1229 lines
40 KiB
C
1229 lines
40 KiB
C
|
// Copyright (c) 2007-09 INRIA (France).
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org).
|
||
|
// You can redistribute it and/or modify it under the terms of the GNU
|
||
|
// General Public License as published by the Free Software Foundation,
|
||
|
// either version 3 of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: GPL-3.0+
|
||
|
//
|
||
|
// Author(s) : Laurent Saboret, Pierre Alliez
|
||
|
|
||
|
#ifndef CGAL_POISSON_RECONSTRUCTION_FUNCTION_H
|
||
|
#define CGAL_POISSON_RECONSTRUCTION_FUNCTION_H
|
||
|
|
||
|
#include <CGAL/license/Poisson_surface_reconstruction_3.h>
|
||
|
|
||
|
#include <CGAL/disable_warnings.h>
|
||
|
|
||
|
#ifndef CGAL_DIV_NORMALIZED
|
||
|
# ifndef CGAL_DIV_NON_NORMALIZED
|
||
|
# define CGAL_DIV_NON_NORMALIZED 1
|
||
|
# endif
|
||
|
#endif
|
||
|
|
||
|
#include <vector>
|
||
|
#include <deque>
|
||
|
#include <algorithm>
|
||
|
#include <cmath>
|
||
|
#include <iterator>
|
||
|
|
||
|
#include <CGAL/trace.h>
|
||
|
#include <CGAL/Reconstruction_triangulation_3.h>
|
||
|
#include <CGAL/spatial_sort.h>
|
||
|
#ifdef CGAL_EIGEN3_ENABLED
|
||
|
#include <CGAL/Eigen_solver_traits.h>
|
||
|
#else
|
||
|
#endif
|
||
|
#include <CGAL/centroid.h>
|
||
|
#include <CGAL/property_map.h>
|
||
|
#include <CGAL/surface_reconstruction_points_assertions.h>
|
||
|
#include <CGAL/poisson_refine_triangulation.h>
|
||
|
#include <CGAL/Robust_circumcenter_filtered_traits_3.h>
|
||
|
#include <CGAL/compute_average_spacing.h>
|
||
|
#include <CGAL/Timer.h>
|
||
|
|
||
|
#include <boost/shared_ptr.hpp>
|
||
|
#include <boost/array.hpp>
|
||
|
#include <boost/type_traits/is_convertible.hpp>
|
||
|
#include <boost/utility/enable_if.hpp>
|
||
|
|
||
|
/*!
|
||
|
\file Poisson_reconstruction_function.h
|
||
|
*/
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
namespace internal {
|
||
|
template <class RT>
|
||
|
bool
|
||
|
invert(
|
||
|
const RT& a0, const RT& a1, const RT& a2,
|
||
|
const RT& a3, const RT& a4, const RT& a5,
|
||
|
const RT& a6, const RT& a7, const RT& a8,
|
||
|
RT& i0, RT& i1, RT& i2,
|
||
|
RT& i3, RT& i4, RT& i5,
|
||
|
RT& i6, RT& i7, RT& i8)
|
||
|
{
|
||
|
// Compute the adjoint.
|
||
|
i0 = a4*a8 - a5*a7;
|
||
|
i1 = a2*a7 - a1*a8;
|
||
|
i2 = a1*a5 - a2*a4;
|
||
|
i3 = a5*a6 - a3*a8;
|
||
|
i4 = a0*a8 - a2*a6;
|
||
|
i5 = a2*a3 - a0*a5;
|
||
|
i6 = a3*a7 - a4*a6;
|
||
|
i7 = a1*a6 - a0*a7;
|
||
|
i8 = a0*a4 - a1*a3;
|
||
|
|
||
|
RT det = a0*i0 + a1*i3 + a2*i6;
|
||
|
|
||
|
if(det != 0) {
|
||
|
RT idet = (RT(1.0))/det;
|
||
|
i0 *= idet;
|
||
|
i1 *= idet;
|
||
|
i2 *= idet;
|
||
|
i3 *= idet;
|
||
|
i4 *= idet;
|
||
|
i5 *= idet;
|
||
|
i6 *= idet;
|
||
|
i7 *= idet;
|
||
|
i8 *= idet;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
/// \cond SKIP_IN_MANUAL
|
||
|
struct Poisson_visitor {
|
||
|
void before_insertion() const
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
struct Poisson_skip_vertices {
|
||
|
double ratio;
|
||
|
Random& m_random;
|
||
|
Poisson_skip_vertices(const double ratio, Random& random)
|
||
|
: ratio(ratio), m_random(random) {}
|
||
|
|
||
|
template <typename Iterator>
|
||
|
bool operator()(Iterator) const {
|
||
|
return m_random.get_double() < ratio;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Given f1 and f2, two sizing fields, that functor wrapper returns
|
||
|
// max(f1, f2*f2)
|
||
|
// The wrapper stores only pointers to the two functors.
|
||
|
template <typename F1, typename F2>
|
||
|
struct Special_wrapper_of_two_functions_keep_pointers {
|
||
|
F1 *f1;
|
||
|
F2 *f2;
|
||
|
Special_wrapper_of_two_functions_keep_pointers(F1* f1, F2* f2)
|
||
|
: f1(f1), f2(f2) {}
|
||
|
|
||
|
template <typename X>
|
||
|
double operator()(const X& x) const {
|
||
|
return (std::max)((*f1)(x), CGAL::square((*f2)(x)));
|
||
|
}
|
||
|
|
||
|
template <typename X>
|
||
|
double operator()(const X& x) {
|
||
|
return (std::max)((*f1)(x), CGAL::square((*f2)(x)));
|
||
|
}
|
||
|
}; // end struct Special_wrapper_of_two_functions_keep_pointers<F1, F2>
|
||
|
/// \endcond
|
||
|
|
||
|
|
||
|
/*!
|
||
|
\ingroup PkgPoissonSurfaceReconstruction
|
||
|
|
||
|
\brief Implementation of the Poisson Surface Reconstruction method.
|
||
|
|
||
|
Given a set of 3D points with oriented normals sampled on the boundary
|
||
|
of a 3D solid, the Poisson Surface Reconstruction method \cgalCite{Kazhdan06}
|
||
|
solves for an approximate indicator function of the inferred
|
||
|
solid, whose gradient best matches the input normals. The output
|
||
|
scalar function, represented in an adaptive octree, is then
|
||
|
iso-contoured using an adaptive marching cubes.
|
||
|
|
||
|
`Poisson_reconstruction_function` implements a variant of this
|
||
|
algorithm which solves for a piecewise linear function on a 3D
|
||
|
Delaunay triangulation instead of an adaptive octree.
|
||
|
|
||
|
\tparam Gt Geometric traits class.
|
||
|
|
||
|
\cgalModels `ImplicitFunction`
|
||
|
|
||
|
*/
|
||
|
template <class Gt>
|
||
|
class Poisson_reconstruction_function
|
||
|
{
|
||
|
// Public types
|
||
|
public:
|
||
|
|
||
|
/// \name Types
|
||
|
/// @{
|
||
|
|
||
|
typedef Gt Geom_traits; ///< Geometric traits class
|
||
|
/// \cond SKIP_IN_MANUAL
|
||
|
typedef Reconstruction_triangulation_3<Robust_circumcenter_filtered_traits_3<Gt> >
|
||
|
Triangulation;
|
||
|
/// \endcond
|
||
|
typedef typename Triangulation::Cell_handle Cell_handle;
|
||
|
|
||
|
// Geometric types
|
||
|
typedef typename Geom_traits::FT FT; ///< number type.
|
||
|
typedef typename Geom_traits::Point_3 Point; ///< point type.
|
||
|
typedef typename Geom_traits::Vector_3 Vector; ///< vector type.
|
||
|
typedef typename Geom_traits::Sphere_3 Sphere;
|
||
|
|
||
|
/// @}
|
||
|
|
||
|
// Private types
|
||
|
private:
|
||
|
|
||
|
// Internal 3D triangulation, of type Reconstruction_triangulation_3.
|
||
|
// Note: poisson_refine_triangulation() requires a robust circumcenter computation.
|
||
|
|
||
|
// Repeat Triangulation types
|
||
|
typedef typename Triangulation::Triangulation_data_structure Triangulation_data_structure;
|
||
|
typedef typename Geom_traits::Ray_3 Ray;
|
||
|
typedef typename Geom_traits::Plane_3 Plane;
|
||
|
typedef typename Geom_traits::Segment_3 Segment;
|
||
|
typedef typename Geom_traits::Triangle_3 Triangle;
|
||
|
typedef typename Geom_traits::Tetrahedron_3 Tetrahedron;
|
||
|
typedef typename Triangulation::Vertex_handle Vertex_handle;
|
||
|
typedef typename Triangulation::Cell Cell;
|
||
|
typedef typename Triangulation::Vertex Vertex;
|
||
|
typedef typename Triangulation::Facet Facet;
|
||
|
typedef typename Triangulation::Edge Edge;
|
||
|
typedef typename Triangulation::Cell_circulator Cell_circulator;
|
||
|
typedef typename Triangulation::Facet_circulator Facet_circulator;
|
||
|
typedef typename Triangulation::Cell_iterator Cell_iterator;
|
||
|
typedef typename Triangulation::Facet_iterator Facet_iterator;
|
||
|
typedef typename Triangulation::Edge_iterator Edge_iterator;
|
||
|
typedef typename Triangulation::Vertex_iterator Vertex_iterator;
|
||
|
typedef typename Triangulation::Point_iterator Point_iterator;
|
||
|
typedef typename Triangulation::Finite_vertices_iterator Finite_vertices_iterator;
|
||
|
typedef typename Triangulation::Finite_cells_iterator Finite_cells_iterator;
|
||
|
typedef typename Triangulation::Finite_facets_iterator Finite_facets_iterator;
|
||
|
typedef typename Triangulation::Finite_edges_iterator Finite_edges_iterator;
|
||
|
typedef typename Triangulation::All_cells_iterator All_cells_iterator;
|
||
|
typedef typename Triangulation::Locate_type Locate_type;
|
||
|
|
||
|
// Data members.
|
||
|
// Warning: the Surface Mesh Generation package makes copies of implicit functions,
|
||
|
// thus this class must be lightweight and stateless.
|
||
|
private:
|
||
|
|
||
|
// operator() is pre-computed on vertices of *m_tr by solving
|
||
|
// the Poisson equation Laplacian(f) = divergent(normals field).
|
||
|
boost::shared_ptr<Triangulation> m_tr;
|
||
|
|
||
|
mutable boost::shared_ptr<std::vector<boost::array<double,9> > > m_Bary;
|
||
|
mutable std::vector<Point> Dual;
|
||
|
mutable std::vector<Vector> Normal;
|
||
|
|
||
|
// contouring and meshing
|
||
|
Point m_sink; // Point with the minimum value of operator()
|
||
|
mutable Cell_handle m_hint; // last cell found = hint for next search
|
||
|
|
||
|
FT average_spacing;
|
||
|
|
||
|
|
||
|
/// function to be used for the different constructors available that are
|
||
|
/// doing the same thing but with default template parameters
|
||
|
template <typename InputIterator,
|
||
|
typename PointPMap,
|
||
|
typename NormalPMap,
|
||
|
typename Visitor
|
||
|
>
|
||
|
void forward_constructor(
|
||
|
InputIterator first,
|
||
|
InputIterator beyond,
|
||
|
PointPMap point_pmap,
|
||
|
NormalPMap normal_pmap,
|
||
|
Visitor visitor)
|
||
|
{
|
||
|
CGAL::Timer task_timer; task_timer.start();
|
||
|
CGAL_TRACE_STREAM << "Creates Poisson triangulation...\n";
|
||
|
|
||
|
// Inserts points in triangulation
|
||
|
m_tr->insert(
|
||
|
first,beyond,
|
||
|
point_pmap,
|
||
|
normal_pmap,
|
||
|
visitor);
|
||
|
|
||
|
// Prints status
|
||
|
CGAL_TRACE_STREAM << "Creates Poisson triangulation: " << task_timer.time() << " seconds, "
|
||
|
<< std::endl;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Public methods
|
||
|
public:
|
||
|
|
||
|
/// \name Creation
|
||
|
/// @{
|
||
|
|
||
|
|
||
|
/*!
|
||
|
Creates a Poisson implicit function from the range of points `[first, beyond)`.
|
||
|
|
||
|
\tparam InputIterator iterator over input points.
|
||
|
|
||
|
\tparam PointPMap is a model of `ReadablePropertyMap` with
|
||
|
a `value_type = Point`. It can be omitted if `InputIterator`
|
||
|
`value_type` is convertible to `Point`.
|
||
|
|
||
|
\tparam NormalPMap is a model of `ReadablePropertyMap`
|
||
|
with a `value_type = Vector`.
|
||
|
*/
|
||
|
template <typename InputIterator,
|
||
|
typename PointPMap,
|
||
|
typename NormalPMap
|
||
|
>
|
||
|
Poisson_reconstruction_function(
|
||
|
InputIterator first, ///< iterator over the first input point.
|
||
|
InputIterator beyond, ///< past-the-end iterator over the input points.
|
||
|
PointPMap point_pmap, ///< property map: `value_type of InputIterator` -> `Point` (the position of an input point).
|
||
|
NormalPMap normal_pmap ///< property map: `value_type of InputIterator` -> `Vector` (the *oriented* normal of an input point).
|
||
|
)
|
||
|
: m_tr(new Triangulation), m_Bary(new std::vector<boost::array<double,9> > )
|
||
|
, average_spacing(CGAL::compute_average_spacing<CGAL::Sequential_tag>
|
||
|
(CGAL::make_range(first, beyond), 6,
|
||
|
CGAL::parameters::point_map(point_pmap)))
|
||
|
{
|
||
|
forward_constructor(first, beyond, point_pmap, normal_pmap, Poisson_visitor());
|
||
|
}
|
||
|
|
||
|
/// \cond SKIP_IN_MANUAL
|
||
|
template <typename InputIterator,
|
||
|
typename PointPMap,
|
||
|
typename NormalPMap,
|
||
|
typename Visitor
|
||
|
>
|
||
|
Poisson_reconstruction_function(
|
||
|
InputIterator first, ///< iterator over the first input point.
|
||
|
InputIterator beyond, ///< past-the-end iterator over the input points.
|
||
|
PointPMap point_pmap, ///< property map: `value_type of InputIterator` -> `Point` (the position of an input point).
|
||
|
NormalPMap normal_pmap, ///< property map: `value_type of InputIterator` -> `Vector` (the *oriented* normal of an input point).
|
||
|
Visitor visitor)
|
||
|
: m_tr(new Triangulation), m_Bary(new std::vector<boost::array<double,9> > )
|
||
|
, average_spacing(CGAL::compute_average_spacing<CGAL::Sequential_tag>(CGAL::make_range(first, beyond), 6,
|
||
|
CGAL::parameters::point_map(point_pmap)))
|
||
|
{
|
||
|
forward_constructor(first, beyond, point_pmap, normal_pmap, visitor);
|
||
|
}
|
||
|
|
||
|
// This variant creates a default point property map = Identity_property_map and Visitor=Poisson_visitor
|
||
|
template <typename InputIterator,
|
||
|
typename NormalPMap
|
||
|
>
|
||
|
Poisson_reconstruction_function(
|
||
|
InputIterator first, ///< iterator over the first input point.
|
||
|
InputIterator beyond, ///< past-the-end iterator over the input points.
|
||
|
NormalPMap normal_pmap, ///< property map: `value_type of InputIterator` -> `Vector` (the *oriented* normal of an input point).
|
||
|
typename boost::enable_if<
|
||
|
boost::is_convertible<typename std::iterator_traits<InputIterator>::value_type, Point>
|
||
|
>::type* = 0
|
||
|
)
|
||
|
: m_tr(new Triangulation), m_Bary(new std::vector<boost::array<double,9> > )
|
||
|
, average_spacing(CGAL::compute_average_spacing<CGAL::Sequential_tag>(CGAL::make_range(first, beyond), 6))
|
||
|
{
|
||
|
forward_constructor(first, beyond,
|
||
|
make_identity_property_map(
|
||
|
typename std::iterator_traits<InputIterator>::value_type()),
|
||
|
normal_pmap, Poisson_visitor());
|
||
|
CGAL::Timer task_timer; task_timer.start();
|
||
|
}
|
||
|
/// \endcond
|
||
|
|
||
|
/// @}
|
||
|
|
||
|
/// \name Operations
|
||
|
/// @{
|
||
|
|
||
|
/// Returns a sphere bounding the inferred surface.
|
||
|
Sphere bounding_sphere() const
|
||
|
{
|
||
|
return m_tr->bounding_sphere();
|
||
|
}
|
||
|
|
||
|
/// \cond SKIP_IN_MANUAL
|
||
|
const Triangulation& tr() const {
|
||
|
return *m_tr;
|
||
|
}
|
||
|
|
||
|
// This variant requires all parameters.
|
||
|
template <class SparseLinearAlgebraTraits_d,
|
||
|
class Visitor>
|
||
|
bool compute_implicit_function(
|
||
|
SparseLinearAlgebraTraits_d solver,// = SparseLinearAlgebraTraits_d(),
|
||
|
Visitor visitor,
|
||
|
double approximation_ratio = 0,
|
||
|
double average_spacing_ratio = 5)
|
||
|
{
|
||
|
CGAL::Timer task_timer; task_timer.start();
|
||
|
CGAL_TRACE_STREAM << "Delaunay refinement...\n";
|
||
|
|
||
|
// Delaunay refinement
|
||
|
const FT radius_edge_ratio_bound = 2.5;
|
||
|
const unsigned int max_vertices = (unsigned int)1e7; // max 10M vertices
|
||
|
const FT enlarge_ratio = 1.5;
|
||
|
const FT radius = sqrt(bounding_sphere().squared_radius()); // get triangulation's radius
|
||
|
const FT cell_radius_bound = radius/5.; // large
|
||
|
|
||
|
internal::Poisson::Constant_sizing_field<Triangulation> sizing_field(CGAL::square(cell_radius_bound));
|
||
|
|
||
|
std::vector<int> NB;
|
||
|
|
||
|
NB.push_back( delaunay_refinement(radius_edge_ratio_bound,sizing_field,max_vertices,enlarge_ratio));
|
||
|
|
||
|
while(m_tr->insert_fraction(visitor)){
|
||
|
|
||
|
NB.push_back( delaunay_refinement(radius_edge_ratio_bound,sizing_field,max_vertices,enlarge_ratio));
|
||
|
}
|
||
|
|
||
|
if(approximation_ratio > 0. &&
|
||
|
approximation_ratio * std::distance(m_tr->input_points_begin(),
|
||
|
m_tr->input_points_end()) > 20) {
|
||
|
|
||
|
// Add a pass of Delaunay refinement.
|
||
|
//
|
||
|
// In that pass, the sizing field, of the refinement process of the
|
||
|
// triangulation, is based on the result of a poisson function with a
|
||
|
// sample of the input points. The ratio is 'approximation_ratio'.
|
||
|
//
|
||
|
// For optimization reasons, the cell criteria of the refinement
|
||
|
// process uses two sizing fields:
|
||
|
//
|
||
|
// - the minimum of the square of 'coarse_poisson_function' and the
|
||
|
// square of the constant field equal to 'average_spacing',
|
||
|
//
|
||
|
// - a second sizing field that is constant, and equal to:
|
||
|
//
|
||
|
// average_spacing*average_spacing_ratio
|
||
|
//
|
||
|
// If a given cell is smaller than the constant second sizing field,
|
||
|
// then the cell is considered as small enough, and the first sizing
|
||
|
// field, more costly, is not evaluated.
|
||
|
|
||
|
typedef Filter_iterator<typename Triangulation::Input_point_iterator,
|
||
|
Poisson_skip_vertices> Some_points_iterator;
|
||
|
//make it deterministic
|
||
|
Random random(0);
|
||
|
Poisson_skip_vertices skip(1.-approximation_ratio,random);
|
||
|
|
||
|
CGAL_TRACE_STREAM << "SPECIAL PASS that uses an approximation of the result (approximation ratio: "
|
||
|
<< approximation_ratio << ")" << std::endl;
|
||
|
CGAL::Timer approximation_timer; approximation_timer.start();
|
||
|
|
||
|
CGAL::Timer sizing_field_timer; sizing_field_timer.start();
|
||
|
Poisson_reconstruction_function<Geom_traits>
|
||
|
coarse_poisson_function(Some_points_iterator(m_tr->input_points_end(),
|
||
|
skip,
|
||
|
m_tr->input_points_begin()),
|
||
|
Some_points_iterator(m_tr->input_points_end(),
|
||
|
skip),
|
||
|
Normal_of_point_with_normal_map<Geom_traits>() );
|
||
|
coarse_poisson_function.compute_implicit_function(solver, Poisson_visitor(),
|
||
|
0.);
|
||
|
internal::Poisson::Constant_sizing_field<Triangulation>
|
||
|
min_sizing_field(CGAL::square(average_spacing));
|
||
|
internal::Poisson::Constant_sizing_field<Triangulation>
|
||
|
sizing_field_ok(CGAL::square(average_spacing*average_spacing_ratio));
|
||
|
|
||
|
Special_wrapper_of_two_functions_keep_pointers<
|
||
|
internal::Poisson::Constant_sizing_field<Triangulation>,
|
||
|
Poisson_reconstruction_function<Geom_traits> > sizing_field2(&min_sizing_field,
|
||
|
&coarse_poisson_function);
|
||
|
|
||
|
sizing_field_timer.stop();
|
||
|
std::cerr << "Construction time of the sizing field: " << sizing_field_timer.time()
|
||
|
<< " seconds" << std::endl;
|
||
|
|
||
|
NB.push_back( delaunay_refinement(radius_edge_ratio_bound,
|
||
|
sizing_field2,
|
||
|
max_vertices,
|
||
|
enlarge_ratio,
|
||
|
sizing_field_ok) );
|
||
|
approximation_timer.stop();
|
||
|
CGAL_TRACE_STREAM << "SPECIAL PASS END (" << approximation_timer.time() << " seconds)" << std::endl;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Prints status
|
||
|
CGAL_TRACE_STREAM << "Delaunay refinement: " << "added ";
|
||
|
for(std::size_t i = 0; i < NB.size()-1; i++){
|
||
|
CGAL_TRACE_STREAM << NB[i] << " + ";
|
||
|
}
|
||
|
CGAL_TRACE_STREAM << NB.back() << " Steiner points, "
|
||
|
<< task_timer.time() << " seconds, "
|
||
|
<< std::endl;
|
||
|
task_timer.reset();
|
||
|
|
||
|
#ifdef CGAL_DIV_NON_NORMALIZED
|
||
|
CGAL_TRACE_STREAM << "Solve Poisson equation with non-normalized divergence...\n";
|
||
|
#else
|
||
|
CGAL_TRACE_STREAM << "Solve Poisson equation with normalized divergence...\n";
|
||
|
#endif
|
||
|
|
||
|
// Computes the Poisson indicator function operator()
|
||
|
// at each vertex of the triangulation.
|
||
|
double lambda = 0.1;
|
||
|
if ( ! solve_poisson(solver, lambda) )
|
||
|
{
|
||
|
std::cerr << "Error: cannot solve Poisson equation" << std::endl;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Shift and orient operator() such that:
|
||
|
// - operator() = 0 on the input points,
|
||
|
// - operator() < 0 inside the surface.
|
||
|
set_contouring_value(median_value_at_input_vertices());
|
||
|
|
||
|
// Prints status
|
||
|
CGAL_TRACE_STREAM << "Solve Poisson equation: " << task_timer.time() << " seconds, "
|
||
|
<< std::endl;
|
||
|
task_timer.reset();
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
/// \endcond
|
||
|
|
||
|
/*!
|
||
|
This function must be called after the
|
||
|
insertion of oriented points. It computes the piecewise linear scalar
|
||
|
function operator() by: applying Delaunay refinement, solving for
|
||
|
operator() at each vertex of the triangulation with a sparse linear
|
||
|
solver, and shifting and orienting operator() such that it is 0 at all
|
||
|
input points and negative inside the inferred surface.
|
||
|
|
||
|
\tparam SparseLinearAlgebraTraits_d Symmetric definite positive sparse linear solver.
|
||
|
If \ref thirdpartyEigen "Eigen" 3.1 (or greater) is available and `CGAL_EIGEN3_ENABLED`
|
||
|
is defined, an overload with \link Eigen_solver_traits <tt>Eigen_solver_traits<Eigen::ConjugateGradient<Eigen_sparse_symmetric_matrix<double>::EigenType> ></tt> \endlink
|
||
|
as default solver is provided.
|
||
|
|
||
|
\param solver sparse linear solver.
|
||
|
\param smoother_hole_filling controls if the Delaunay refinement is done for the input points, or for an approximation of the surface obtained from a first pass of the algorithm on a sample of the points.
|
||
|
|
||
|
\return `false` if the linear solver fails.
|
||
|
*/
|
||
|
template <class SparseLinearAlgebraTraits_d>
|
||
|
bool compute_implicit_function(SparseLinearAlgebraTraits_d solver, bool smoother_hole_filling = false)
|
||
|
{
|
||
|
if (smoother_hole_filling)
|
||
|
return compute_implicit_function<SparseLinearAlgebraTraits_d,Poisson_visitor>(solver,Poisson_visitor(),0.02,5);
|
||
|
else
|
||
|
return compute_implicit_function<SparseLinearAlgebraTraits_d,Poisson_visitor>(solver,Poisson_visitor());
|
||
|
}
|
||
|
|
||
|
/// \cond SKIP_IN_MANUAL
|
||
|
#ifdef CGAL_EIGEN3_ENABLED
|
||
|
// This variant provides the default sparse linear traits class = Eigen_solver_traits.
|
||
|
bool compute_implicit_function(bool smoother_hole_filling = false)
|
||
|
{
|
||
|
typedef Eigen_solver_traits<Eigen::ConjugateGradient<Eigen_sparse_symmetric_matrix<double>::EigenType> > Solver;
|
||
|
return compute_implicit_function<Solver>(Solver(), smoother_hole_filling);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
boost::tuple<FT, Cell_handle, bool> special_func(const Point& p) const
|
||
|
{
|
||
|
m_hint = m_tr->locate(p ,m_hint ); // no hint when we use hierarchy
|
||
|
|
||
|
if(m_tr->is_infinite(m_hint)) {
|
||
|
int i = m_hint->index(m_tr->infinite_vertex());
|
||
|
return boost::make_tuple(m_hint->vertex((i+1)&3)->f(),
|
||
|
m_hint, true);
|
||
|
}
|
||
|
|
||
|
FT a,b,c,d;
|
||
|
barycentric_coordinates(p,m_hint,a,b,c,d);
|
||
|
return boost::make_tuple(a * m_hint->vertex(0)->f() +
|
||
|
b * m_hint->vertex(1)->f() +
|
||
|
c * m_hint->vertex(2)->f() +
|
||
|
d * m_hint->vertex(3)->f(),
|
||
|
m_hint, false);
|
||
|
}
|
||
|
/// \endcond
|
||
|
|
||
|
/*!
|
||
|
`ImplicitFunction` interface: evaluates the implicit function at a
|
||
|
given 3D query point. The function `compute_implicit_function()` must be
|
||
|
called before the first call to `operator()`.
|
||
|
*/
|
||
|
FT operator()(const Point& p) const
|
||
|
{
|
||
|
m_hint = m_tr->locate(p ,m_hint);
|
||
|
|
||
|
if(m_tr->is_infinite(m_hint)) {
|
||
|
int i = m_hint->index(m_tr->infinite_vertex());
|
||
|
return m_hint->vertex((i+1)&3)->f();
|
||
|
}
|
||
|
|
||
|
FT a,b,c,d;
|
||
|
barycentric_coordinates(p,m_hint,a,b,c,d);
|
||
|
return a * m_hint->vertex(0)->f() +
|
||
|
b * m_hint->vertex(1)->f() +
|
||
|
c * m_hint->vertex(2)->f() +
|
||
|
d * m_hint->vertex(3)->f();
|
||
|
}
|
||
|
|
||
|
/// \cond SKIP_IN_MANUAL
|
||
|
void initialize_cell_indices()
|
||
|
{
|
||
|
int i=0;
|
||
|
for(Finite_cells_iterator fcit = m_tr->finite_cells_begin();
|
||
|
fcit != m_tr->finite_cells_end();
|
||
|
++fcit){
|
||
|
fcit->info()= i++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void initialize_barycenters() const
|
||
|
{
|
||
|
m_Bary->resize(m_tr->number_of_cells());
|
||
|
|
||
|
for(std::size_t i=0; i< m_Bary->size();i++){
|
||
|
(*m_Bary)[i][0]=-1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void initialize_cell_normals() const
|
||
|
{
|
||
|
Normal.resize(m_tr->number_of_cells());
|
||
|
int i = 0;
|
||
|
int N = 0;
|
||
|
for(Finite_cells_iterator fcit = m_tr->finite_cells_begin();
|
||
|
fcit != m_tr->finite_cells_end();
|
||
|
++fcit){
|
||
|
Normal[i] = cell_normal(fcit);
|
||
|
if(Normal[i] == NULL_VECTOR){
|
||
|
N++;
|
||
|
}
|
||
|
++i;
|
||
|
}
|
||
|
std::cerr << N << " out of " << i << " cells have NULL_VECTOR as normal" << std::endl;
|
||
|
}
|
||
|
|
||
|
void initialize_duals() const
|
||
|
{
|
||
|
Dual.resize(m_tr->number_of_cells());
|
||
|
int i = 0;
|
||
|
for(Finite_cells_iterator fcit = m_tr->finite_cells_begin();
|
||
|
fcit != m_tr->finite_cells_end();
|
||
|
++fcit){
|
||
|
Dual[i++] = m_tr->dual(fcit);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void clear_duals() const
|
||
|
{
|
||
|
Dual.clear();
|
||
|
}
|
||
|
|
||
|
void clear_normals() const
|
||
|
{
|
||
|
Normal.clear();
|
||
|
}
|
||
|
|
||
|
void initialize_matrix_entry(Cell_handle ch) const
|
||
|
{
|
||
|
boost::array<double,9> & entry = (*m_Bary)[ch->info()];
|
||
|
const Point& pa = ch->vertex(0)->point();
|
||
|
const Point& pb = ch->vertex(1)->point();
|
||
|
const Point& pc = ch->vertex(2)->point();
|
||
|
const Point& pd = ch->vertex(3)->point();
|
||
|
|
||
|
Vector va = pa - pd;
|
||
|
Vector vb = pb - pd;
|
||
|
Vector vc = pc - pd;
|
||
|
|
||
|
internal::invert(va.x(), va.y(), va.z(),
|
||
|
vb.x(), vb.y(), vb.z(),
|
||
|
vc.x(), vc.y(), vc.z(),
|
||
|
entry[0],entry[1],entry[2],entry[3],entry[4],entry[5],entry[6],entry[7],entry[8]);
|
||
|
}
|
||
|
/// \endcond
|
||
|
|
||
|
/// Returns a point located inside the inferred surface.
|
||
|
Point get_inner_point() const
|
||
|
{
|
||
|
// Gets point / the implicit function is minimum
|
||
|
return m_sink;
|
||
|
}
|
||
|
|
||
|
/// @}
|
||
|
|
||
|
// Private methods:
|
||
|
private:
|
||
|
|
||
|
/// Delaunay refinement (break bad tetrahedra, where
|
||
|
/// bad means badly shaped or too big). The normal of
|
||
|
/// Steiner points is set to zero.
|
||
|
/// Returns the number of vertices inserted.
|
||
|
|
||
|
template <typename Sizing_field>
|
||
|
unsigned int delaunay_refinement(FT radius_edge_ratio_bound, ///< radius edge ratio bound (ignored if zero)
|
||
|
Sizing_field sizing_field, ///< cell radius bound (ignored if zero)
|
||
|
unsigned int max_vertices, ///< number of vertices bound
|
||
|
FT enlarge_ratio) ///< bounding box enlarge ratio
|
||
|
{
|
||
|
return delaunay_refinement(radius_edge_ratio_bound,
|
||
|
sizing_field,
|
||
|
max_vertices,
|
||
|
enlarge_ratio,
|
||
|
internal::Poisson::Constant_sizing_field<Triangulation>());
|
||
|
}
|
||
|
|
||
|
template <typename Sizing_field,
|
||
|
typename Second_sizing_field>
|
||
|
unsigned int delaunay_refinement(FT radius_edge_ratio_bound, ///< radius edge ratio bound (ignored if zero)
|
||
|
Sizing_field sizing_field, ///< cell radius bound (ignored if zero)
|
||
|
unsigned int max_vertices, ///< number of vertices bound
|
||
|
FT enlarge_ratio, ///< bounding box enlarge ratio
|
||
|
Second_sizing_field second_sizing_field)
|
||
|
{
|
||
|
Sphere elarged_bsphere = enlarged_bounding_sphere(enlarge_ratio);
|
||
|
unsigned int nb_vertices_added = poisson_refine_triangulation(*m_tr,radius_edge_ratio_bound,sizing_field,second_sizing_field,max_vertices,elarged_bsphere);
|
||
|
|
||
|
return nb_vertices_added;
|
||
|
}
|
||
|
|
||
|
/// Poisson reconstruction.
|
||
|
/// Returns false on error.
|
||
|
///
|
||
|
/// @commentheading Template parameters:
|
||
|
/// @param SparseLinearAlgebraTraits_d Symmetric definite positive sparse linear solver.
|
||
|
template <class SparseLinearAlgebraTraits_d>
|
||
|
bool solve_poisson(
|
||
|
SparseLinearAlgebraTraits_d solver, ///< sparse linear solver
|
||
|
double lambda)
|
||
|
{
|
||
|
CGAL_TRACE("Calls solve_poisson()\n");
|
||
|
|
||
|
double time_init = clock();
|
||
|
|
||
|
double duration_assembly = 0.0;
|
||
|
double duration_solve = 0.0;
|
||
|
|
||
|
|
||
|
initialize_cell_indices();
|
||
|
initialize_barycenters();
|
||
|
|
||
|
// get #variables
|
||
|
constrain_one_vertex_on_convex_hull();
|
||
|
m_tr->index_unconstrained_vertices();
|
||
|
unsigned int nb_variables = static_cast<unsigned int>(m_tr->number_of_vertices()-1);
|
||
|
|
||
|
CGAL_TRACE(" Number of variables: %ld\n", (long)(nb_variables));
|
||
|
|
||
|
// Assemble linear system A*X=B
|
||
|
typename SparseLinearAlgebraTraits_d::Matrix A(nb_variables); // matrix is symmetric definite positive
|
||
|
typename SparseLinearAlgebraTraits_d::Vector X(nb_variables), B(nb_variables);
|
||
|
|
||
|
initialize_duals();
|
||
|
#ifndef CGAL_DIV_NON_NORMALIZED
|
||
|
initialize_cell_normals();
|
||
|
#endif
|
||
|
Finite_vertices_iterator v, e;
|
||
|
for(v = m_tr->finite_vertices_begin(),
|
||
|
e = m_tr->finite_vertices_end();
|
||
|
v != e;
|
||
|
++v)
|
||
|
{
|
||
|
if(!m_tr->is_constrained(v)) {
|
||
|
#ifdef CGAL_DIV_NON_NORMALIZED
|
||
|
B[v->index()] = div(v); // rhs -> divergent
|
||
|
#else // not defined(CGAL_DIV_NORMALIZED)
|
||
|
B[v->index()] = div_normalized(v); // rhs -> divergent
|
||
|
#endif // not defined(CGAL_DIV_NORMALIZED)
|
||
|
assemble_poisson_row<SparseLinearAlgebraTraits_d>(A,v,B,lambda);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
clear_duals();
|
||
|
clear_normals();
|
||
|
duration_assembly = (clock() - time_init)/CLOCKS_PER_SEC;
|
||
|
CGAL_TRACE(" Creates matrix: done (%.2lf s)\n", duration_assembly);
|
||
|
|
||
|
CGAL_TRACE(" Solve sparse linear system...\n");
|
||
|
|
||
|
// Solve "A*X = B". On success, solution is (1/D) * X.
|
||
|
time_init = clock();
|
||
|
double D;
|
||
|
if(!solver.linear_solver(A, B, X, D))
|
||
|
return false;
|
||
|
CGAL_surface_reconstruction_points_assertion(D == 1.0);
|
||
|
duration_solve = (clock() - time_init)/CLOCKS_PER_SEC;
|
||
|
|
||
|
CGAL_TRACE(" Solve sparse linear system: done (%.2lf s)\n", duration_solve);
|
||
|
|
||
|
// copy function's values to vertices
|
||
|
unsigned int index = 0;
|
||
|
for (v = m_tr->finite_vertices_begin(), e = m_tr->finite_vertices_end(); v!= e; ++v)
|
||
|
if(!m_tr->is_constrained(v))
|
||
|
v->f() = X[index++];
|
||
|
|
||
|
CGAL_TRACE("End of solve_poisson()\n");
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// Shift and orient the implicit function such that:
|
||
|
/// - the implicit function = 0 for points / f() = contouring_value,
|
||
|
/// - the implicit function < 0 inside the surface.
|
||
|
///
|
||
|
/// Returns the minimum value of the implicit function.
|
||
|
FT set_contouring_value(FT contouring_value)
|
||
|
{
|
||
|
// median value set to 0.0
|
||
|
shift_f(-contouring_value);
|
||
|
|
||
|
// Check value on convex hull (should be positive): if more than
|
||
|
// half the vertices of the convex hull are negative, we flip the
|
||
|
// sign (this is particularly useful if the surface is open, then
|
||
|
// it is closed using the smallest part of the sphere).
|
||
|
std::vector<Vertex_handle> convex_hull;
|
||
|
m_tr->adjacent_vertices (m_tr->infinite_vertex (),
|
||
|
std::back_inserter (convex_hull));
|
||
|
unsigned int nb_negative = 0;
|
||
|
for (std::size_t i = 0; i < convex_hull.size (); ++ i)
|
||
|
if (convex_hull[i]->f() < 0.0)
|
||
|
++ nb_negative;
|
||
|
|
||
|
if(nb_negative > convex_hull.size () / 2)
|
||
|
flip_f();
|
||
|
|
||
|
// Update m_sink
|
||
|
FT sink_value = find_sink();
|
||
|
return sink_value;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Gets median value of the implicit function over input vertices.
|
||
|
FT median_value_at_input_vertices() const
|
||
|
{
|
||
|
std::deque<FT> values;
|
||
|
Finite_vertices_iterator v, e;
|
||
|
for(v = m_tr->finite_vertices_begin(),
|
||
|
e= m_tr->finite_vertices_end();
|
||
|
v != e;
|
||
|
v++)
|
||
|
if(v->type() == Triangulation::INPUT)
|
||
|
values.push_back(v->f());
|
||
|
|
||
|
std::size_t size = values.size();
|
||
|
if(size == 0)
|
||
|
{
|
||
|
std::cerr << "Contouring: no input points\n";
|
||
|
return 0.0;
|
||
|
}
|
||
|
|
||
|
std::sort(values.begin(),values.end());
|
||
|
std::size_t index = size/2;
|
||
|
// return values[size/2];
|
||
|
return 0.5 * (values[index] + values[index+1]); // avoids singular cases
|
||
|
}
|
||
|
|
||
|
void barycentric_coordinates(const Point& p,
|
||
|
Cell_handle cell,
|
||
|
FT& a,
|
||
|
FT& b,
|
||
|
FT& c,
|
||
|
FT& d) const
|
||
|
{
|
||
|
|
||
|
// const Point& pa = cell->vertex(0)->point();
|
||
|
// const Point& pb = cell->vertex(1)->point();
|
||
|
// const Point& pc = cell->vertex(2)->point();
|
||
|
const Point& pd = cell->vertex(3)->point();
|
||
|
#if 1
|
||
|
//Vector va = pa - pd;
|
||
|
//Vector vb = pb - pd;
|
||
|
//Vector vc = pc - pd;
|
||
|
Vector vp = p - pd;
|
||
|
|
||
|
//FT i00, i01, i02, i10, i11, i12, i20, i21, i22;
|
||
|
//internal::invert(va.x(), va.y(), va.z(),
|
||
|
// vb.x(), vb.y(), vb.z(),
|
||
|
// vc.x(), vc.y(), vc.z(),
|
||
|
// i00, i01, i02, i10, i11, i12, i20, i21, i22);
|
||
|
const boost::array<double,9> & i = (*m_Bary)[cell->info()];
|
||
|
if(i[0]==-1){
|
||
|
initialize_matrix_entry(cell);
|
||
|
}
|
||
|
// UsedBary[cell->info()] = true;
|
||
|
a = i[0] * vp.x() + i[3] * vp.y() + i[6] * vp.z();
|
||
|
b = i[1] * vp.x() + i[4] * vp.y() + i[7] * vp.z();
|
||
|
c = i[2] * vp.x() + i[5] * vp.y() + i[8] * vp.z();
|
||
|
d = 1 - ( a + b + c);
|
||
|
#else
|
||
|
FT v = volume(pa,pb,pc,pd);
|
||
|
a = std::fabs(volume(pb,pc,pd,p) / v);
|
||
|
b = std::fabs(volume(pa,pc,pd,p) / v);
|
||
|
c = std::fabs(volume(pb,pa,pd,p) / v);
|
||
|
d = std::fabs(volume(pb,pc,pa,p) / v);
|
||
|
|
||
|
std::cerr << "_________________________________\n";
|
||
|
std::cerr << aa << " " << bb << " " << cc << " " << dd << std::endl;
|
||
|
std::cerr << a << " " << b << " " << c << " " << d << std::endl;
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
FT find_sink()
|
||
|
{
|
||
|
m_sink = CGAL::ORIGIN;
|
||
|
FT min_f = 1e38;
|
||
|
Finite_vertices_iterator v, e;
|
||
|
for(v = m_tr->finite_vertices_begin(),
|
||
|
e= m_tr->finite_vertices_end();
|
||
|
v != e;
|
||
|
v++)
|
||
|
{
|
||
|
if(v->f() < min_f)
|
||
|
{
|
||
|
m_sink = v->point();
|
||
|
min_f = v->f();
|
||
|
}
|
||
|
}
|
||
|
return min_f;
|
||
|
}
|
||
|
|
||
|
void shift_f(const FT shift)
|
||
|
{
|
||
|
Finite_vertices_iterator v, e;
|
||
|
for(v = m_tr->finite_vertices_begin(),
|
||
|
e = m_tr->finite_vertices_end();
|
||
|
v!= e;
|
||
|
v++)
|
||
|
v->f() += shift;
|
||
|
}
|
||
|
|
||
|
void flip_f()
|
||
|
{
|
||
|
Finite_vertices_iterator v, e;
|
||
|
for(v = m_tr->finite_vertices_begin(),
|
||
|
e = m_tr->finite_vertices_end();
|
||
|
v != e;
|
||
|
v++)
|
||
|
v->f() = -v->f();
|
||
|
}
|
||
|
|
||
|
Vertex_handle any_vertex_on_convex_hull()
|
||
|
{
|
||
|
Cell_handle ch = m_tr->infinite_vertex()->cell();
|
||
|
return ch->vertex( (ch->index( m_tr->infinite_vertex())+1)%4);
|
||
|
}
|
||
|
|
||
|
|
||
|
void constrain_one_vertex_on_convex_hull(const FT value = 0.0)
|
||
|
{
|
||
|
Vertex_handle v = any_vertex_on_convex_hull();
|
||
|
m_tr->constrain(v);
|
||
|
v->f() = value;
|
||
|
}
|
||
|
|
||
|
// TODO: Some entities are computed too often
|
||
|
// - nn and area should not be computed for the face and its opposite face
|
||
|
//
|
||
|
// divergent
|
||
|
FT div_normalized(Vertex_handle v)
|
||
|
{
|
||
|
std::vector<Cell_handle> cells;
|
||
|
cells.reserve(32);
|
||
|
m_tr->incident_cells(v,std::back_inserter(cells));
|
||
|
|
||
|
FT div = 0;
|
||
|
typename std::vector<Cell_handle>::iterator it;
|
||
|
for(it = cells.begin(); it != cells.end(); it++)
|
||
|
{
|
||
|
Cell_handle cell = *it;
|
||
|
if(m_tr->is_infinite(cell))
|
||
|
continue;
|
||
|
|
||
|
// compute average normal per cell
|
||
|
Vector n = get_cell_normal(cell);
|
||
|
|
||
|
// zero normal - no need to compute anything else
|
||
|
if(n == CGAL::NULL_VECTOR)
|
||
|
continue;
|
||
|
|
||
|
|
||
|
// compute n'
|
||
|
int index = cell->index(v);
|
||
|
const Point& x = cell->vertex(index)->point();
|
||
|
const Point& a = cell->vertex((index+1)%4)->point();
|
||
|
const Point& b = cell->vertex((index+2)%4)->point();
|
||
|
const Point& c = cell->vertex((index+3)%4)->point();
|
||
|
Vector nn = (index%2==0) ? CGAL::cross_product(b-a,c-a) : CGAL::cross_product(c-a,b-a);
|
||
|
nn = nn / std::sqrt(nn*nn); // normalize
|
||
|
Vector p = a - x;
|
||
|
Vector q = b - x;
|
||
|
Vector r = c - x;
|
||
|
FT p_n = std::sqrt(p*p);
|
||
|
FT q_n = std::sqrt(q*q);
|
||
|
FT r_n = std::sqrt(r*r);
|
||
|
FT solid_angle = p*(CGAL::cross_product(q,r));
|
||
|
solid_angle = std::abs(solid_angle / (p_n*q_n*r_n + (p*q)*r_n + (q*r)*p_n + (r*p)*q_n));
|
||
|
|
||
|
FT area = std::sqrt(squared_area(a,b,c));
|
||
|
FT length = p_n + q_n + r_n;
|
||
|
div += n * nn * area / length ;
|
||
|
}
|
||
|
return div * FT(3.0);
|
||
|
}
|
||
|
|
||
|
FT div(Vertex_handle v)
|
||
|
{
|
||
|
std::vector<Cell_handle> cells;
|
||
|
cells.reserve(32);
|
||
|
m_tr->incident_cells(v,std::back_inserter(cells));
|
||
|
|
||
|
FT div = 0.0;
|
||
|
typename std::vector<Cell_handle>::iterator it;
|
||
|
for(it = cells.begin(); it != cells.end(); it++)
|
||
|
{
|
||
|
Cell_handle cell = *it;
|
||
|
if(m_tr->is_infinite(cell))
|
||
|
continue;
|
||
|
|
||
|
const int index = cell->index(v);
|
||
|
const Point& a = cell->vertex(m_tr->vertex_triple_index(index, 0))->point();
|
||
|
const Point& b = cell->vertex(m_tr->vertex_triple_index(index, 1))->point();
|
||
|
const Point& c = cell->vertex(m_tr->vertex_triple_index(index, 2))->point();
|
||
|
const Vector nn = CGAL::cross_product(b-a,c-a);
|
||
|
|
||
|
div+= nn * (//v->normal() +
|
||
|
cell->vertex((index+1)%4)->normal() +
|
||
|
cell->vertex((index+2)%4)->normal() +
|
||
|
cell->vertex((index+3)%4)->normal());
|
||
|
}
|
||
|
return div;
|
||
|
}
|
||
|
|
||
|
Vector get_cell_normal(Cell_handle cell)
|
||
|
{
|
||
|
return Normal[cell->info()];
|
||
|
}
|
||
|
|
||
|
Vector cell_normal(Cell_handle cell) const
|
||
|
{
|
||
|
const Vector& n0 = cell->vertex(0)->normal();
|
||
|
const Vector& n1 = cell->vertex(1)->normal();
|
||
|
const Vector& n2 = cell->vertex(2)->normal();
|
||
|
const Vector& n3 = cell->vertex(3)->normal();
|
||
|
Vector n = n0 + n1 + n2 + n3;
|
||
|
if(n != NULL_VECTOR){
|
||
|
FT sq_norm = n*n;
|
||
|
if(sq_norm != 0.0){
|
||
|
return n / std::sqrt(sq_norm); // normalize
|
||
|
}
|
||
|
}
|
||
|
return NULL_VECTOR;
|
||
|
}
|
||
|
|
||
|
// cotan formula as area(voronoi face) / len(primal edge)
|
||
|
FT cotan_geometric(Edge& edge)
|
||
|
{
|
||
|
Cell_handle cell = edge.first;
|
||
|
Vertex_handle vi = cell->vertex(edge.second);
|
||
|
Vertex_handle vj = cell->vertex(edge.third);
|
||
|
|
||
|
// primal edge
|
||
|
const Point& pi = vi->point();
|
||
|
const Point& pj = vj->point();
|
||
|
Vector primal = pj - pi;
|
||
|
FT len_primal = std::sqrt(primal * primal);
|
||
|
return area_voronoi_face(edge) / len_primal;
|
||
|
}
|
||
|
|
||
|
// spin around edge
|
||
|
// return area(voronoi face)
|
||
|
FT area_voronoi_face(Edge& edge)
|
||
|
{
|
||
|
// circulate around edge
|
||
|
Cell_circulator circ = m_tr->incident_cells(edge);
|
||
|
Cell_circulator done = circ;
|
||
|
std::vector<Point> voronoi_points;
|
||
|
voronoi_points.reserve(9);
|
||
|
do
|
||
|
{
|
||
|
Cell_handle cell = circ;
|
||
|
if(!m_tr->is_infinite(cell))
|
||
|
voronoi_points.push_back(Dual[cell->info()]);
|
||
|
else // one infinite tet, switch to another calculation
|
||
|
return area_voronoi_face_boundary(edge);
|
||
|
circ++;
|
||
|
}
|
||
|
while(circ != done);
|
||
|
|
||
|
if(voronoi_points.size() < 3)
|
||
|
{
|
||
|
CGAL_surface_reconstruction_points_assertion(false);
|
||
|
return 0.0;
|
||
|
}
|
||
|
|
||
|
// sum up areas
|
||
|
FT area = 0.0;
|
||
|
const Point& a = voronoi_points[0];
|
||
|
std::size_t nb_triangles = voronoi_points.size() - 1;
|
||
|
for(std::size_t i=1;i<nb_triangles;i++)
|
||
|
{
|
||
|
const Point& b = voronoi_points[i];
|
||
|
const Point& c = voronoi_points[i+1];
|
||
|
area += std::sqrt(squared_area(a,b,c));
|
||
|
}
|
||
|
return area;
|
||
|
}
|
||
|
|
||
|
// approximate area when a cell is infinite
|
||
|
FT area_voronoi_face_boundary(Edge& edge)
|
||
|
{
|
||
|
FT area = 0.0;
|
||
|
Vertex_handle vi = edge.first->vertex(edge.second);
|
||
|
Vertex_handle vj = edge.first->vertex(edge.third);
|
||
|
|
||
|
const Point& pi = vi->point();
|
||
|
const Point& pj = vj->point();
|
||
|
Point m = CGAL::midpoint(pi,pj);
|
||
|
|
||
|
// circulate around each incident cell
|
||
|
Cell_circulator circ = m_tr->incident_cells(edge);
|
||
|
Cell_circulator done = circ;
|
||
|
do
|
||
|
{
|
||
|
Cell_handle cell = circ;
|
||
|
if(!m_tr->is_infinite(cell))
|
||
|
{
|
||
|
// circumcenter of cell
|
||
|
Point c = Dual[cell->info()];
|
||
|
Tetrahedron tet = m_tr->tetrahedron(cell);
|
||
|
|
||
|
int i = cell->index(vi);
|
||
|
int j = cell->index(vj);
|
||
|
int k = Triangulation_utils_3::next_around_edge(i,j);
|
||
|
int l = Triangulation_utils_3::next_around_edge(j,i);
|
||
|
|
||
|
Vertex_handle vk = cell->vertex(k);
|
||
|
Vertex_handle vl = cell->vertex(l);
|
||
|
|
||
|
const Point& pk = vk->point();
|
||
|
const Point& pl = vl->point();
|
||
|
|
||
|
// if circumcenter is outside tet
|
||
|
// pick barycenter instead
|
||
|
if(tet.has_on_unbounded_side(c))
|
||
|
{
|
||
|
Point cell_points[4] = {pi,pj,pk,pl};
|
||
|
c = CGAL::centroid(cell_points, cell_points+4);
|
||
|
}
|
||
|
|
||
|
Point ck = CGAL::circumcenter(pi,pj,pk);
|
||
|
Point cl = CGAL::circumcenter(pi,pj,pl);
|
||
|
|
||
|
area += std::sqrt(squared_area(m,c,ck));
|
||
|
area += std::sqrt(squared_area(m,c,cl));
|
||
|
}
|
||
|
circ++;
|
||
|
}
|
||
|
while(circ != done);
|
||
|
return area;
|
||
|
}
|
||
|
|
||
|
/// Assemble vi's row of the linear system A*X=B
|
||
|
///
|
||
|
/// @commentheading Template parameters:
|
||
|
/// @param SparseLinearAlgebraTraits_d Symmetric definite positive sparse linear solver.
|
||
|
template <class SparseLinearAlgebraTraits_d>
|
||
|
void assemble_poisson_row(typename SparseLinearAlgebraTraits_d::Matrix& A,
|
||
|
Vertex_handle vi,
|
||
|
typename SparseLinearAlgebraTraits_d::Vector& B,
|
||
|
double lambda)
|
||
|
{
|
||
|
// for each vertex vj neighbor of vi
|
||
|
std::vector<Edge> edges;
|
||
|
m_tr->incident_edges(vi,std::back_inserter(edges));
|
||
|
|
||
|
double diagonal = 0.0;
|
||
|
|
||
|
for(typename std::vector<Edge>::iterator it = edges.begin();
|
||
|
it != edges.end();
|
||
|
it++)
|
||
|
{
|
||
|
Vertex_handle vj = it->first->vertex(it->third);
|
||
|
if(vj == vi){
|
||
|
vj = it->first->vertex(it->second);
|
||
|
}
|
||
|
if(m_tr->is_infinite(vj))
|
||
|
continue;
|
||
|
|
||
|
// get corresponding edge
|
||
|
Edge edge( it->first, it->first->index(vi), it->first->index(vj));
|
||
|
if(vi->index() < vj->index()){
|
||
|
std::swap(edge.second, edge.third);
|
||
|
}
|
||
|
|
||
|
double cij = cotan_geometric(edge);
|
||
|
|
||
|
if(m_tr->is_constrained(vj)){
|
||
|
if(! is_valid(vj->f())){
|
||
|
std::cerr << "vj->f() = " << vj->f() << " is not valid" << std::endl;
|
||
|
}
|
||
|
B[vi->index()] -= cij * vj->f(); // change rhs
|
||
|
if(! is_valid( B[vi->index()])){
|
||
|
std::cerr << " B[vi->index()] = " << B[vi->index()] << " is not valid" << std::endl;
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
if(! is_valid(cij)){
|
||
|
std::cerr << "cij = " << cij << " is not valid" << std::endl;
|
||
|
}
|
||
|
A.set_coef(vi->index(),vj->index(), -cij, true /*new*/); // off-diagonal coefficient
|
||
|
}
|
||
|
|
||
|
diagonal += cij;
|
||
|
}
|
||
|
// diagonal coefficient
|
||
|
if (vi->type() == Triangulation::INPUT){
|
||
|
A.set_coef(vi->index(),vi->index(), diagonal + lambda, true /*new*/) ;
|
||
|
} else{
|
||
|
A.set_coef(vi->index(),vi->index(), diagonal, true /*new*/);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Computes enlarged geometric bounding sphere of the embedded triangulation.
|
||
|
Sphere enlarged_bounding_sphere(FT ratio) const
|
||
|
{
|
||
|
Sphere bsphere = bounding_sphere(); // triangulation's bounding sphere
|
||
|
return Sphere(bsphere.center(), bsphere.squared_radius() * ratio*ratio);
|
||
|
}
|
||
|
|
||
|
}; // end of Poisson_reconstruction_function
|
||
|
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
#include <CGAL/enable_warnings.h>
|
||
|
|
||
|
#endif // CGAL_POISSON_RECONSTRUCTION_FUNCTION_H
|