1456 lines
26 KiB
JavaScript
1456 lines
26 KiB
JavaScript
|
var _Math = {};
|
||
|
var Vector3 = {};
|
||
|
var Quaternion = {};
|
||
|
|
||
|
_Math = {
|
||
|
|
||
|
DEG2RAD: Math.PI / 180,
|
||
|
RAD2DEG: 180 / Math.PI,
|
||
|
|
||
|
generateUUID: ( function () {
|
||
|
|
||
|
// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136
|
||
|
|
||
|
var lut = [];
|
||
|
|
||
|
for ( var i = 0; i < 256; i ++ ) {
|
||
|
|
||
|
lut[ i ] = ( i < 16 ? '0' : '' ) + ( i ).toString( 16 );
|
||
|
|
||
|
}
|
||
|
|
||
|
return function generateUUID() {
|
||
|
|
||
|
var d0 = Math.random() * 0xffffffff | 0;
|
||
|
var d1 = Math.random() * 0xffffffff | 0;
|
||
|
var d2 = Math.random() * 0xffffffff | 0;
|
||
|
var d3 = Math.random() * 0xffffffff | 0;
|
||
|
var uuid = lut[ d0 & 0xff ] + lut[ d0 >> 8 & 0xff ] + lut[ d0 >> 16 & 0xff ] + lut[ d0 >> 24 & 0xff ] + '-' +
|
||
|
lut[ d1 & 0xff ] + lut[ d1 >> 8 & 0xff ] + '-' + lut[ d1 >> 16 & 0x0f | 0x40 ] + lut[ d1 >> 24 & 0xff ] + '-' +
|
||
|
lut[ d2 & 0x3f | 0x80 ] + lut[ d2 >> 8 & 0xff ] + '-' + lut[ d2 >> 16 & 0xff ] + lut[ d2 >> 24 & 0xff ] +
|
||
|
lut[ d3 & 0xff ] + lut[ d3 >> 8 & 0xff ] + lut[ d3 >> 16 & 0xff ] + lut[ d3 >> 24 & 0xff ];
|
||
|
|
||
|
// .toUpperCase() here flattens concatenated strings to save heap memory space.
|
||
|
return uuid.toUpperCase();
|
||
|
|
||
|
};
|
||
|
|
||
|
} )(),
|
||
|
|
||
|
clamp: function ( value, min, max ) {
|
||
|
|
||
|
return Math.max( min, Math.min( max, value ) );
|
||
|
|
||
|
},
|
||
|
|
||
|
// compute euclidian modulo of m % n
|
||
|
// https://en.wikipedia.org/wiki/Modulo_operation
|
||
|
|
||
|
euclideanModulo: function ( n, m ) {
|
||
|
|
||
|
return ( ( n % m ) + m ) % m;
|
||
|
|
||
|
},
|
||
|
|
||
|
// Linear mapping from range <a1, a2> to range <b1, b2>
|
||
|
|
||
|
mapLinear: function ( x, a1, a2, b1, b2 ) {
|
||
|
|
||
|
return b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );
|
||
|
|
||
|
},
|
||
|
|
||
|
// https://en.wikipedia.org/wiki/Linear_interpolation
|
||
|
|
||
|
lerp: function ( x, y, t ) {
|
||
|
|
||
|
return ( 1 - t ) * x + t * y;
|
||
|
|
||
|
},
|
||
|
|
||
|
// http://en.wikipedia.org/wiki/Smoothstep
|
||
|
|
||
|
smoothstep: function ( x, min, max ) {
|
||
|
|
||
|
if ( x <= min ) return 0;
|
||
|
if ( x >= max ) return 1;
|
||
|
|
||
|
x = ( x - min ) / ( max - min );
|
||
|
|
||
|
return x * x * ( 3 - 2 * x );
|
||
|
|
||
|
},
|
||
|
|
||
|
smootherstep: function ( x, min, max ) {
|
||
|
|
||
|
if ( x <= min ) return 0;
|
||
|
if ( x >= max ) return 1;
|
||
|
|
||
|
x = ( x - min ) / ( max - min );
|
||
|
|
||
|
return x * x * x * ( x * ( x * 6 - 15 ) + 10 );
|
||
|
|
||
|
},
|
||
|
|
||
|
// Random integer from <low, high> interval
|
||
|
|
||
|
randInt: function ( low, high ) {
|
||
|
|
||
|
return low + Math.floor( Math.random() * ( high - low + 1 ) );
|
||
|
|
||
|
},
|
||
|
|
||
|
// Random float from <low, high> interval
|
||
|
|
||
|
randFloat: function ( low, high ) {
|
||
|
|
||
|
return low + Math.random() * ( high - low );
|
||
|
|
||
|
},
|
||
|
|
||
|
// Random float from <-range/2, range/2> interval
|
||
|
|
||
|
randFloatSpread: function ( range ) {
|
||
|
|
||
|
return range * ( 0.5 - Math.random() );
|
||
|
|
||
|
},
|
||
|
|
||
|
degToRad: function ( degrees ) {
|
||
|
|
||
|
return degrees * _Math.DEG2RAD;
|
||
|
|
||
|
},
|
||
|
|
||
|
radToDeg: function ( radians ) {
|
||
|
|
||
|
return radians * _Math.RAD2DEG;
|
||
|
|
||
|
},
|
||
|
|
||
|
isPowerOfTwo: function ( value ) {
|
||
|
|
||
|
return ( value & ( value - 1 ) ) === 0 && value !== 0;
|
||
|
|
||
|
},
|
||
|
|
||
|
ceilPowerOfTwo: function ( value ) {
|
||
|
|
||
|
return Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) );
|
||
|
|
||
|
},
|
||
|
|
||
|
floorPowerOfTwo: function ( value ) {
|
||
|
|
||
|
return Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) );
|
||
|
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
Quaternion = function ( x, y, z, w ) {
|
||
|
|
||
|
this._x = x || 0;
|
||
|
this._y = y || 0;
|
||
|
this._z = z || 0;
|
||
|
this._w = ( w !== undefined ) ? w : 1;
|
||
|
|
||
|
this.slerp = function ( qa, qb, qm, t ) {
|
||
|
|
||
|
return qm.copy( qa ).slerp( qb, t );
|
||
|
|
||
|
},
|
||
|
|
||
|
this.slerpFlat = function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {
|
||
|
|
||
|
// fuzz-free, array-based Quaternion SLERP operation
|
||
|
|
||
|
var x0 = src0[ srcOffset0 + 0 ],
|
||
|
y0 = src0[ srcOffset0 + 1 ],
|
||
|
z0 = src0[ srcOffset0 + 2 ],
|
||
|
w0 = src0[ srcOffset0 + 3 ],
|
||
|
|
||
|
x1 = src1[ srcOffset1 + 0 ],
|
||
|
y1 = src1[ srcOffset1 + 1 ],
|
||
|
z1 = src1[ srcOffset1 + 2 ],
|
||
|
w1 = src1[ srcOffset1 + 3 ];
|
||
|
|
||
|
if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {
|
||
|
|
||
|
var s = 1 - t,
|
||
|
|
||
|
cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,
|
||
|
|
||
|
dir = ( cos >= 0 ? 1 : - 1 ),
|
||
|
sqrSin = 1 - cos * cos;
|
||
|
|
||
|
// Skip the Slerp for tiny steps to avoid numeric problems:
|
||
|
if ( sqrSin > Number.EPSILON ) {
|
||
|
|
||
|
var sin = Math.sqrt( sqrSin ),
|
||
|
len = Math.atan2( sin, cos * dir );
|
||
|
|
||
|
s = Math.sin( s * len ) / sin;
|
||
|
t = Math.sin( t * len ) / sin;
|
||
|
|
||
|
}
|
||
|
|
||
|
var tDir = t * dir;
|
||
|
|
||
|
x0 = x0 * s + x1 * tDir;
|
||
|
y0 = y0 * s + y1 * tDir;
|
||
|
z0 = z0 * s + z1 * tDir;
|
||
|
w0 = w0 * s + w1 * tDir;
|
||
|
|
||
|
// Normalize in case we just did a lerp:
|
||
|
if ( s === 1 - t ) {
|
||
|
|
||
|
var f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );
|
||
|
|
||
|
x0 *= f;
|
||
|
y0 *= f;
|
||
|
z0 *= f;
|
||
|
w0 *= f;
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
dst[ dstOffset ] = x0;
|
||
|
dst[ dstOffset + 1 ] = y0;
|
||
|
dst[ dstOffset + 2 ] = z0;
|
||
|
dst[ dstOffset + 3 ] = w0;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.isQuaternion = true;
|
||
|
|
||
|
this.set = function ( x, y, z, w ) {
|
||
|
|
||
|
this._x = x;
|
||
|
this._y = y;
|
||
|
this._z = z;
|
||
|
this._w = w;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.clone = function () {
|
||
|
|
||
|
return new this.constructor( this._x, this._y, this._z, this._w );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.copy = function ( quaternion ) {
|
||
|
|
||
|
this._x = quaternion.x;
|
||
|
this._y = quaternion.y;
|
||
|
this._z = quaternion.z;
|
||
|
this._w = quaternion.w;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setFromEuler = function ( euler, update ) {
|
||
|
|
||
|
if ( ! ( euler && euler.isEuler ) ) {
|
||
|
|
||
|
throw new Error( 'Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );
|
||
|
|
||
|
}
|
||
|
|
||
|
var x = euler._x, y = euler._y, z = euler._z, order = euler.order;
|
||
|
|
||
|
// http://www.mathworks.com/matlabcentral/fileexchange/
|
||
|
// 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/
|
||
|
// content/SpinCalc.m
|
||
|
|
||
|
var cos = Math.cos;
|
||
|
var sin = Math.sin;
|
||
|
|
||
|
var c1 = cos( x / 2 );
|
||
|
var c2 = cos( y / 2 );
|
||
|
var c3 = cos( z / 2 );
|
||
|
|
||
|
var s1 = sin( x / 2 );
|
||
|
var s2 = sin( y / 2 );
|
||
|
var s3 = sin( z / 2 );
|
||
|
|
||
|
if ( order === 'XYZ' ) {
|
||
|
|
||
|
this._x = s1 * c2 * c3 + c1 * s2 * s3;
|
||
|
this._y = c1 * s2 * c3 - s1 * c2 * s3;
|
||
|
this._z = c1 * c2 * s3 + s1 * s2 * c3;
|
||
|
this._w = c1 * c2 * c3 - s1 * s2 * s3;
|
||
|
|
||
|
} else if ( order === 'YXZ' ) {
|
||
|
|
||
|
this._x = s1 * c2 * c3 + c1 * s2 * s3;
|
||
|
this._y = c1 * s2 * c3 - s1 * c2 * s3;
|
||
|
this._z = c1 * c2 * s3 - s1 * s2 * c3;
|
||
|
this._w = c1 * c2 * c3 + s1 * s2 * s3;
|
||
|
|
||
|
} else if ( order === 'ZXY' ) {
|
||
|
|
||
|
this._x = s1 * c2 * c3 - c1 * s2 * s3;
|
||
|
this._y = c1 * s2 * c3 + s1 * c2 * s3;
|
||
|
this._z = c1 * c2 * s3 + s1 * s2 * c3;
|
||
|
this._w = c1 * c2 * c3 - s1 * s2 * s3;
|
||
|
|
||
|
} else if ( order === 'ZYX' ) {
|
||
|
|
||
|
this._x = s1 * c2 * c3 - c1 * s2 * s3;
|
||
|
this._y = c1 * s2 * c3 + s1 * c2 * s3;
|
||
|
this._z = c1 * c2 * s3 - s1 * s2 * c3;
|
||
|
this._w = c1 * c2 * c3 + s1 * s2 * s3;
|
||
|
|
||
|
} else if ( order === 'YZX' ) {
|
||
|
|
||
|
this._x = s1 * c2 * c3 + c1 * s2 * s3;
|
||
|
this._y = c1 * s2 * c3 + s1 * c2 * s3;
|
||
|
this._z = c1 * c2 * s3 - s1 * s2 * c3;
|
||
|
this._w = c1 * c2 * c3 - s1 * s2 * s3;
|
||
|
|
||
|
} else if ( order === 'XZY' ) {
|
||
|
|
||
|
this._x = s1 * c2 * c3 - c1 * s2 * s3;
|
||
|
this._y = c1 * s2 * c3 - s1 * c2 * s3;
|
||
|
this._z = c1 * c2 * s3 + s1 * s2 * c3;
|
||
|
this._w = c1 * c2 * c3 + s1 * s2 * s3;
|
||
|
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setFromAxisAngle = function ( axis, angle ) {
|
||
|
|
||
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm
|
||
|
|
||
|
// assumes axis is normalized
|
||
|
|
||
|
var halfAngle = angle / 2, s = Math.sin( halfAngle );
|
||
|
|
||
|
this._x = axis.x * s;
|
||
|
this._y = axis.y * s;
|
||
|
this._z = axis.z * s;
|
||
|
this._w = Math.cos( halfAngle );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setFromRotationMatrix = function ( m ) {
|
||
|
|
||
|
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm
|
||
|
|
||
|
// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)
|
||
|
|
||
|
var te = m.elements,
|
||
|
|
||
|
m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
|
||
|
m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
|
||
|
m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],
|
||
|
|
||
|
trace = m11 + m22 + m33,
|
||
|
s;
|
||
|
|
||
|
if ( trace > 0 ) {
|
||
|
|
||
|
s = 0.5 / Math.sqrt( trace + 1.0 );
|
||
|
|
||
|
this._w = 0.25 / s;
|
||
|
this._x = ( m32 - m23 ) * s;
|
||
|
this._y = ( m13 - m31 ) * s;
|
||
|
this._z = ( m21 - m12 ) * s;
|
||
|
|
||
|
} else if ( m11 > m22 && m11 > m33 ) {
|
||
|
|
||
|
s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );
|
||
|
|
||
|
this._w = ( m32 - m23 ) / s;
|
||
|
this._x = 0.25 * s;
|
||
|
this._y = ( m12 + m21 ) / s;
|
||
|
this._z = ( m13 + m31 ) / s;
|
||
|
|
||
|
} else if ( m22 > m33 ) {
|
||
|
|
||
|
s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );
|
||
|
|
||
|
this._w = ( m13 - m31 ) / s;
|
||
|
this._x = ( m12 + m21 ) / s;
|
||
|
this._y = 0.25 * s;
|
||
|
this._z = ( m23 + m32 ) / s;
|
||
|
|
||
|
} else {
|
||
|
|
||
|
s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );
|
||
|
|
||
|
this._w = ( m21 - m12 ) / s;
|
||
|
this._x = ( m13 + m31 ) / s;
|
||
|
this._y = ( m23 + m32 ) / s;
|
||
|
this._z = 0.25 * s;
|
||
|
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setFromUnitVectors = function ( vFrom, vTo ) {
|
||
|
|
||
|
// assumes direction vectors vFrom and vTo are normalized
|
||
|
|
||
|
var EPS = 0.000001;
|
||
|
|
||
|
var r = vFrom.dot( vTo ) + 1;
|
||
|
|
||
|
if ( r < EPS ) {
|
||
|
|
||
|
r = 0;
|
||
|
|
||
|
if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {
|
||
|
|
||
|
this._x = - vFrom.y;
|
||
|
this._y = vFrom.x;
|
||
|
this._z = 0;
|
||
|
this._w = r;
|
||
|
|
||
|
} else {
|
||
|
|
||
|
this._x = 0;
|
||
|
this._y = - vFrom.z;
|
||
|
this._z = vFrom.y;
|
||
|
this._w = r;
|
||
|
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
|
||
|
// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3
|
||
|
|
||
|
this._x = vFrom.y * vTo.z - vFrom.z * vTo.y;
|
||
|
this._y = vFrom.z * vTo.x - vFrom.x * vTo.z;
|
||
|
this._z = vFrom.x * vTo.y - vFrom.y * vTo.x;
|
||
|
this._w = r;
|
||
|
|
||
|
}
|
||
|
|
||
|
return this.normalize();
|
||
|
|
||
|
};
|
||
|
|
||
|
this.angleTo = function ( q ) {
|
||
|
|
||
|
return 2 * Math.acos( Math.abs( _Math.clamp( this.dot( q ), - 1, 1 ) ) );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.rotateTowards = function ( q, step ) {
|
||
|
|
||
|
var angle = this.angleTo( q );
|
||
|
|
||
|
if ( angle === 0 ) return this;
|
||
|
|
||
|
var t = Math.min( 1, step / angle );
|
||
|
|
||
|
this.slerp( q, t );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.inverse = function () {
|
||
|
|
||
|
// quaternion is assumed to have unit length
|
||
|
|
||
|
return this.conjugate();
|
||
|
|
||
|
};
|
||
|
|
||
|
this.conjugate = function () {
|
||
|
|
||
|
this._x *= - 1;
|
||
|
this._y *= - 1;
|
||
|
this._z *= - 1;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.dot = function ( v ) {
|
||
|
|
||
|
return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.lengthSq = function () {
|
||
|
|
||
|
return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.length = function () {
|
||
|
|
||
|
return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.normalize = function () {
|
||
|
|
||
|
var l = this.length();
|
||
|
|
||
|
if ( l === 0 ) {
|
||
|
|
||
|
this._x = 0;
|
||
|
this._y = 0;
|
||
|
this._z = 0;
|
||
|
this._w = 1;
|
||
|
|
||
|
} else {
|
||
|
|
||
|
l = 1 / l;
|
||
|
|
||
|
this._x = this._x * l;
|
||
|
this._y = this._y * l;
|
||
|
this._z = this._z * l;
|
||
|
this._w = this._w * l;
|
||
|
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.multiply = function ( q, p ) {
|
||
|
|
||
|
if ( p !== undefined ) {
|
||
|
|
||
|
console.warn( 'Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );
|
||
|
return this.multiplyQuaternions( q, p );
|
||
|
|
||
|
}
|
||
|
|
||
|
return this.multiplyQuaternions( this, q );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.premultiply = function ( q ) {
|
||
|
|
||
|
return this.multiplyQuaternions( q, this );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.multiplyQuaternions = function ( a, b ) {
|
||
|
|
||
|
// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm
|
||
|
|
||
|
var qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;
|
||
|
var qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;
|
||
|
|
||
|
this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;
|
||
|
this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;
|
||
|
this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;
|
||
|
this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.slerp = function ( qb, t ) {
|
||
|
|
||
|
if ( t === 0 ) return this;
|
||
|
if ( t === 1 ) return this.copy( qb );
|
||
|
|
||
|
var x = this._x, y = this._y, z = this._z, w = this._w;
|
||
|
|
||
|
// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/
|
||
|
|
||
|
var cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;
|
||
|
|
||
|
if ( cosHalfTheta < 0 ) {
|
||
|
|
||
|
this._w = - qb._w;
|
||
|
this._x = - qb._x;
|
||
|
this._y = - qb._y;
|
||
|
this._z = - qb._z;
|
||
|
|
||
|
cosHalfTheta = - cosHalfTheta;
|
||
|
|
||
|
} else {
|
||
|
|
||
|
this.copy( qb );
|
||
|
|
||
|
}
|
||
|
|
||
|
if ( cosHalfTheta >= 1.0 ) {
|
||
|
|
||
|
this._w = w;
|
||
|
this._x = x;
|
||
|
this._y = y;
|
||
|
this._z = z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
}
|
||
|
|
||
|
var sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;
|
||
|
|
||
|
if ( sqrSinHalfTheta <= Number.EPSILON ) {
|
||
|
|
||
|
var s = 1 - t;
|
||
|
this._w = s * w + t * this._w;
|
||
|
this._x = s * x + t * this._x;
|
||
|
this._y = s * y + t * this._y;
|
||
|
this._z = s * z + t * this._z;
|
||
|
|
||
|
this.normalize();
|
||
|
|
||
|
return this;
|
||
|
|
||
|
}
|
||
|
|
||
|
var sinHalfTheta = Math.sqrt( sqrSinHalfTheta );
|
||
|
var halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );
|
||
|
var ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,
|
||
|
ratioB = Math.sin( t * halfTheta ) / sinHalfTheta;
|
||
|
|
||
|
this._w = ( w * ratioA + this._w * ratioB );
|
||
|
this._x = ( x * ratioA + this._x * ratioB );
|
||
|
this._y = ( y * ratioA + this._y * ratioB );
|
||
|
this._z = ( z * ratioA + this._z * ratioB );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.equals = function ( quaternion ) {
|
||
|
|
||
|
return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.fromArray = function ( array, offset ) {
|
||
|
|
||
|
if ( offset === undefined ) offset = 0;
|
||
|
|
||
|
this._x = array[ offset ];
|
||
|
this._y = array[ offset + 1 ];
|
||
|
this._z = array[ offset + 2 ];
|
||
|
this._w = array[ offset + 3 ];
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.toArray = function ( array, offset ) {
|
||
|
|
||
|
if ( array === undefined ) array = [];
|
||
|
if ( offset === undefined ) offset = 0;
|
||
|
|
||
|
array[ offset ] = this._x;
|
||
|
array[ offset + 1 ] = this._y;
|
||
|
array[ offset + 2 ] = this._z;
|
||
|
array[ offset + 3 ] = this._w;
|
||
|
|
||
|
return array;
|
||
|
|
||
|
};
|
||
|
};
|
||
|
|
||
|
Object.defineProperties( Quaternion.prototype, {
|
||
|
|
||
|
x: {
|
||
|
|
||
|
get: function () {
|
||
|
|
||
|
return this._x;
|
||
|
|
||
|
},
|
||
|
|
||
|
set: function ( value ) {
|
||
|
|
||
|
this._x = value;
|
||
|
|
||
|
}
|
||
|
|
||
|
},
|
||
|
|
||
|
y: {
|
||
|
|
||
|
get: function () {
|
||
|
|
||
|
return this._y;
|
||
|
|
||
|
},
|
||
|
|
||
|
set: function ( value ) {
|
||
|
|
||
|
this._y = value;
|
||
|
|
||
|
}
|
||
|
|
||
|
},
|
||
|
|
||
|
z: {
|
||
|
|
||
|
get: function () {
|
||
|
|
||
|
return this._z;
|
||
|
|
||
|
},
|
||
|
|
||
|
set: function ( value ) {
|
||
|
|
||
|
this._z = value;
|
||
|
|
||
|
}
|
||
|
|
||
|
},
|
||
|
|
||
|
w: {
|
||
|
|
||
|
get: function () {
|
||
|
|
||
|
return this._w;
|
||
|
|
||
|
},
|
||
|
|
||
|
set: function ( value ) {
|
||
|
|
||
|
this._w = value;
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
} );
|
||
|
|
||
|
///////////////////////////////////////////////////////////////
|
||
|
|
||
|
Vector3 = function( x, y, z ) {
|
||
|
|
||
|
this.x = x || 0;
|
||
|
this.y = y || 0;
|
||
|
this.z = z || 0;
|
||
|
|
||
|
this.isVector3 = true;
|
||
|
|
||
|
this.set = function ( x, y, z ) {
|
||
|
|
||
|
this.x = x;
|
||
|
this.y = y;
|
||
|
this.z = z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setScalar = function ( scalar ) {
|
||
|
|
||
|
this.x = scalar;
|
||
|
this.y = scalar;
|
||
|
this.z = scalar;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setX = function ( x ) {
|
||
|
|
||
|
this.x = x;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setY = function ( y ) {
|
||
|
|
||
|
this.y = y;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setZ = function ( z ) {
|
||
|
|
||
|
this.z = z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setComponent = function ( index, value ) {
|
||
|
|
||
|
switch ( index ) {
|
||
|
|
||
|
case 0: this.x = value; break;
|
||
|
case 1: this.y = value; break;
|
||
|
case 2: this.z = value; break;
|
||
|
default: throw new Error( 'index is out of range: ' + index );
|
||
|
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.getComponent = function ( index ) {
|
||
|
|
||
|
switch ( index ) {
|
||
|
|
||
|
case 0: return this.x;
|
||
|
case 1: return this.y;
|
||
|
case 2: return this.z;
|
||
|
default: throw new Error( 'index is out of range: ' + index );
|
||
|
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
this.clone = function () {
|
||
|
|
||
|
return new this.constructor( this.x, this.y, this.z );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.copy = function ( v ) {
|
||
|
|
||
|
this.x = v.x;
|
||
|
this.y = v.y;
|
||
|
this.z = v.z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.add = function ( v, w ) {
|
||
|
|
||
|
if ( w !== undefined ) {
|
||
|
|
||
|
console.warn( 'Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );
|
||
|
return this.addVectors( v, w );
|
||
|
|
||
|
}
|
||
|
|
||
|
this.x += v.x;
|
||
|
this.y += v.y;
|
||
|
this.z += v.z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.addScalar = function ( s ) {
|
||
|
|
||
|
this.x += s;
|
||
|
this.y += s;
|
||
|
this.z += s;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.addVectors = function ( a, b ) {
|
||
|
|
||
|
this.x = a.x + b.x;
|
||
|
this.y = a.y + b.y;
|
||
|
this.z = a.z + b.z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.addScaledVector = function ( v, s ) {
|
||
|
|
||
|
this.x += v.x * s;
|
||
|
this.y += v.y * s;
|
||
|
this.z += v.z * s;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.sub = function ( v, w ) {
|
||
|
|
||
|
if ( w !== undefined ) {
|
||
|
|
||
|
console.warn( 'Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );
|
||
|
return this.subVectors( v, w );
|
||
|
|
||
|
}
|
||
|
|
||
|
this.x -= v.x;
|
||
|
this.y -= v.y;
|
||
|
this.z -= v.z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.subScalar = function ( s ) {
|
||
|
|
||
|
this.x -= s;
|
||
|
this.y -= s;
|
||
|
this.z -= s;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.subVectors = function ( a, b ) {
|
||
|
|
||
|
this.x = a.x - b.x;
|
||
|
this.y = a.y - b.y;
|
||
|
this.z = a.z - b.z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.multiply = function ( v, w ) {
|
||
|
|
||
|
if ( w !== undefined ) {
|
||
|
|
||
|
console.warn( 'Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );
|
||
|
return this.multiplyVectors( v, w );
|
||
|
|
||
|
}
|
||
|
|
||
|
this.x *= v.x;
|
||
|
this.y *= v.y;
|
||
|
this.z *= v.z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.multiplyScalar = function ( scalar ) {
|
||
|
|
||
|
this.x *= scalar;
|
||
|
this.y *= scalar;
|
||
|
this.z *= scalar;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.multiplyVectors = function ( a, b ) {
|
||
|
|
||
|
this.x = a.x * b.x;
|
||
|
this.y = a.y * b.y;
|
||
|
this.z = a.z * b.z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
this.applyEuler = function () {
|
||
|
|
||
|
var quaternion = new Quaternion();
|
||
|
|
||
|
return function applyEuler( euler ) {
|
||
|
|
||
|
if ( ! ( euler && euler.isEuler ) ) {
|
||
|
|
||
|
console.error( 'Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );
|
||
|
|
||
|
}
|
||
|
|
||
|
return this.applyQuaternion( quaternion.setFromEuler( euler ) );
|
||
|
|
||
|
};
|
||
|
|
||
|
}();
|
||
|
|
||
|
this.applyAxisAngle = function () {
|
||
|
|
||
|
var quaternion = new Quaternion();
|
||
|
|
||
|
return function applyAxisAngle( axis, angle ) {
|
||
|
|
||
|
return this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) );
|
||
|
|
||
|
};
|
||
|
|
||
|
}();
|
||
|
*/
|
||
|
|
||
|
this.applyMatrix3 = function ( m ) {
|
||
|
|
||
|
var x = this.x, y = this.y, z = this.z;
|
||
|
var e = m.elements;
|
||
|
|
||
|
this.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;
|
||
|
this.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;
|
||
|
this.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.applyMatrix4 = function ( m ) {
|
||
|
|
||
|
var x = this.x, y = this.y, z = this.z;
|
||
|
var e = m.elements;
|
||
|
|
||
|
var w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );
|
||
|
|
||
|
this.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;
|
||
|
this.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;
|
||
|
this.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.applyQuaternion = function ( q ) {
|
||
|
|
||
|
var x = this.x, y = this.y, z = this.z;
|
||
|
var qx = q.x, qy = q.y, qz = q.z, qw = q.w;
|
||
|
|
||
|
// calculate quat * vector
|
||
|
|
||
|
var ix = qw * x + qy * z - qz * y;
|
||
|
var iy = qw * y + qz * x - qx * z;
|
||
|
var iz = qw * z + qx * y - qy * x;
|
||
|
var iw = - qx * x - qy * y - qz * z;
|
||
|
|
||
|
// calculate result * inverse quat
|
||
|
|
||
|
this.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;
|
||
|
this.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;
|
||
|
this.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.project = function ( camera ) {
|
||
|
|
||
|
console.error( 'Vector3: .project() is not supported in modified version' );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.unproject = function ( camera ) {
|
||
|
|
||
|
console.error( 'Vector3: .unproject() is not supported in modified version' );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.transformDirection = function ( m ) {
|
||
|
|
||
|
// input: Matrix4 affine matrix
|
||
|
// vector interpreted as a direction
|
||
|
|
||
|
var x = this.x, y = this.y, z = this.z;
|
||
|
var e = m.elements;
|
||
|
|
||
|
this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
|
||
|
this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
|
||
|
this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
|
||
|
|
||
|
return this.normalize();
|
||
|
|
||
|
};
|
||
|
|
||
|
this.divide = function ( v ) {
|
||
|
|
||
|
this.x /= v.x;
|
||
|
this.y /= v.y;
|
||
|
this.z /= v.z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.divideScalar = function ( scalar ) {
|
||
|
|
||
|
return this.multiplyScalar( 1 / scalar );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.min = function ( v ) {
|
||
|
|
||
|
this.x = Math.min( this.x, v.x );
|
||
|
this.y = Math.min( this.y, v.y );
|
||
|
this.z = Math.min( this.z, v.z );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.max = function ( v ) {
|
||
|
|
||
|
this.x = Math.max( this.x, v.x );
|
||
|
this.y = Math.max( this.y, v.y );
|
||
|
this.z = Math.max( this.z, v.z );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.clamp = function ( min, max ) {
|
||
|
|
||
|
// assumes min < max, componentwise
|
||
|
|
||
|
this.x = Math.max( min.x, Math.min( max.x, this.x ) );
|
||
|
this.y = Math.max( min.y, Math.min( max.y, this.y ) );
|
||
|
this.z = Math.max( min.z, Math.min( max.z, this.z ) );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.clampScalar = function ( minVal, maxVal ) {
|
||
|
|
||
|
this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
|
||
|
this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
|
||
|
this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.clampLength = function ( min, max ) {
|
||
|
|
||
|
var length = this.length();
|
||
|
|
||
|
return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.floor = function () {
|
||
|
|
||
|
this.x = Math.floor( this.x );
|
||
|
this.y = Math.floor( this.y );
|
||
|
this.z = Math.floor( this.z );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.ceil = function () {
|
||
|
|
||
|
this.x = Math.ceil( this.x );
|
||
|
this.y = Math.ceil( this.y );
|
||
|
this.z = Math.ceil( this.z );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.round = function () {
|
||
|
|
||
|
this.x = Math.round( this.x );
|
||
|
this.y = Math.round( this.y );
|
||
|
this.z = Math.round( this.z );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.roundToZero = function () {
|
||
|
|
||
|
this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
|
||
|
this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
|
||
|
this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.negate = function () {
|
||
|
|
||
|
this.x = - this.x;
|
||
|
this.y = - this.y;
|
||
|
this.z = - this.z;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.dot = function ( v ) {
|
||
|
|
||
|
return this.x * v.x + this.y * v.y + this.z * v.z;
|
||
|
|
||
|
};
|
||
|
|
||
|
// TODO lengthSquared?
|
||
|
|
||
|
this.lengthSq = function () {
|
||
|
|
||
|
return this.x * this.x + this.y * this.y + this.z * this.z;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.length = function () {
|
||
|
|
||
|
return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.manhattanLength = function () {
|
||
|
|
||
|
return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.normalize = function () {
|
||
|
|
||
|
return this.divideScalar( this.length() || 1 );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setLength = function ( length ) {
|
||
|
|
||
|
return this.normalize().multiplyScalar( length );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.lerp = function ( v, alpha ) {
|
||
|
|
||
|
this.x += ( v.x - this.x ) * alpha;
|
||
|
this.y += ( v.y - this.y ) * alpha;
|
||
|
this.z += ( v.z - this.z ) * alpha;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.lerpVectors = function ( v1, v2, alpha ) {
|
||
|
|
||
|
return this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.cross = function ( v, w ) {
|
||
|
|
||
|
if ( w !== undefined ) {
|
||
|
|
||
|
console.warn( 'Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );
|
||
|
return this.crossVectors( v, w );
|
||
|
|
||
|
}
|
||
|
|
||
|
return this.crossVectors( this, v );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.crossVectors = function ( a, b ) {
|
||
|
|
||
|
var ax = a.x, ay = a.y, az = a.z;
|
||
|
var bx = b.x, by = b.y, bz = b.z;
|
||
|
|
||
|
this.x = ay * bz - az * by;
|
||
|
this.y = az * bx - ax * bz;
|
||
|
this.z = ax * by - ay * bx;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.projectOnVector = function ( vector ) {
|
||
|
|
||
|
var scalar = vector.dot( this ) / vector.lengthSq();
|
||
|
|
||
|
return this.copy( vector ).multiplyScalar( scalar );
|
||
|
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
this.projectOnPlane = function () {
|
||
|
|
||
|
var v1 = new Vector3();
|
||
|
|
||
|
return function projectOnPlane( planeNormal ) {
|
||
|
|
||
|
v1.copy( this ).projectOnVector( planeNormal );
|
||
|
|
||
|
return this.sub( v1 );
|
||
|
|
||
|
};
|
||
|
|
||
|
}();
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
this.reflect = function () {
|
||
|
|
||
|
// reflect incident vector off plane orthogonal to normal
|
||
|
// normal is assumed to have unit length
|
||
|
|
||
|
var v1 = new Vector3();
|
||
|
|
||
|
return function reflect( normal ) {
|
||
|
|
||
|
return this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );
|
||
|
|
||
|
};
|
||
|
|
||
|
}();
|
||
|
*/
|
||
|
|
||
|
this.angleTo = function ( v ) {
|
||
|
|
||
|
var theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) );
|
||
|
|
||
|
// clamp, to handle numerical problems
|
||
|
|
||
|
return Math.acos( _Math.clamp( theta, - 1, 1 ) );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.distanceTo = function ( v ) {
|
||
|
|
||
|
return Math.sqrt( this.distanceToSquared( v ) );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.distanceToSquared = function ( v ) {
|
||
|
|
||
|
var dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;
|
||
|
|
||
|
return dx * dx + dy * dy + dz * dz;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.manhattanDistanceTo = function ( v ) {
|
||
|
|
||
|
return Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setFromSpherical = function ( s ) {
|
||
|
|
||
|
return this.setFromSphericalCoords( s.radius, s.phi, s.theta );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setFromSphericalCoords = function ( radius, phi, theta ) {
|
||
|
|
||
|
var sinPhiRadius = Math.sin( phi ) * radius;
|
||
|
|
||
|
this.x = sinPhiRadius * Math.sin( theta );
|
||
|
this.y = Math.cos( phi ) * radius;
|
||
|
this.z = sinPhiRadius * Math.cos( theta );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setFromCylindrical = function ( c ) {
|
||
|
|
||
|
console.error( 'Vector3: .setFromCylindrical() is not supported in modified version' );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setFromCylindricalCoords = function ( radius, theta, y ) {
|
||
|
|
||
|
this.x = radius * Math.sin( theta );
|
||
|
this.y = y;
|
||
|
this.z = radius * Math.cos( theta );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setFromMatrixPosition = function ( m ) {
|
||
|
|
||
|
var e = m.elements;
|
||
|
|
||
|
this.x = e[ 12 ];
|
||
|
this.y = e[ 13 ];
|
||
|
this.z = e[ 14 ];
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setFromMatrixScale = function ( m ) {
|
||
|
|
||
|
var sx = this.setFromMatrixColumn( m, 0 ).length();
|
||
|
var sy = this.setFromMatrixColumn( m, 1 ).length();
|
||
|
var sz = this.setFromMatrixColumn( m, 2 ).length();
|
||
|
|
||
|
this.x = sx;
|
||
|
this.y = sy;
|
||
|
this.z = sz;
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.setFromMatrixColumn = function ( m, index ) {
|
||
|
|
||
|
return this.fromArray( m.elements, index * 4 );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.equals = function ( v ) {
|
||
|
|
||
|
return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );
|
||
|
|
||
|
};
|
||
|
|
||
|
this.fromArray = function ( array, offset ) {
|
||
|
|
||
|
if ( offset === undefined ) offset = 0;
|
||
|
|
||
|
this.x = array[ offset ];
|
||
|
this.y = array[ offset + 1 ];
|
||
|
this.z = array[ offset + 2 ];
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.toArray = function ( array, offset ) {
|
||
|
|
||
|
if ( array === undefined ) array = [];
|
||
|
if ( offset === undefined ) offset = 0;
|
||
|
|
||
|
array[ offset ] = this.x;
|
||
|
array[ offset + 1 ] = this.y;
|
||
|
array[ offset + 2 ] = this.z;
|
||
|
|
||
|
return array;
|
||
|
|
||
|
};
|
||
|
|
||
|
this.fromBufferAttribute = function ( attribute, index, offset ) {
|
||
|
|
||
|
if ( offset !== undefined ) {
|
||
|
|
||
|
console.warn( 'Vector3: offset has been removed from .fromBufferAttribute().' );
|
||
|
|
||
|
}
|
||
|
|
||
|
this.x = attribute.getX( index );
|
||
|
this.y = attribute.getY( index );
|
||
|
this.z = attribute.getZ( index );
|
||
|
|
||
|
return this;
|
||
|
|
||
|
};
|
||
|
|
||
|
};
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
THREE._Math = _Math;
|
||
|
THREE.Vector3 = Vector3;
|
||
|
THREE.Quaternion = Quaternion;
|