516 lines
15 KiB
C
516 lines
15 KiB
C
|
// Copyright (c) 2000,2001
|
||
|
// Utrecht University (The Netherlands),
|
||
|
// ETH Zurich (Switzerland),
|
||
|
// INRIA Sophia-Antipolis (France),
|
||
|
// Max-Planck-Institute Saarbruecken (Germany),
|
||
|
// and Tel-Aviv University (Israel). All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public License as
|
||
|
// published by the Free Software Foundation; either version 3 of the License,
|
||
|
// or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: LGPL-3.0+
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : Michael Seel
|
||
|
|
||
|
//---------------------------------------------------------------------
|
||
|
// file generated by notangle from noweb/function_objectsHd.lw
|
||
|
// please debug or modify noweb file
|
||
|
// coding: K. Mehlhorn, M. Seel
|
||
|
//---------------------------------------------------------------------
|
||
|
|
||
|
#ifndef CGAL_FUNCTION_OBJECTSHD_H
|
||
|
#define CGAL_FUNCTION_OBJECTSHD_H
|
||
|
|
||
|
#include <CGAL/basic.h>
|
||
|
#include <CGAL/enum.h>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
template <typename K>
|
||
|
class Compute_coordinateHd {
|
||
|
typedef typename K::FT FT;
|
||
|
typedef typename K::Point_d Point_d;
|
||
|
public:
|
||
|
typedef FT result_type;
|
||
|
result_type
|
||
|
operator()(const Point_d& p, int i) const
|
||
|
{
|
||
|
return p.cartesian(i);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename K>
|
||
|
class Point_dimensionHd {
|
||
|
typedef typename K::RT RT;
|
||
|
typedef typename K::Point_d Point_d;
|
||
|
public:
|
||
|
typedef int result_type;
|
||
|
result_type
|
||
|
operator()(const Point_d& p) const
|
||
|
{
|
||
|
return p.dimension();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename K>
|
||
|
class Less_coordinateHd {
|
||
|
typedef typename K::RT RT;
|
||
|
typedef typename K::Point_d Point_d;
|
||
|
public:
|
||
|
typedef bool result_type;
|
||
|
result_type
|
||
|
operator()(const Point_d& p, const Point_d& q, int i) const
|
||
|
{
|
||
|
int d = p.dimension();
|
||
|
return p.cartesian(i)*q.homogeneous(d)<q.cartesian(i)*p.homogeneous(d);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template <class R>
|
||
|
struct Lift_to_paraboloidHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::RT RT;
|
||
|
typedef typename R::LA LA;
|
||
|
|
||
|
Point_d operator()(const Point_d& p) const
|
||
|
{
|
||
|
int d = p.dimension();
|
||
|
typename LA::Vector h(d+2);
|
||
|
RT D = p.homogeneous(d);
|
||
|
RT sum = 0;
|
||
|
for (int i = 0; i<d; i++) {
|
||
|
RT hi = p.homogeneous(i);
|
||
|
h[i] = hi*D;
|
||
|
sum += hi*hi;
|
||
|
}
|
||
|
h[d] = sum;
|
||
|
h[d+1] = D*D;
|
||
|
return Point_d(d+1,h.begin(),h.end());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct Project_along_d_axisHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::RT RT;
|
||
|
typedef typename R::LA LA;
|
||
|
|
||
|
Point_d operator()(const Point_d& p) const
|
||
|
{ int d = p.dimension();
|
||
|
return Point_d(d-1, p.homogeneous_begin(),p.homogeneous_end()-2,
|
||
|
p.homogeneous(d));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct MidpointHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
Point_d operator()(const Point_d& p, const Point_d& q) const
|
||
|
{ return Point_d(p + (q-p)/2); }
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct Center_of_sphereHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::RT RT;
|
||
|
typedef typename R::LA LA;
|
||
|
template <class Forward_iterator>
|
||
|
Point_d operator()(Forward_iterator start, Forward_iterator end) const
|
||
|
{ CGAL_assertion(start!=end);
|
||
|
CGAL_USE(end);
|
||
|
int d = start->dimension();
|
||
|
typename LA::Matrix M(d);
|
||
|
typename LA::Vector b(d);
|
||
|
Point_d pd = *start++;
|
||
|
RT pdd = pd.homogeneous(d);
|
||
|
for (int i = 0; i < d; i++) {
|
||
|
// we set up the equation for p_i
|
||
|
Point_d pi = *start++;
|
||
|
RT pid = pi.homogeneous(d);
|
||
|
b[i] = 0;
|
||
|
for (int j = 0; j < d; j++) {
|
||
|
M(i,j) = RT(2) * pdd * pid *
|
||
|
(pi.homogeneous(j)*pdd - pd.homogeneous(j)*pid);
|
||
|
b[i] += (pi.homogeneous(j)*pdd - pd.homogeneous(j)*pid) *
|
||
|
(pi.homogeneous(j)*pdd + pd.homogeneous(j)*pid);
|
||
|
}
|
||
|
}
|
||
|
RT D;
|
||
|
typename LA::Vector x;
|
||
|
LA::linear_solver(M,b,x,D);
|
||
|
return Point_d(d,x.begin(),x.end(),D);
|
||
|
}
|
||
|
|
||
|
}; // Center_of_sphereHd
|
||
|
|
||
|
|
||
|
template <class R>
|
||
|
struct Squared_distanceHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::Vector_d Vector_d;
|
||
|
typedef typename R::FT FT;
|
||
|
FT operator()(const Point_d& p, const Point_d& q) const
|
||
|
{ Vector_d v = p-q; return v.squared_length(); }
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct Position_on_lineHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::FT FT;
|
||
|
typedef typename R::RT RT;
|
||
|
|
||
|
bool operator()(const Point_d& p, const Point_d& s, const Point_d& t,
|
||
|
FT& l) const
|
||
|
{ int d = p.dimension();
|
||
|
CGAL_assertion_msg((d==s.dimension())&&(d==t.dimension()&& d>0),
|
||
|
"position_along_line: argument dimensions disagree.");
|
||
|
CGAL_assertion_msg((s!=t),
|
||
|
"Position_on_line_d: line defining points are equal.");
|
||
|
RT lnum = (p.homogeneous(0)*s.homogeneous(d) -
|
||
|
s.homogeneous(0)*p.homogeneous(d)) * t.homogeneous(d);
|
||
|
RT lden = (t.homogeneous(0)*s.homogeneous(d) -
|
||
|
s.homogeneous(0)*t.homogeneous(d)) * p.homogeneous(d);
|
||
|
RT num(lnum), den(lden), lnum_i, lden_i;
|
||
|
for (int i = 1; i < d; i++) {
|
||
|
lnum_i = (p.homogeneous(i)*s.homogeneous(d) -
|
||
|
s.homogeneous(i)*p.homogeneous(d)) * t.homogeneous(d);
|
||
|
lden_i = (t.homogeneous(i)*s.homogeneous(d) -
|
||
|
s.homogeneous(i)*t.homogeneous(d)) * p.homogeneous(d);
|
||
|
if (lnum*lden_i != lnum_i*lden) return false;
|
||
|
if (lden_i != 0) { den = lden_i; num = lnum_i; }
|
||
|
}
|
||
|
l = R::make_FT(num,den);
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct Barycentric_coordinatesHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::RT RT;
|
||
|
|
||
|
template <class ForwardIterator, class OutputIterator>
|
||
|
OutputIterator operator()(ForwardIterator first, ForwardIterator last,
|
||
|
const Point_d& p, OutputIterator result)
|
||
|
{ TUPLE_DIM_CHECK(first,last,Barycentric_coordinates_d);
|
||
|
CGAL_assertion_code( int d = p.dimension(); )
|
||
|
typename R::Affine_rank_d affine_rank;
|
||
|
CGAL_assertion(affine_rank(first,last)==d);
|
||
|
typename LA::Matrix M(first,last);
|
||
|
typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end()), x;
|
||
|
RT D;
|
||
|
LA::linear_solver(M,b,x,D);
|
||
|
for (int i=0; i< x.dimension(); ++result, ++i) {
|
||
|
*result= R::make_FT(x[i],D);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template <class R>
|
||
|
struct OrientationHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::LA LA;
|
||
|
|
||
|
template <class ForwardIterator>
|
||
|
Orientation operator()(ForwardIterator first, ForwardIterator last)
|
||
|
{ TUPLE_DIM_CHECK(first,last,Orientation_d);
|
||
|
int d = static_cast<int>(std::distance(first,last));
|
||
|
// range contains d points of dimension d-1
|
||
|
CGAL_assertion_msg(first->dimension() == d-1,
|
||
|
"Orientation_d: needs first->dimension() + 1 many points.");
|
||
|
typename LA::Matrix M(d); // quadratic
|
||
|
for (int i = 0; i < d; ++first,++i) {
|
||
|
for (int j = 0; j < d; ++j)
|
||
|
M(i,j) = first->homogeneous(j);
|
||
|
}
|
||
|
int row_correction = ( (d % 2 == 0) ? -1 : +1 );
|
||
|
// we invert the sign if the row number is even i.e. d is odd
|
||
|
return Orientation(row_correction * LA::sign_of_determinant(M));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct Side_of_oriented_sphereHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::RT RT;
|
||
|
|
||
|
template <class ForwardIterator>
|
||
|
Oriented_side operator()(ForwardIterator first, ForwardIterator last,
|
||
|
const Point_d& x)
|
||
|
{
|
||
|
TUPLE_DIM_CHECK(first,last,Side_of_oriented_sphere_d);
|
||
|
int d = static_cast<int>(std::distance(first,last)); // |A| contains |d| points
|
||
|
CGAL_assertion_msg((d-1 == first->dimension()),
|
||
|
"Side_of_oriented_sphere_d: needs first->dimension()+1 many input points.");
|
||
|
typename LA::Matrix M(d + 1);
|
||
|
for (int i = 0; i < d; ++first, ++i) {
|
||
|
RT Sum = 0;
|
||
|
RT hd = first->homogeneous(d-1);
|
||
|
M(i,0) = hd*hd;
|
||
|
for (int j = 0; j < d; j++) {
|
||
|
RT hj = first->homogeneous(j);
|
||
|
M(i,j + 1) = hj * hd;
|
||
|
Sum += hj*hj;
|
||
|
}
|
||
|
M(i,d) = Sum;
|
||
|
}
|
||
|
RT Sum = 0;
|
||
|
RT hd = x.homogeneous(d-1);
|
||
|
M(d,0) = hd*hd;
|
||
|
for (int j = 0; j < d; j++) {
|
||
|
RT hj = x.homogeneous(j);
|
||
|
M(d,j + 1) = hj * hd;
|
||
|
Sum += hj*hj;
|
||
|
}
|
||
|
M(d,d) = Sum;
|
||
|
return CGAL::Sign(- LA::sign_of_determinant(M));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct Side_of_bounded_sphereHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::RT RT;
|
||
|
|
||
|
template <class ForwardIterator>
|
||
|
Bounded_side operator()(ForwardIterator first, ForwardIterator last,
|
||
|
const Point_d& p)
|
||
|
{
|
||
|
TUPLE_DIM_CHECK(first,last,region_of_sphere);
|
||
|
typename R::Orientation_d _orientation;
|
||
|
Orientation o = _orientation(first,last);
|
||
|
CGAL_assertion_msg((o != 0), "Side_of_bounded_sphere_d: \
|
||
|
A must be full dimensional.");
|
||
|
typename R::Side_of_oriented_sphere_d _side_of_oriented_sphere;
|
||
|
Oriented_side oside = _side_of_oriented_sphere(first,last,p);
|
||
|
if (o == POSITIVE) {
|
||
|
switch (oside) {
|
||
|
case ON_POSITIVE_SIDE : return ON_BOUNDED_SIDE;
|
||
|
case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY;
|
||
|
case ON_NEGATIVE_SIDE : return ON_UNBOUNDED_SIDE;
|
||
|
}
|
||
|
} else {
|
||
|
switch (oside) {
|
||
|
case ON_POSITIVE_SIDE : return ON_UNBOUNDED_SIDE;
|
||
|
case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY;
|
||
|
case ON_NEGATIVE_SIDE : return ON_BOUNDED_SIDE;
|
||
|
}
|
||
|
}
|
||
|
return ON_BOUNDARY; // never reached
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template <class R>
|
||
|
struct Contained_in_simplexHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::RT RT;
|
||
|
|
||
|
template <class ForwardIterator>
|
||
|
bool operator()(ForwardIterator first, ForwardIterator last,
|
||
|
const Point_d& p)
|
||
|
{
|
||
|
TUPLE_DIM_CHECK(first,last,Contained_in_simplex_d);
|
||
|
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
|
||
|
int d = first->dimension();
|
||
|
CGAL_assertion_code(
|
||
|
typename R::Affinely_independent_d check_independence; )
|
||
|
CGAL_assertion_msg(check_independence(first,last),
|
||
|
"Contained_in_simplex_d: A not affinely independent.");
|
||
|
CGAL_assertion(d==p.dimension());
|
||
|
|
||
|
typename LA::Matrix M(d + 1,k);
|
||
|
typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end());
|
||
|
for (int j = 0; j < k; ++first, ++j) {
|
||
|
for (int i = 0; i <= d; ++i)
|
||
|
M(i,j) = first->homogeneous(i);
|
||
|
}
|
||
|
|
||
|
RT D;
|
||
|
typename LA::Vector lambda;
|
||
|
if ( LA::linear_solver(M,b,lambda,D) ) {
|
||
|
int s = CGAL_NTS sign(D);
|
||
|
for (int j = 0; j < k; j++) {
|
||
|
int t = CGAL_NTS sign(lambda[j]);
|
||
|
if (s * t < 0) return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct Contained_in_affine_hullHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::RT RT;
|
||
|
|
||
|
template <class ForwardIterator>
|
||
|
bool operator()(ForwardIterator first, ForwardIterator last,
|
||
|
const Point_d& p)
|
||
|
{
|
||
|
TUPLE_DIM_CHECK(first,last,Contained_in_affine_hull_d);
|
||
|
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
|
||
|
int d = first->dimension();
|
||
|
typename LA::Matrix M(d + 1,k);
|
||
|
typename LA::Vector b(p.homogeneous_begin(),p.homogeneous_end());
|
||
|
for (int j = 0; j < k; ++first, ++j)
|
||
|
for (int i = 0; i <= d; ++i)
|
||
|
M(i,j) = first->homogeneous(i);
|
||
|
return LA::is_solvable(M,b);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template <class R>
|
||
|
struct Affine_rankHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::Vector_d Vector_d;
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::RT RT;
|
||
|
|
||
|
template <class ForwardIterator>
|
||
|
int operator()(ForwardIterator first, ForwardIterator last)
|
||
|
{
|
||
|
TUPLE_DIM_CHECK(first,last,Affine_rank_d);
|
||
|
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
|
||
|
if (k == 0) return -1;
|
||
|
if (k == 1) return 0;
|
||
|
int d = first->dimension();
|
||
|
typename LA::Matrix M(d,--k);
|
||
|
Point_d p0 = *first; ++first; // first points to second
|
||
|
for (int j = 0; j < k; ++first, ++j) {
|
||
|
Vector_d v = *first - p0;
|
||
|
for (int i = 0; i < d; i++)
|
||
|
M(i,j) = v.homogeneous(i);
|
||
|
}
|
||
|
return LA::rank(M);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct Affinely_independentHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::RT RT;
|
||
|
|
||
|
template <class ForwardIterator>
|
||
|
bool operator()(ForwardIterator first, ForwardIterator last)
|
||
|
{ typename R::Affine_rank_d rank;
|
||
|
int n = static_cast<int>(std::distance(first,last));
|
||
|
return rank(first,last) == n-1;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template <class R>
|
||
|
struct Compare_lexicographicallyHd {
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::Point_d PointD; //MSVC hack
|
||
|
Comparison_result operator()(const Point_d& p1, const Point_d& p2)
|
||
|
{ return PointD::cmp(p1,p2); }
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct Contained_in_linear_hullHd {
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::RT RT;
|
||
|
typedef typename R::Vector_d Vector_d;
|
||
|
|
||
|
template<class ForwardIterator>
|
||
|
bool operator()(
|
||
|
ForwardIterator first, ForwardIterator last, const Vector_d& x)
|
||
|
{ TUPLE_DIM_CHECK(first,last,Contained_in_linear_hull_d);
|
||
|
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| vectors
|
||
|
int d = first->dimension();
|
||
|
typename LA::Matrix M(d,k);
|
||
|
typename LA::Vector b(d);
|
||
|
for (int i = 0; i < d; i++) {
|
||
|
b[i] = x.homogeneous(i);
|
||
|
for (int j = 0; j < k; j++)
|
||
|
M(i,j) = (first+j)->homogeneous(i);
|
||
|
}
|
||
|
return LA::is_solvable(M,b);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct Linear_rankHd {
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::RT RT;
|
||
|
template <class ForwardIterator>
|
||
|
int operator()(ForwardIterator first, ForwardIterator last)
|
||
|
{ TUPLE_DIM_CHECK(first,last,linear_rank);
|
||
|
int k = static_cast<int>(std::distance(first,last)); // k vectors
|
||
|
int d = first->dimension();
|
||
|
typename LA::Matrix M(d,k);
|
||
|
for (int i = 0; i < d ; i++)
|
||
|
for (int j = 0; j < k; j++)
|
||
|
M(i,j) = (first + j)->homogeneous(i);
|
||
|
return LA::rank(M);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <class R>
|
||
|
struct Linearly_independentHd {
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::RT RT;
|
||
|
template <class ForwardIterator>
|
||
|
bool operator()(ForwardIterator first, ForwardIterator last)
|
||
|
{ typename R::Linear_rank_d rank;
|
||
|
return rank(first,last) == static_cast<int>(std::distance(first,last));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template <class R>
|
||
|
struct Linear_baseHd {
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::RT RT;
|
||
|
typedef typename R::Vector_d Vector_d;
|
||
|
template <class ForwardIterator, class OutputIterator>
|
||
|
OutputIterator operator()(ForwardIterator first, ForwardIterator last,
|
||
|
OutputIterator result)
|
||
|
{ TUPLE_DIM_CHECK(first,last,linear_base);
|
||
|
int k = static_cast<int>(std::distance(first,last)); // k vectors
|
||
|
int d = first->dimension();
|
||
|
typename LA::Matrix M(d,k);
|
||
|
for (int j = 0; j < k; j++)
|
||
|
for (int i = 0; i < d; i++)
|
||
|
M(i,j) = (first+j)->homogeneous(i);
|
||
|
|
||
|
std::vector<int> indcols;
|
||
|
int r = LA::independent_columns(M,indcols);
|
||
|
|
||
|
for (int l=0; l < r; l++) {
|
||
|
typename LA::Vector v = M.column(indcols[l]);
|
||
|
*result++ = Vector_d(d,v.begin(),v.end(),1);
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
#endif // CGAL_FUNCTION_OBJECTSHD_H
|