dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/squared_distance_2_1.h

764 lines
22 KiB
C
Raw Normal View History

// Copyright (c) 1998-2004
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Geert-Jan Giezeman
// Michel Hoffmann <hoffmann@inf.ethz.ch>
// Andreas Fabri <Andreas.Fabri@geometryfactory.com>
#ifndef CGAL_SQUARED_DISTANCE_2_1_H
#define CGAL_SQUARED_DISTANCE_2_1_H
#include <CGAL/user_classes.h>
#include <CGAL/kernel_assertions.h>
#include <CGAL/enum.h>
#include <CGAL/wmult.h>
#include <CGAL/squared_distance_utils.h>
#include <CGAL/Kernel/global_functions_2.h>
namespace CGAL {
namespace internal {
template <class K>
inline typename K::FT
squared_distance(const typename K::Point_2 & pt1,
const typename K::Point_2 & pt2,
const K& k)
{
typename K::Vector_2 vec = k.construct_vector_2_object()(pt2, pt1);
return (typename K::FT)k.compute_squared_length_2_object()(vec);
}
template <class K>
typename K::FT
squared_distance(const typename K::Point_2 &pt,
const typename K::Line_2 &line,
const K&,
const Homogeneous_tag&)
{
typedef typename K::RT RT;
typedef typename K::FT FT;
const RT & a = line.a();
const RT & b = line.b();
const RT & w = pt.hw();
RT n = a*pt.hx() + b*pt.hy() + w * line.c();
RT d = (CGAL_NTS square(a) + CGAL_NTS square(b)) * CGAL_NTS square(w);
return Rational_traits<FT>().make_rational(CGAL_NTS square(n), d);
}
template <class K>
typename K::FT
squared_distance(const typename K::Point_2 &pt,
const typename K::Line_2 &line,
const K&,
const Cartesian_tag&)
{
typedef typename K::FT FT;
const FT & a = line.a();
const FT & b = line.b();
FT n = a*pt.x() + b*pt.y() + line.c();
FT d = CGAL_NTS square(a) + CGAL_NTS square(b);
return CGAL_NTS square(n)/d;
}
template <class K>
typename K::FT
squared_distance(const typename K::Point_2 &pt,
const typename K::Line_2 &line,
const K& k)
{
typedef typename K::Kernel_tag Tag;
Tag tag;
return squared_distance(pt, line, k, tag);
}
template <class K>
inline typename K::FT
squared_distance(const typename K::Line_2 &line,
const typename K::Point_2 &pt,
const K& k)
{
return internal::squared_distance(pt, line, k);
}
template <class K>
typename K::FT
squared_distance(const typename K::Point_2 &pt,
const typename K::Ray_2 &ray,
const K& k)
{
typedef typename K::Vector_2 Vector_2;
typename K::Construct_vector_2 construct_vector;
Vector_2 diff = construct_vector(ray.source(), pt);
const Vector_2 &dir = ray.direction().vector();
if (!is_acute_angle(dir,diff, k) )
return (typename K::FT)k.compute_squared_length_2_object()(diff);
return internal::squared_distance(pt, ray.supporting_line(), k);
}
template <class K>
inline typename K::FT
squared_distance(const typename K::Ray_2 &ray,
const typename K::Point_2 &pt,
const K& k)
{
return internal::squared_distance(pt, ray, k);
}
template <class K>
typename K::FT
squared_distance(const typename K::Point_2 &pt,
const typename K::Segment_2 &seg,
const K& k)
{
typename K::Construct_vector_2 construct_vector;
typedef typename K::Vector_2 Vector_2;
typedef typename K::RT RT;
// assert that the segment is valid (non zero length).
Vector_2 diff = construct_vector(seg.source(), pt);
Vector_2 segvec = construct_vector(seg.source(), seg.target());
RT d = wdot(diff,segvec, k);
if (d <= (RT)0)
return (typename K::FT)k.compute_squared_length_2_object()(diff);
RT e = wdot(segvec,segvec, k);
if (wmult((K*)0 ,d, segvec.hw()) > wmult((K*)0, e, diff.hw()))
return internal::squared_distance(pt, seg.target(), k);
return internal::squared_distance(pt, seg.supporting_line(), k);
}
template <class K>
inline typename K::FT
squared_distance(const typename K::Segment_2 &seg,
const typename K::Point_2 &pt,
const K& k)
{
return internal::squared_distance(pt, seg, k);
}
template <class K>
typename K::FT
squared_distance_parallel(const typename K::Segment_2 &seg1,
const typename K::Segment_2 &seg2,
const K& k)
{
typedef typename K::Vector_2 Vector_2;
const Vector_2 &dir1 = seg1.direction().vector();
const Vector_2 &dir2 = seg2.direction().vector();
if (same_direction(dir1, dir2, k)) {
if (!is_acute_angle(seg1.source(), seg1.target(), seg2.source(), k))
return internal::squared_distance(seg1.target(), seg2.source(), k);
if (!is_acute_angle(seg1.target(), seg1.source(), seg2.target(), k))
return internal::squared_distance(seg1.source(), seg2.target(), k);
} else {
if (!is_acute_angle(seg1.source(), seg1.target(), seg2.target(), k))
return internal::squared_distance(seg1.target(), seg2.target(), k);
if (!is_acute_angle(seg1.target(), seg1.source(), seg2.source(), k))
return internal::squared_distance(seg1.source(), seg2.source(), k);
}
return internal::squared_distance(seg2.source(), seg1.supporting_line(), k);
}
template <class K>
inline typename K::RT
_distance_measure_sub(const typename K::RT &startwcross,
const typename K::RT &endwcross,
const typename K::Point_2 &start,
const typename K::Point_2 &end)
{
return CGAL_NTS abs(wmult((K*)0, startwcross, end.hw())) -
CGAL_NTS abs(wmult((K*)0, endwcross, start.hw()));
}
template <class K>
typename K::FT
squared_distance(const typename K::Segment_2 &seg1,
const typename K::Segment_2 &seg2,
const K& k)
{
typedef typename K::RT RT;
typedef typename K::FT FT;
bool crossing1, crossing2;
RT c1s, c1e, c2s, c2e;
if (seg1.source() == seg1.target())
return internal::squared_distance(seg1.source(), seg2, k);
if (seg2.source() == seg2.target())
return internal::squared_distance(seg2.source(), seg1, k);
c1s = wcross(seg2.source(), seg2.target(), seg1.source(), k);
c1e = wcross(seg2.source(), seg2.target(), seg1.target(), k);
c2s = wcross(seg1.source(), seg1.target(), seg2.source(), k);
c2e = wcross(seg1.source(), seg1.target(), seg2.target(), k);
if (c1s < RT(0)) {
crossing1 = (c1e >= RT(0));
} else {
if (c1e <= RT(0)) {
if (c1s == RT(0) && c1e == RT(0))
return internal::squared_distance_parallel(seg1, seg2, k);
crossing1 = true;
} else {
crossing1 = (c1s == RT(0));
}
}
if (c2s < RT(0)) {
crossing2 = (c2e >= RT(0));
} else {
if (c2e <= RT(0)) {
if (c2s == RT(0) && c2e == RT(0))
return internal::squared_distance_parallel(seg1, seg2, k);
crossing2 = true;
} else {
crossing2 = (c2s == RT(0));
}
}
if (crossing1) {
if (crossing2)
return (FT)0;
RT dm;
dm = _distance_measure_sub<K>(c2s,c2e, seg2.source(), seg2.target());
if (dm < RT(0)) {
return internal::squared_distance(seg2.source(), seg1, k);
} else {
if (dm > RT(0)) {
return internal::squared_distance(seg2.target(), seg1, k);
} else {
// parallel, should not happen (no crossing)
return internal::squared_distance_parallel(seg1, seg2, k);
}
}
} else {
if (crossing2) {
RT dm;
dm =
_distance_measure_sub<K>(c1s, c1e,seg1.source(),seg1.target());
if (dm < RT(0)) {
return internal::squared_distance(seg1.source(), seg2, k);
} else {
if (dm > RT(0)) {
return internal::squared_distance(seg1.target(), seg2, k);
} else {
// parallel, should not happen (no crossing)
return internal::squared_distance_parallel(seg1, seg2, k);
}
}
} else {
FT min1, min2;
RT dm = _distance_measure_sub<K>(
c1s, c1e, seg1.source(), seg1.target());
if (dm == RT(0))
return internal::squared_distance_parallel(seg1, seg2, k);
min1 = (dm < RT(0)) ?
internal::squared_distance(seg1.source(), seg2, k):
internal::squared_distance(seg1.target(), seg2, k);
dm = _distance_measure_sub<K>(
c2s, c2e, seg2.source(), seg2.target());
if (dm == RT(0)) // should not happen.
return internal::squared_distance_parallel(seg1, seg2, k);
min2 = (dm < RT(0)) ?
internal::squared_distance(seg2.source(), seg1, k):
internal::squared_distance(seg2.target(), seg1, k);
return (min1 < min2) ? min1 : min2;
}
}
}
template <class K>
inline typename K::RT
_distance_measure_sub(const typename K::RT &startwcross,
const typename K::RT &endwcross,
const typename K::Vector_2 &start,
const typename K::Vector_2 &end)
{
return CGAL_NTS abs(wmult((K*)0, startwcross, end.hw())) -
CGAL_NTS abs(wmult((K*)0, endwcross, start.hw()));
}
template <class K>
typename K::FT
squared_distance_parallel(const typename K::Segment_2 &seg,
const typename K::Ray_2 &ray,
const K& k)
{
typedef typename K::Vector_2 Vector_2;
const Vector_2 &dir1 = seg.direction().vector();
const Vector_2 &dir2 = ray.direction().vector();
if (same_direction(dir1, dir2, k)) {
if (!is_acute_angle(seg.source(), seg.target(), ray.source(), k))
return internal::squared_distance(seg.target(), ray.source(), k);
} else {
if (!is_acute_angle(seg.target(), seg.source(), ray.source(), k))
return internal::squared_distance(seg.source(), ray.source(), k);
}
return internal::squared_distance(ray.source(), seg.supporting_line(), k);
}
template <class K>
typename K::FT
squared_distance(const typename K::Segment_2 &seg,
const typename K::Ray_2 &ray,
const K& k)
{
typename K::Construct_vector_2 construct_vector;
typedef typename K::RT RT;
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector_2;
const Vector_2 &raydir = ray.direction().vector();
Vector_2 startvec(construct_vector(ray.source(), seg.source()));
Vector_2 endvec(construct_vector(ray.source(), seg.target()));
typename K::Orientation_2 orientation;
bool crossing1, crossing2;
RT c1s, c1e;
if (seg.source() == seg.target())
return internal::squared_distance(seg.source(), ray, k);
c1s = wcross(raydir, startvec, k);
c1e = wcross(raydir, endvec, k);
if (c1s < RT(0)) {
crossing1 = (c1e >= RT(0));
} else {
if (c1e <= RT(0)) {
if (c1s == RT(0) && c1e == RT(0))
return internal::squared_distance_parallel(seg, ray, k);
crossing1 = true;
} else {
crossing1 = (c1s == RT(0));
}
}
switch (orientation(seg.source(), seg.target(), ray.source())) {
case LEFT_TURN:
crossing2 = right_turn(construct_vector(seg.source(), seg.target()), raydir, k);
break;
case RIGHT_TURN:
crossing2 = left_turn(construct_vector(seg.source(), seg.target()), raydir, k);
break;
default:
crossing2 = true;
break;
}
if (crossing1) {
if (crossing2)
return FT(0);
return internal::squared_distance(ray.source(), seg, k);
} else {
if (crossing2) {
RT dm;
dm = _distance_measure_sub<K>(c1s, c1e, startvec, endvec);
if (dm < RT(0)) {
return internal::squared_distance(seg.source(), ray, k);
} else {
if (dm > RT(0)) {
return internal::squared_distance(seg.target(), ray, k);
} else {
// parallel, should not happen (no crossing)
return internal::squared_distance_parallel(seg, ray, k);
}
}
} else {
FT min1, min2;
RT dm = _distance_measure_sub<K>(c1s, c1e, startvec, endvec);
if (dm == RT(0))
return internal::squared_distance_parallel(seg, ray, k);
min1 = (dm < RT(0))
? internal::squared_distance(seg.source(), ray, k)
: internal::squared_distance(seg.target(), ray, k);
min2 = internal::squared_distance(ray.source(), seg, k);
return (min1 < min2) ? min1 : min2;
}
}
}
template <class K>
inline typename K::FT
squared_distance(const typename K::Ray_2 &ray,
const typename K::Segment_2 &seg,
const K& k)
{
return internal::squared_distance(seg, ray, k);
}
template <class K>
typename K::FT
_sqd_to_line(const typename K::Vector_2 &diff,
const typename K::RT & wcross,
const typename K::Vector_2 &dir )
{
typedef typename K::RT RT;
typedef typename K::FT FT;
RT numerator = CGAL_NTS square(wcross);
RT denominator = wmult((K*)0, RT(wdot(dir,dir, K())),
diff.hw(), diff.hw());
return Rational_traits<FT>().make_rational(numerator, denominator);
}
template <class K>
typename K::FT
squared_distance(const typename K::Segment_2 &seg,
const typename K::Line_2 &line,
const K& k)
{
typename K::Construct_vector_2 construct_vector;
typedef typename K::RT RT;
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector_2;
typedef typename K::Point_2 Point_2;
const Vector_2 &linedir = line.direction().vector();
const Point_2 &linepoint = line.point();
Vector_2 startvec(construct_vector(linepoint, seg.source()));
Vector_2 endvec(construct_vector(linepoint, seg.target()));
bool crossing1;
RT c1s, c1e;
if (seg.source() == seg.target())
return internal::squared_distance(seg.source(), line, k);
c1s = wcross(linedir, startvec, k);
c1e = wcross(linedir, endvec, k);
if (c1s < RT(0)) {
crossing1 = (c1e >= RT(0));
} else {
if (c1e <= RT(0)) {
crossing1 = true;
} else {
crossing1 = (c1s == RT(0));
}
}
if (crossing1) {
return (FT)0;
} else {
RT dm;
dm = _distance_measure_sub<K>(c1s, c1e, startvec, endvec);
if (dm <= RT(0)) {
return _sqd_to_line<K>(startvec, c1s, linedir);
} else {
return _sqd_to_line<K>(endvec, c1e, linedir);
}
}
}
template <class K>
inline typename K::FT
squared_distance(const typename K::Line_2 &line,
const typename K::Segment_2 &seg,
const K& k)
{
return internal::squared_distance(seg, line, k);
}
template <class K>
typename K::FT
ray_ray_squared_distance_parallel(
const typename K::Vector_2 &ray1dir,
const typename K::Vector_2 &ray2dir,
const typename K::Vector_2 &from1to2,
const K& k)
{
typedef typename K::RT RT;
typedef typename K::FT FT;
if (!is_acute_angle(ray1dir, from1to2, k)) {
if (!same_direction(ray1dir, ray2dir, k))
return (typename K::FT)k.compute_squared_length_2_object()(from1to2);
}
RT wcr, w;
wcr = wcross(ray1dir, from1to2, k);
w = from1to2.hw();
return (typename K::FT)(FT(wcr*wcr)
/ FT(wmult((K*)0, RT(wdot(ray1dir, ray1dir, k)), w, w)));
}
template <class K>
typename K::FT
squared_distance(const typename K::Ray_2 &ray1,
const typename K::Ray_2 &ray2,
const K& k)
{
typename K::Construct_vector_2 construct_vector;
typedef typename K::Vector_2 Vector_2;
typedef typename K::FT FT;
const Vector_2 &ray1dir = ray1.direction().vector();
const Vector_2 &ray2dir = ray2.direction().vector();
Vector_2 diffvec(construct_vector(ray1.source(),ray2.source()));
bool crossing1, crossing2;
switch (orientation(ray1dir, ray2dir, k)) {
case COUNTERCLOCKWISE:
crossing1 = !clockwise(diffvec, ray2dir, k);
crossing2 = !counterclockwise(ray1dir, diffvec, k);
break;
case CLOCKWISE:
crossing1 = !counterclockwise(diffvec, ray2dir, k);
crossing2 = !clockwise(ray1dir, diffvec, k);
break;
default:
return ray_ray_squared_distance_parallel(ray1dir,ray2dir,diffvec,k);
}
if (crossing1) {
if (crossing2)
return (FT)0;
return internal::squared_distance(ray2.source(), ray1, k);
} else {
if (crossing2) {
return internal::squared_distance(ray1.source(), ray2, k);
} else {
FT min1, min2;
min1 = internal::squared_distance(ray1.source(), ray2, k);
min2 = internal::squared_distance(ray2.source(), ray1, k);
return (min1 < min2) ? min1 : min2;
}
}
}
template <class K>
typename K::FT
squared_distance(const typename K::Line_2 &line,
const typename K::Ray_2 &ray,
const K& k)
{
typename K::Construct_vector_2 construct_vector;
typedef typename K::FT FT;
typedef typename K::Vector_2 Vector_2;
Vector_2 normalvec(line.a(), line.b());
Vector_2 diff = construct_vector(line.point(), ray.source());
FT sign_dist = k.compute_scalar_product_2_object()(diff,normalvec);
if (sign_dist < FT(0)) {
if (is_acute_angle(normalvec, ray.direction().vector(), k) )
return (FT)0;
} else {
if (is_obtuse_angle(normalvec, ray.direction().vector(), k) )
return (FT)0;
}
return (typename K::FT)((sign_dist*sign_dist)/k.compute_squared_length_2_object()(normalvec));
}
template <class K>
inline typename K::FT
squared_distance(const typename K::Ray_2 &ray,
const typename K::Line_2 &line,
const K& k)
{
return internal::squared_distance(line, ray, k);
}
template <class K>
inline typename K::FT
squared_distance(const typename K::Line_2 &line1,
const typename K::Line_2 &line2,
const K& k)
{
typedef typename K::FT FT;
if (internal::parallel(line1, line2, k))
return internal::squared_distance(line1.point(), line2, k);
else
return (FT)0;
}
template <class K>
void
distance_index(int &ind,
const typename K::Point_2 &pt,
const typename K::Ray_2 &ray,
const K& k)
{
typename K::Construct_vector_2 construct_vector;
if (!is_acute_angle(ray.direction().vector(), construct_vector(ray.source(), pt), k)) {
ind = 0;
return;
}
ind = -1;
}
template <class K>
void
distance_index(int &ind,
const typename K::Point_2 &pt,
const typename K::Segment_2 &seg,
const K& k)
{
if (!is_acute_angle(seg.target(),seg.source(),pt, k)) {
ind = 0;
return;
}
if (!is_acute_angle(seg.source(),seg.target(),pt, k)) {
ind = 1;
return;
}
ind = -1;
}
template <class K>
inline typename K::FT
squared_distance_indexed(const typename K::Point_2 &pt,
const typename K::Ray_2 &ray,
int ind,
const K& k)
{
if (ind == 0)
return internal::squared_distance(pt, ray.source(), k);
return internal::squared_distance(pt, ray.supporting_line(), k);
}
template <class K>
inline typename K::FT
squared_distance_indexed(const typename K::Point_2 &pt,
const typename K::Segment_2 &seg,
int ind,
const K& k)
{
if (ind == 0)
return internal::squared_distance(pt, seg.source(), k);
if (ind == 1)
return internal::squared_distance(pt, seg.target(), k);
return internal::squared_distance(pt, seg.supporting_line(), k);
}
} // namespace internal
template <class K>
inline typename K::FT
squared_distance(const Point_2<K> & pt1, const Point_2<K> & pt2)
{
return internal::squared_distance(pt1, pt2, K());
}
template <class K>
inline typename K::FT
squared_distance(const Point_2<K> &pt, const Line_2<K> &line)
{
return internal::squared_distance(pt, line, K());
}
template <class K>
inline typename K::FT
squared_distance(const Line_2<K> & line, const Point_2<K> & pt)
{
return squared_distance(pt, line);
}
template <class K>
inline typename K::FT
squared_distance(const Point_2<K> &pt, const Ray_2<K> &ray)
{
return internal::squared_distance(pt, ray, K());
}
template <class K>
inline typename K::FT
squared_distance(const Ray_2<K> & ray, const Point_2<K> & pt)
{
return squared_distance(pt, ray);
}
template <class K>
inline typename K::FT
squared_distance(const Point_2<K> &pt, const Segment_2<K> &seg)
{
return internal::squared_distance(pt, seg, K());
}
template <class K>
inline typename K::FT
squared_distance(const Segment_2<K> & seg, const Point_2<K> & pt)
{
return internal::squared_distance(pt, seg, K());
}
template <class K>
inline typename K::FT
squared_distance(const Segment_2<K> &seg1, const Segment_2<K> &seg2)
{
return internal::squared_distance(seg1, seg2, K());
}
template <class K>
inline typename K::FT
squared_distance(const Segment_2<K> &seg, const Ray_2<K> &ray)
{
return internal::squared_distance(seg, ray, K());
}
template <class K>
inline typename K::FT
squared_distance(const Ray_2<K> & ray, const Segment_2<K> & seg)
{
return internal::squared_distance(seg, ray, K());
}
template <class K>
inline typename K::FT
squared_distance(const Segment_2<K> &seg, const Line_2<K> &line)
{
return internal::squared_distance(seg, line, K());
}
template <class K>
inline typename K::FT
squared_distance(const Line_2<K> & line, const Segment_2<K> & seg)
{
return internal::squared_distance(seg, line, K());
}
template <class K>
inline typename K::FT
squared_distance(const Ray_2<K> &ray1, const Ray_2<K> &ray2)
{
return internal::squared_distance(ray1, ray2, K());
}
template <class K>
inline typename K::FT
squared_distance(const Line_2<K> &line, const Ray_2<K> &ray)
{
return internal::squared_distance(line, ray, K());
}
template <class K>
inline typename K::FT
squared_distance(const Ray_2<K> & ray, const Line_2<K> & line)
{
return internal::squared_distance(line, ray, K());
}
template <class K>
inline typename K::FT
squared_distance(const Line_2<K> &line1, const Line_2<K> &line2)
{
return internal::squared_distance(line1, line2, K());
}
} //namespace CGAL
#endif