881 lines
21 KiB
C
881 lines
21 KiB
C
|
// Copyright (c) 1999-2007
|
||
|
// Utrecht University (The Netherlands),
|
||
|
// ETH Zurich (Switzerland),
|
||
|
// INRIA Sophia-Antipolis (France),
|
||
|
// Max-Planck-Institute Saarbruecken (Germany),
|
||
|
// and Tel-Aviv University (Israel). All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public License as
|
||
|
// published by the Free Software Foundation; either version 3 of the License,
|
||
|
// or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: LGPL-3.0+
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : Stefan Schirra, Sylvain Pion, Michael Hemmer
|
||
|
|
||
|
// The template class Quotient<NT> is based on the LEDA class
|
||
|
// leda_rational written by Stefan Naeher and Christian Uhrig.
|
||
|
// It is basically a templated version with restricted functionality
|
||
|
// of the version of rational in LEDA release 3.3.
|
||
|
// The modification was done by Stefan.Schirra@mpi-sb.mpg.de
|
||
|
|
||
|
// The include is done before the protect macro on purpose, because
|
||
|
// of a cyclic dependency.
|
||
|
|
||
|
#include <CGAL/number_type_basic.h>
|
||
|
|
||
|
#ifndef CGAL_QUOTIENT_H
|
||
|
#define CGAL_QUOTIENT_H
|
||
|
|
||
|
#include <utility>
|
||
|
#include <istream>
|
||
|
|
||
|
#include <CGAL/Interval_nt.h>
|
||
|
#include <CGAL/Kernel/mpl.h>
|
||
|
|
||
|
#include <boost/operators.hpp>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
#define CGAL_int(T) typename First_if_different<int, T>::Type
|
||
|
#define CGAL_double(T) typename First_if_different<double, T>::Type
|
||
|
|
||
|
// Simplify the quotient numerator/denominator.
|
||
|
// Currently the default template doesn't do anything.
|
||
|
// This function is not documented as a number type requirement for now.
|
||
|
template < typename NT >
|
||
|
inline void
|
||
|
simplify_quotient(NT &, NT &) {}
|
||
|
|
||
|
// This one should be replaced by some functor or tag.
|
||
|
// Meanwhile, the class is specialized for Gmpz, mpz_class, leda_integer.
|
||
|
template < typename NT >
|
||
|
struct Split_double
|
||
|
{
|
||
|
void operator()(double d, NT &num, NT &den) const
|
||
|
{
|
||
|
num = NT(d);
|
||
|
den = 1;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template <class NT_>
|
||
|
class Quotient
|
||
|
: boost::ordered_field_operators1< Quotient<NT_>
|
||
|
, boost::ordered_field_operators2< Quotient<NT_>, NT_
|
||
|
, boost::ordered_field_operators2< Quotient<NT_>, CGAL_int(NT_)
|
||
|
, boost::ordered_field_operators2< Quotient<NT_>, CGAL_double(NT_)
|
||
|
> > > >
|
||
|
{
|
||
|
public:
|
||
|
typedef NT_ NT;
|
||
|
|
||
|
Quotient()
|
||
|
: num(0), den(1) {}
|
||
|
|
||
|
Quotient(const NT& n)
|
||
|
: num(n), den(1) {}
|
||
|
|
||
|
Quotient(const CGAL_double(NT) & n)
|
||
|
{ Split_double<NT>()(n, num, den); }
|
||
|
|
||
|
Quotient(const CGAL_int(NT) & n)
|
||
|
: num(n), den(NT(1)) {}
|
||
|
|
||
|
template <class T>
|
||
|
explicit Quotient(const T& n) : num(n), den(1) {}
|
||
|
|
||
|
template <class T>
|
||
|
Quotient(const Quotient<T>& n) : num(n.numerator()), den(n.denominator()) {}
|
||
|
|
||
|
Quotient& operator=(const NT & n)
|
||
|
{
|
||
|
num = n;
|
||
|
den = 1;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Quotient& operator=(const CGAL_double(NT) & n)
|
||
|
{
|
||
|
Split_double<NT>()(n, num, den);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
Quotient& operator=(const CGAL_int(NT) & n)
|
||
|
{
|
||
|
num = n;
|
||
|
den = 1;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
#ifdef CGAL_CFG_NO_CPP0X_RVALUE_REFERENCE
|
||
|
|
||
|
template <class T1, class T2>
|
||
|
Quotient(const T1& n, const T2& d) : num(n), den(d)
|
||
|
{ CGAL_precondition( d != 0 ); }
|
||
|
|
||
|
#else
|
||
|
template <class T1, class T2>
|
||
|
Quotient(T1 && n, T2 && d)
|
||
|
: num(std::forward<T1>(n)), den(std::forward<T2>(d))
|
||
|
{ CGAL_postcondition( den != 0 ); }
|
||
|
|
||
|
Quotient(NT && n)
|
||
|
: num(std::move(n)), den(1) {}
|
||
|
|
||
|
Quotient& operator=(NT && n)
|
||
|
{
|
||
|
num = std::move(n);
|
||
|
den = 1;
|
||
|
return *this;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
Quotient<NT>& operator+= (const Quotient<NT>& r);
|
||
|
Quotient<NT>& operator-= (const Quotient<NT>& r);
|
||
|
Quotient<NT>& operator*= (const Quotient<NT>& r);
|
||
|
Quotient<NT>& operator/= (const Quotient<NT>& r);
|
||
|
Quotient<NT>& operator+= (const NT& r);
|
||
|
Quotient<NT>& operator-= (const NT& r);
|
||
|
Quotient<NT>& operator*= (const NT& r);
|
||
|
Quotient<NT>& operator/= (const NT& r);
|
||
|
Quotient<NT>& operator+= (const CGAL_int(NT)& r);
|
||
|
Quotient<NT>& operator-= (const CGAL_int(NT)& r);
|
||
|
Quotient<NT>& operator*= (const CGAL_int(NT)& r);
|
||
|
Quotient<NT>& operator/= (const CGAL_int(NT)& r);
|
||
|
Quotient<NT>& operator+= (const CGAL_double(NT)& r);
|
||
|
Quotient<NT>& operator-= (const CGAL_double(NT)& r);
|
||
|
Quotient<NT>& operator*= (const CGAL_double(NT)& r);
|
||
|
Quotient<NT>& operator/= (const CGAL_double(NT)& r);
|
||
|
|
||
|
Quotient<NT>& normalize();
|
||
|
|
||
|
const NT& numerator() const { return num; }
|
||
|
const NT& denominator() const { return den; }
|
||
|
|
||
|
void swap(Quotient &q)
|
||
|
{
|
||
|
using std::swap;
|
||
|
swap(num, q.num);
|
||
|
swap(den, q.den);
|
||
|
}
|
||
|
|
||
|
#ifdef CGAL_ROOT_OF_2_ENABLE_HISTOGRAM_OF_NUMBER_OF_DIGIT_ON_THE_COMPLEX_CONSTRUCTOR
|
||
|
int tam() const { return std::max(num.tam(), den.tam()); }
|
||
|
#endif
|
||
|
|
||
|
public:
|
||
|
NT num;
|
||
|
NT den;
|
||
|
};
|
||
|
|
||
|
template <class NT>
|
||
|
inline
|
||
|
void swap(Quotient<NT> &p, Quotient<NT> &q)
|
||
|
{
|
||
|
p.swap(q);
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::normalize()
|
||
|
{
|
||
|
if (num == den)
|
||
|
{
|
||
|
num = den = 1;
|
||
|
return *this;
|
||
|
}
|
||
|
if (-num == den)
|
||
|
{
|
||
|
num = -1;
|
||
|
den = 1;
|
||
|
return *this;
|
||
|
}
|
||
|
NT ggt = CGAL_NTS gcd(num, den);
|
||
|
if (ggt != 1 )
|
||
|
{
|
||
|
num = CGAL::integral_division(num, ggt);
|
||
|
den = CGAL::integral_division(den, ggt);
|
||
|
}
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator+= (const Quotient<NT>& r)
|
||
|
{
|
||
|
num = num * r.den + r.num * den;
|
||
|
den *= r.den;
|
||
|
simplify_quotient(num, den);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator-= (const Quotient<NT>& r)
|
||
|
{
|
||
|
num = num * r.den - r.num * den;
|
||
|
den *= r.den;
|
||
|
simplify_quotient(num, den);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator*= (const Quotient<NT>& r)
|
||
|
{
|
||
|
num *= r.num;
|
||
|
den *= r.den;
|
||
|
simplify_quotient(num, den);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator/= (const Quotient<NT>& r)
|
||
|
{
|
||
|
CGAL_precondition( r.num != 0 );
|
||
|
num *= r.den;
|
||
|
den *= r.num;
|
||
|
simplify_quotient(num, den);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator+= (const NT& r)
|
||
|
{
|
||
|
num += r * den;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator-= (const NT& r)
|
||
|
{
|
||
|
num -= r * den;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator*= (const NT& r)
|
||
|
{
|
||
|
num *= r;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator/= (const NT& r)
|
||
|
{
|
||
|
CGAL_precondition( r != 0 );
|
||
|
den *= r;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator+= (const CGAL_int(NT)& r)
|
||
|
{
|
||
|
num += r * den;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator-= (const CGAL_int(NT)& r)
|
||
|
{
|
||
|
num -= r * den;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator*= (const CGAL_int(NT)& r)
|
||
|
{
|
||
|
num *= r;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator/= (const CGAL_int(NT)& r)
|
||
|
{
|
||
|
CGAL_precondition( r != 0 );
|
||
|
den *= r;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator+= (const CGAL_double(NT)& r)
|
||
|
{
|
||
|
//num += r * den;
|
||
|
NT r_num, r_den;
|
||
|
Split_double<NT>()(r,r_num,r_den);
|
||
|
num = num*r_den + r_num*den;
|
||
|
den *=r_den;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator-= (const CGAL_double(NT)& r)
|
||
|
{
|
||
|
//num -= r * den;
|
||
|
NT r_num, r_den;
|
||
|
Split_double<NT>()(r,r_num,r_den);
|
||
|
num = num*r_den - r_num*den;
|
||
|
den *= r_den;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator*= (const CGAL_double(NT)& r)
|
||
|
{
|
||
|
// num *= r;
|
||
|
|
||
|
NT r_num, r_den;
|
||
|
Split_double<NT>()(r,r_num,r_den);
|
||
|
num *= r_num;
|
||
|
den *= r_den;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Quotient<NT>&
|
||
|
Quotient<NT>::operator/= (const CGAL_double(NT)& r)
|
||
|
{
|
||
|
CGAL_precondition( r != 0 );
|
||
|
NT r_num, r_den;
|
||
|
Split_double<NT>()(r,r_num,r_den);
|
||
|
num *= r_den;
|
||
|
den *= r_num;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
Comparison_result
|
||
|
quotient_cmp(const Quotient<NT>& x, const Quotient<NT>& y)
|
||
|
{
|
||
|
// No assumptions on the sign of den are made
|
||
|
|
||
|
// code assumes that SMALLER == - 1;
|
||
|
CGAL_precondition( SMALLER == static_cast<Comparison_result>(-1) );
|
||
|
|
||
|
int xsign = CGAL_NTS sign(x.num) * CGAL_NTS sign(x.den) ;
|
||
|
int ysign = CGAL_NTS sign(y.num) * CGAL_NTS sign(y.den) ;
|
||
|
if (xsign == 0) return static_cast<Comparison_result>(-ysign);
|
||
|
if (ysign == 0) return static_cast<Comparison_result>(xsign);
|
||
|
// now (x != 0) && (y != 0)
|
||
|
int diff = xsign - ysign;
|
||
|
if (diff == 0)
|
||
|
{
|
||
|
int msign = CGAL_NTS sign(x.den) * CGAL_NTS sign(y.den);
|
||
|
NT leftop = NT(x.num * y.den * msign);
|
||
|
NT rightop = NT(y.num * x.den * msign);
|
||
|
return CGAL_NTS compare(leftop, rightop);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
return (xsign < ysign) ? SMALLER : LARGER;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class NT>
|
||
|
std::ostream&
|
||
|
operator<<(std::ostream& s, const Quotient<NT>& r)
|
||
|
{
|
||
|
return s << r.numerator() << '/' << r.denominator();
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
std::istream&
|
||
|
operator>>(std::istream& in, Quotient<NT>& r)
|
||
|
{
|
||
|
/* format num/den or simply num */
|
||
|
|
||
|
NT num,den=1;
|
||
|
in >> num;
|
||
|
if(!in) return in;
|
||
|
std::istream::sentry s(in); // skip whitespace
|
||
|
if(in.peek()!='/'){
|
||
|
if(!in.good()){
|
||
|
in.clear(std::ios_base::eofbit);
|
||
|
// unlikely to be some other reason?
|
||
|
}
|
||
|
} else {
|
||
|
char c;
|
||
|
in.get(c); // remove the '/'
|
||
|
in >> den;
|
||
|
if(!in) return in;
|
||
|
}
|
||
|
r=Quotient<NT>(num,den);
|
||
|
return in;
|
||
|
}
|
||
|
|
||
|
template< class NT >
|
||
|
inline
|
||
|
Quotient<NT>
|
||
|
operator+( const Quotient<NT>& x ) {
|
||
|
return Quotient<NT>(x);
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
inline
|
||
|
Quotient<NT>
|
||
|
operator-(const Quotient<NT>& x)
|
||
|
{ return Quotient<NT>(-x.num,x.den); }
|
||
|
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
NT
|
||
|
quotient_truncation(const Quotient<NT>& r)
|
||
|
{ return (r.num / r.den); }
|
||
|
|
||
|
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
bool
|
||
|
operator==(const Quotient<NT>& x, const Quotient<NT>& y)
|
||
|
{ return x.num * y.den == x.den * y.num; }
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
bool
|
||
|
operator==(const Quotient<NT>& x, const NT& y)
|
||
|
{ return x.den * y == x.num; }
|
||
|
|
||
|
template <class NT>
|
||
|
inline
|
||
|
bool
|
||
|
operator==(const Quotient<NT>& x, const CGAL_int(NT) & y)
|
||
|
{ return x.den * y == x.num; }
|
||
|
|
||
|
template <class NT>
|
||
|
inline
|
||
|
bool
|
||
|
operator==(const Quotient<NT>& x, const CGAL_double(NT) & y)
|
||
|
{ return x.den * y == x.num; }
|
||
|
|
||
|
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
bool
|
||
|
operator<(const Quotient<NT>& x, const Quotient<NT>& y)
|
||
|
{
|
||
|
return quotient_cmp(x,y) == SMALLER;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
bool
|
||
|
operator<(const Quotient<NT>& x, const NT& y)
|
||
|
{
|
||
|
return quotient_cmp(x,Quotient<NT>(y)) == SMALLER;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
bool
|
||
|
operator<(const Quotient<NT>& x, const CGAL_int(NT)& y)
|
||
|
{
|
||
|
return quotient_cmp(x,Quotient<NT>(y)) == SMALLER;
|
||
|
}
|
||
|
|
||
|
template <class NT>
|
||
|
CGAL_MEDIUM_INLINE
|
||
|
bool
|
||
|
operator<(const Quotient<NT>& x, const CGAL_double(NT)& y)
|
||
|
{
|
||
|
return quotient_cmp(x,Quotient<NT>(y)) == SMALLER;
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class NT>
|
||
|
inline
|
||
|
bool
|
||
|
operator>(const Quotient<NT>& x, const NT& y)
|
||
|
{ return quotient_cmp(x,Quotient<NT>(y)) == LARGER; }
|
||
|
|
||
|
template <class NT>
|
||
|
inline
|
||
|
bool
|
||
|
operator>(const Quotient<NT>& x, const CGAL_int(NT)& y)
|
||
|
{ return quotient_cmp(x, Quotient<NT>(y)) == LARGER; }
|
||
|
|
||
|
template <class NT>
|
||
|
inline
|
||
|
bool
|
||
|
operator>(const Quotient<NT>& x, const CGAL_double(NT)& y)
|
||
|
{ return quotient_cmp(x, Quotient<NT>(y)) == LARGER; }
|
||
|
|
||
|
|
||
|
template< class NT >
|
||
|
class Is_valid< Quotient<NT> >
|
||
|
: public CGAL::cpp98::unary_function< Quotient<NT>, bool > {
|
||
|
public :
|
||
|
bool operator()( const Quotient<NT>& x ) const {
|
||
|
return is_valid(x.num) && is_valid(x.den);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template <class NT>
|
||
|
inline
|
||
|
const NT&
|
||
|
denominator(const Quotient<NT>& q)
|
||
|
{ return q.den ; }
|
||
|
|
||
|
template <class NT>
|
||
|
inline
|
||
|
const NT&
|
||
|
numerator(const Quotient<NT>& q)
|
||
|
{ return q.num ; }
|
||
|
|
||
|
// The min/max are functions are needed since LEDA defines template
|
||
|
// min/max functions which clash with std::min/max with ADL.
|
||
|
template <class NT>
|
||
|
inline
|
||
|
const Quotient<NT>&
|
||
|
min
|
||
|
BOOST_PREVENT_MACRO_SUBSTITUTION
|
||
|
(const Quotient<NT>& p, const Quotient<NT>& q)
|
||
|
{
|
||
|
return (std::min)(p, q);
|
||
|
}
|
||
|
template <class NT>
|
||
|
inline
|
||
|
const Quotient<NT>&
|
||
|
max
|
||
|
BOOST_PREVENT_MACRO_SUBSTITUTION
|
||
|
(const Quotient<NT>& p, const Quotient<NT>& q)
|
||
|
{
|
||
|
return (std::max)(p, q);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
template <class NT>
|
||
|
NT
|
||
|
gcd(const NT&, const NT&)
|
||
|
{ return NT(1); }
|
||
|
*/
|
||
|
|
||
|
#undef CGAL_double
|
||
|
#undef CGAL_int
|
||
|
|
||
|
//
|
||
|
// Algebraic structure traits
|
||
|
//
|
||
|
namespace INTERN_QUOTIENT {
|
||
|
template< class NT, class Sqrt_functor >
|
||
|
class Sqrt_selector {
|
||
|
public:
|
||
|
class Sqrt
|
||
|
: public CGAL::cpp98::unary_function< NT, NT > {
|
||
|
public:
|
||
|
NT operator()( const NT& x ) const {
|
||
|
CGAL_precondition(x > 0);
|
||
|
return NT(CGAL_NTS sqrt(x.numerator()*x.denominator()),
|
||
|
x.denominator());
|
||
|
}
|
||
|
};
|
||
|
};
|
||
|
|
||
|
template< class NT >
|
||
|
class Sqrt_selector< NT, Null_functor > {
|
||
|
public:
|
||
|
typedef Null_functor Sqrt;
|
||
|
};
|
||
|
|
||
|
// TODO: Algebraic_category could be Field_with_sqrt_tag, if NT
|
||
|
// is INEXACT (because Sqrt can be inexact) and has a Sqrt-functor.
|
||
|
template<class NT> class Algebraic_structure_traits_quotient_base;
|
||
|
|
||
|
template< class NT > class Algebraic_structure_traits_quotient_base< Quotient<NT> >
|
||
|
: public Algebraic_structure_traits_base< Quotient<NT>, Field_tag > {
|
||
|
|
||
|
public:
|
||
|
typedef Quotient<NT> Type;
|
||
|
|
||
|
typedef typename Algebraic_structure_traits<NT>::Is_exact Is_exact;
|
||
|
typedef Tag_false Is_numerical_sensitive;
|
||
|
|
||
|
|
||
|
|
||
|
class Is_square
|
||
|
: public CGAL::cpp98::binary_function< Quotient<NT>, Quotient<NT>&, bool > {
|
||
|
public:
|
||
|
bool operator()( Quotient<NT> x, Quotient<NT>& y ) const {
|
||
|
NT x_num, x_den, y_num, y_den;
|
||
|
x.normalize();
|
||
|
x_num = x.numerator();
|
||
|
x_den = x.denominator();
|
||
|
|
||
|
typename Algebraic_structure_traits<NT>::Is_square is_square;
|
||
|
bool num_is_square = is_square(x_num,y_num);
|
||
|
bool den_is_square = is_square(x_den,y_den);
|
||
|
y= Quotient<NT>(y_num,y_den);
|
||
|
return num_is_square && den_is_square;
|
||
|
}
|
||
|
bool operator()(Quotient<NT> x) const {
|
||
|
x.normalize();
|
||
|
typename Algebraic_structure_traits<NT>::Is_square is_square;
|
||
|
return is_square(x.numerator())&&is_square(x.denominator());
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
typedef typename boost::mpl::if_c<
|
||
|
!boost::is_same< typename Algebraic_structure_traits<NT>::Sqrt,
|
||
|
Null_functor >::value,
|
||
|
typename INTERN_QUOTIENT::Sqrt_selector< Type,
|
||
|
Is_exact >::Sqrt,
|
||
|
Null_functor
|
||
|
>::type Sqrt;
|
||
|
|
||
|
class Simplify
|
||
|
: public CGAL::cpp98::unary_function< Type&, void > {
|
||
|
public:
|
||
|
void operator()( Type& x) const {
|
||
|
x.normalize();
|
||
|
}
|
||
|
};
|
||
|
};
|
||
|
|
||
|
|
||
|
template<class NT> class Real_embeddable_traits_quotient_base;
|
||
|
// Real embeddable traits
|
||
|
template < class NT > class Real_embeddable_traits_quotient_base< Quotient<NT> >
|
||
|
: public INTERN_RET::Real_embeddable_traits_base< Quotient<NT>,
|
||
|
typename Real_embeddable_traits< NT >::Is_real_embeddable > {
|
||
|
public:
|
||
|
typedef Quotient<NT> Type;
|
||
|
|
||
|
class Compare
|
||
|
: public CGAL::cpp98::binary_function< Type, Type,
|
||
|
Comparison_result > {
|
||
|
public:
|
||
|
Comparison_result operator()( const Type& x,
|
||
|
const Type& y ) const {
|
||
|
return quotient_cmp(x, y);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class To_double
|
||
|
: public CGAL::cpp98::unary_function< Type, double > {
|
||
|
public:
|
||
|
double operator()( const Type& x ) const {
|
||
|
// Original global function was marked with an TODO!!
|
||
|
if (x.num == 0 )
|
||
|
return 0;
|
||
|
|
||
|
double nd = CGAL_NTS to_double( x.num );
|
||
|
|
||
|
if (x.den == 1 )
|
||
|
return nd;
|
||
|
|
||
|
double dd = CGAL_NTS to_double( x.den );
|
||
|
|
||
|
if ( CGAL_NTS is_finite( x.den ) && CGAL_NTS is_finite( x.num ) )
|
||
|
return nd/dd;
|
||
|
|
||
|
if ( CGAL_NTS abs(x.num) > CGAL_NTS abs(x.den) )
|
||
|
{
|
||
|
NT nt_div = x.num / x.den;
|
||
|
double divd = CGAL_NTS to_double(nt_div);
|
||
|
if ( divd >= std::ldexp(1.0,53) )
|
||
|
{ return divd; }
|
||
|
}
|
||
|
if ( CGAL_NTS abs(x.num) < CGAL_NTS abs(x.den) )
|
||
|
{ return 1.0 / CGAL_NTS to_double( NT(1) / x ); }
|
||
|
|
||
|
return nd/dd;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class To_interval
|
||
|
: public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
|
||
|
public:
|
||
|
std::pair<double, double> operator()( const Type& x ) const {
|
||
|
Interval_nt<> quot =
|
||
|
Interval_nt<>(CGAL_NTS to_interval(x.numerator())) /
|
||
|
Interval_nt<>(CGAL_NTS to_interval(x.denominator()));
|
||
|
return std::make_pair(quot.inf(), quot.sup());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class Is_finite
|
||
|
: public CGAL::cpp98::unary_function< Type, bool > {
|
||
|
public:
|
||
|
bool operator()( const Type& x ) const {
|
||
|
return CGAL_NTS is_finite(x.num) && CGAL_NTS is_finite(x.den);
|
||
|
}
|
||
|
};
|
||
|
};
|
||
|
} // namespace INTERN_QUOTIENT
|
||
|
|
||
|
template< class NT > class Algebraic_structure_traits< Quotient<NT> >
|
||
|
: public INTERN_QUOTIENT::Algebraic_structure_traits_quotient_base<
|
||
|
Quotient<NT> >{};
|
||
|
|
||
|
template< class NT > class Real_embeddable_traits< Quotient<NT> >
|
||
|
: public INTERN_QUOTIENT::Real_embeddable_traits_quotient_base<
|
||
|
Quotient<NT> >{};
|
||
|
|
||
|
|
||
|
// self coercion
|
||
|
CGAL_DEFINE_COERCION_TRAITS_FOR_SELF_TEM( Quotient<NT>, class NT)
|
||
|
|
||
|
// from int to Quotient
|
||
|
template <class NT>
|
||
|
struct Coercion_traits<typename First_if_different<int, NT>::Type,Quotient<NT> >
|
||
|
{
|
||
|
typedef Tag_true Are_explicit_interoperable;
|
||
|
typedef Tag_true Are_implicit_interoperable;
|
||
|
typedef Quotient<NT> Type;
|
||
|
struct Cast{
|
||
|
typedef Type result_type;
|
||
|
Type operator()(const Quotient<NT>& x) const { return x;}
|
||
|
Type operator()(
|
||
|
const typename First_if_different<int, NT>::Type& x) const {
|
||
|
return Type(x);}
|
||
|
};
|
||
|
};
|
||
|
template <class NT>
|
||
|
struct Coercion_traits<Quotient<NT>,typename First_if_different<int, NT>::Type>
|
||
|
:public Coercion_traits<typename First_if_different<int, NT>::Type,
|
||
|
Quotient<NT> >{};
|
||
|
|
||
|
// from double to Quotient
|
||
|
template <class NT>
|
||
|
struct Coercion_traits<typename First_if_different<double, NT>::Type,
|
||
|
Quotient<NT> >{
|
||
|
typedef Tag_true Are_explicit_interoperable;
|
||
|
typedef Tag_true Are_implicit_interoperable;
|
||
|
typedef Quotient<NT> Type;
|
||
|
struct Cast{
|
||
|
typedef Type result_type;
|
||
|
Type operator()(const Quotient<NT>& x) const { return x;}
|
||
|
Type operator()(
|
||
|
const typename First_if_different<double, NT>::Type& x) const {
|
||
|
return Type(x);}
|
||
|
};
|
||
|
};
|
||
|
template <class NT>
|
||
|
struct Coercion_traits<Quotient<NT>,
|
||
|
typename First_if_different<double, NT>::Type>
|
||
|
:public Coercion_traits<typename First_if_different<double, NT>::Type,
|
||
|
Quotient<NT> >
|
||
|
{};
|
||
|
|
||
|
// from NT to Quotient
|
||
|
CGAL_DEFINE_COERCION_TRAITS_FROM_TO_TEM ( NT, Quotient<NT>, class NT)
|
||
|
|
||
|
/*! \ingroup NiX_Fraction_traits_spec
|
||
|
* \brief Specialization of Fraction_traits for Quotient<NT>
|
||
|
*/
|
||
|
template <class NT>
|
||
|
class Fraction_traits< Quotient<NT> > {
|
||
|
public:
|
||
|
typedef Quotient<NT> Type;
|
||
|
typedef ::CGAL::Tag_true Is_fraction;
|
||
|
typedef NT Numerator_type;
|
||
|
typedef Numerator_type Denominator_type;
|
||
|
|
||
|
//TODO: check whether Numerator_type has a GCD.
|
||
|
//will use Scalar_factor from Scalar_factor_traits (not implemented yet)
|
||
|
//for more details see EXACUS:NumeriX/include/NiX/Scalar_factor_traits.h
|
||
|
typedef typename Algebraic_structure_traits< Numerator_type >::Gcd Common_factor;
|
||
|
|
||
|
class Decompose {
|
||
|
public:
|
||
|
typedef Type first_argument_type;
|
||
|
typedef Numerator_type& second_argument_type;
|
||
|
typedef Numerator_type& third_argument_type;
|
||
|
void operator () (
|
||
|
const Type& rat,
|
||
|
Numerator_type& num,
|
||
|
Numerator_type& den) {
|
||
|
num = rat.numerator();
|
||
|
den = rat.denominator();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class Compose {
|
||
|
public:
|
||
|
typedef Numerator_type first_argument_type;
|
||
|
typedef Numerator_type second_argument_type;
|
||
|
typedef Type result_type;
|
||
|
Type operator ()(
|
||
|
const Numerator_type& num ,
|
||
|
const Numerator_type& den ) {
|
||
|
Type result(num, den);
|
||
|
return result;
|
||
|
}
|
||
|
};
|
||
|
};
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
namespace Eigen {
|
||
|
template<class> struct NumTraits;
|
||
|
template<class NT> struct NumTraits<CGAL::Quotient<NT> >
|
||
|
{
|
||
|
typedef CGAL::Quotient<NT> Real;
|
||
|
typedef CGAL::Quotient<NT> NonInteger;
|
||
|
typedef CGAL::Quotient<NT> Nested;
|
||
|
typedef CGAL::Quotient<NT> Literal;
|
||
|
|
||
|
static inline Real epsilon() { return NumTraits<NT>::epsilon(); }
|
||
|
static inline Real dummy_precision() { return NumTraits<NT>::dummy_precision(); }
|
||
|
|
||
|
enum {
|
||
|
IsInteger = 0,
|
||
|
IsSigned = 1,
|
||
|
IsComplex = 0,
|
||
|
RequireInitialization = NumTraits<NT>::RequireInitialization,
|
||
|
ReadCost = 2*NumTraits<NT>::ReadCost,
|
||
|
AddCost = 150,
|
||
|
MulCost = 100
|
||
|
};
|
||
|
};
|
||
|
}
|
||
|
|
||
|
#endif // CGAL_QUOTIENT_H
|