
{
|
||
|
/// Create a square *symmetric* matrix initialized with zeros.
|
||
|
Eigen_sparse_symmetric_matrix(int dim) ///< Matrix dimension.
|
||
|
: Eigen_sparse_matrix<T>(dim, true /* symmetric */)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/// Create a square *symmetric* matrix initialized with zeros.
|
||
|
///
|
||
|
/// \pre rows == columns.
|
||
|
Eigen_sparse_symmetric_matrix(int rows, ///< Number of rows.
|
||
|
int columns) ///< Number of columns.
|
||
|
: Eigen_sparse_matrix<T>(rows, columns, true /* symmetric */)
|
||
|
{
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*!
|
||
|
\ingroup PkgSolver
|
||
|
|
||
|
The class `Eigen_matrix` is a wrapper around \ref thirdpartyEigen "Eigen" matrix type
|
||
|
<a href="http://eigen.tuxfamily.org/dox/classEigen_1_1Matrix.html">`Eigen::Matrix`</a>.
|
||
|
|
||
|
\cgalModels `SvdTraits::Matrix`
|
||
|
|
||
|
\tparam T Number type.
|
||
|
|
||
|
\sa `CGAL::Eigen_vector<T>`
|
||
|
\sa `CGAL::Eigen_sparse_matrix<T>`
|
||
|
\sa `CGAL::Eigen_sparse_symmetric_matrix<T>`
|
||
|
*/
|
||
|
template <class FT>
|
||
|
struct Eigen_matrix
|
||
|
: public ::Eigen::Matrix<FT, ::Eigen::Dynamic, ::Eigen::Dynamic>
|
||
|
{
|
||
|
/// The internal matrix type from \ref thirdpartyEigen "Eigen".
|
||
|
typedef ::Eigen::Matrix<FT, ::Eigen::Dynamic, ::Eigen::Dynamic> EigenType;
|
||
|
|
||
|
/// Construct a matrix with `nr` rows and `nc` columns.
|
||
|
Eigen_matrix(std::size_t nr, std::size_t nc) : EigenType(nr, nc) { }
|
||
|
|
||
|
/// Return the matrix number of rows.
|
||
|
std::size_t number_of_rows() const { return this->rows(); }
|
||
|
/// Return the matrix number of columns.
|
||
|
std::size_t number_of_columns() const { return this->cols(); }
|
||
|
|
||
|
/// Return the value of the matrix at position (i,j).
|
||
|
FT operator()( std::size_t i , std::size_t j ) const { return EigenType::operator()(i,j); }
|
||
|
|
||
|
/// Write access to a matrix coefficient: `a_ij` <- `val`.
|
||
|
void set(std::size_t i, std::size_t j, FT value) { this->coeffRef(i,j) = value; }
|
||
|
|
||
|
/// Return the internal matrix, with type `EigenType`.
|
||
|
const EigenType& eigen_object() const { return static_cast<const EigenType&>(*this); }
|
||
|
};
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
#endif // CGAL_EIGEN_MATRIX_H
|