1182 lines
38 KiB
C
1182 lines
38 KiB
C
|
// Copyright (c) 2006,2007,2009,2010,2011 Tel-Aviv University (Israel).
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org).
|
||
|
// You can redistribute it and/or modify it under the terms of the GNU
|
||
|
// General Public License as published by the Free Software Foundation,
|
||
|
// either version 3 of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: GPL-3.0+
|
||
|
//
|
||
|
// Author(s) : Ron Wein <wein@post.tau.ac.il>
|
||
|
// Efi Fogel <efif@post.tau.ac.il>
|
||
|
// Waqar Khan <wkhan@mpi-inf.mpg.de>
|
||
|
|
||
|
#ifndef CGAL_ARR_SEGMENT_TRAITS_2_H
|
||
|
#define CGAL_ARR_SEGMENT_TRAITS_2_H
|
||
|
|
||
|
#include <CGAL/license/Arrangement_on_surface_2.h>
|
||
|
|
||
|
#include <CGAL/disable_warnings.h>
|
||
|
|
||
|
/*! \file
|
||
|
* The segment traits-class for the arrangement package.
|
||
|
*/
|
||
|
|
||
|
#include <CGAL/tags.h>
|
||
|
#include <CGAL/intersections.h>
|
||
|
#include <CGAL/Arr_tags.h>
|
||
|
#include <CGAL/Arr_geometry_traits/Segment_assertions.h>
|
||
|
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
|
||
|
#include <CGAL/Arr_enums.h>
|
||
|
#include <fstream>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
template <class Kernel_ = Exact_predicates_exact_constructions_kernel>
|
||
|
class Arr_segment_2;
|
||
|
|
||
|
/*!
|
||
|
* \class A traits class for maintaining an arrangement of segments, avoiding
|
||
|
* cascading of computations as much as possible.
|
||
|
*
|
||
|
* The class is derived from the parameterized kernel to extend the traits
|
||
|
* with all the types and operations supported by the kernel. This makes it
|
||
|
* possible to use the traits class for data structures that extend the
|
||
|
* Arrangement_2 type and require objects and operations supported by the
|
||
|
* kernel, but not defined in this derived class.
|
||
|
*/
|
||
|
template <typename Kernel_ = Exact_predicates_exact_constructions_kernel>
|
||
|
class Arr_segment_traits_2 : public Kernel_ {
|
||
|
friend class Arr_segment_2<Kernel_>;
|
||
|
|
||
|
public:
|
||
|
typedef Kernel_ Kernel;
|
||
|
typedef typename Kernel::FT FT;
|
||
|
|
||
|
typedef typename Algebraic_structure_traits<FT>::Is_exact
|
||
|
Has_exact_division;
|
||
|
|
||
|
// Category tags:
|
||
|
typedef Tag_true Has_left_category;
|
||
|
typedef Tag_true Has_merge_category;
|
||
|
typedef Tag_false Has_do_intersect_category;
|
||
|
|
||
|
typedef Arr_oblivious_side_tag Left_side_category;
|
||
|
typedef Arr_oblivious_side_tag Bottom_side_category;
|
||
|
typedef Arr_oblivious_side_tag Top_side_category;
|
||
|
typedef Arr_oblivious_side_tag Right_side_category;
|
||
|
|
||
|
typedef typename Kernel::Line_2 Line_2;
|
||
|
typedef CGAL::Segment_assertions<Arr_segment_traits_2<Kernel> >
|
||
|
Segment_assertions;
|
||
|
|
||
|
/*! \class Representation of a segment with cached data.
|
||
|
*/
|
||
|
class _Segment_cached_2 {
|
||
|
public:
|
||
|
typedef typename Kernel::Line_2 Line_2;
|
||
|
typedef typename Kernel::Segment_2 Segment_2;
|
||
|
typedef typename Kernel::Point_2 Point_2;
|
||
|
|
||
|
protected:
|
||
|
Line_2 l; // The line that supports the segment.
|
||
|
Point_2 ps; // The source point of the segment.
|
||
|
Point_2 pt; // The target point of the segment.
|
||
|
bool is_pt_max; // Is the target (lexicographically) larger
|
||
|
// than the source.
|
||
|
bool is_vert; // Is this a vertical segment.
|
||
|
bool is_degen; // Is the segment degenerate (a single point).
|
||
|
|
||
|
public:
|
||
|
/*! Default constructor. */
|
||
|
_Segment_cached_2() : is_vert(false), is_degen(true) {}
|
||
|
|
||
|
/*! Constructor from a segment.
|
||
|
* \param seg The segment.
|
||
|
* \pre The segment is not degenerate.
|
||
|
*/
|
||
|
_Segment_cached_2(const Segment_2& seg)
|
||
|
{
|
||
|
Kernel kernel;
|
||
|
|
||
|
typename Kernel_::Construct_vertex_2
|
||
|
construct_vertex = kernel.construct_vertex_2_object();
|
||
|
|
||
|
ps = construct_vertex(seg, 0);
|
||
|
pt = construct_vertex(seg, 1);
|
||
|
|
||
|
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
|
||
|
is_degen = (res == EQUAL);
|
||
|
is_pt_max = (res == SMALLER);
|
||
|
|
||
|
CGAL_precondition_msg (! is_degen,
|
||
|
"Cannot construct a degenerate segment.");
|
||
|
|
||
|
l = kernel.construct_line_2_object()(seg);
|
||
|
is_vert = kernel.is_vertical_2_object()(seg);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* Construct a segment from two end-points.
|
||
|
* \param source The source point.
|
||
|
* \param target The target point.
|
||
|
* \param The two points must not be equal.
|
||
|
*/
|
||
|
_Segment_cached_2(const Point_2& source, const Point_2& target) :
|
||
|
ps(source),
|
||
|
pt(target)
|
||
|
{
|
||
|
Kernel kernel;
|
||
|
|
||
|
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
|
||
|
is_degen = (res == EQUAL);
|
||
|
is_pt_max = (res == SMALLER);
|
||
|
|
||
|
CGAL_precondition_msg(! is_degen,
|
||
|
"Cannot construct a degenerate segment.");
|
||
|
|
||
|
l = kernel.construct_line_2_object()(source, target);
|
||
|
is_vert = kernel.is_vertical_2_object()(l);
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* Construct a segment from two end-points on a supporting line.
|
||
|
* \param supp_line The supporting line.
|
||
|
* \param source The source point.
|
||
|
* \param target The target point.
|
||
|
* \pre The two endpoints are not the same and both lie on the given line.
|
||
|
*/
|
||
|
_Segment_cached_2(const Line_2& supp_line,
|
||
|
const Point_2& source, const Point_2& target) :
|
||
|
l(supp_line),
|
||
|
ps(source),
|
||
|
pt(target)
|
||
|
{
|
||
|
Kernel kernel;
|
||
|
|
||
|
CGAL_precondition(
|
||
|
Segment_assertions::_assert_is_point_on(source, l,
|
||
|
Has_exact_division()) &&
|
||
|
Segment_assertions::_assert_is_point_on(target,l,
|
||
|
Has_exact_division())
|
||
|
);
|
||
|
|
||
|
is_vert = kernel.is_vertical_2_object()(l);
|
||
|
|
||
|
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
|
||
|
is_degen = (res == EQUAL);
|
||
|
is_pt_max = (res == SMALLER);
|
||
|
|
||
|
CGAL_precondition_msg(! is_degen,
|
||
|
"Cannot construct a degenerate segment.");
|
||
|
}
|
||
|
|
||
|
/*!
|
||
|
* Assignment operator.
|
||
|
* \param seg the source segment to copy from
|
||
|
* \pre The segment is not degenerate.
|
||
|
*/
|
||
|
const _Segment_cached_2& operator= (const Segment_2& seg)
|
||
|
{
|
||
|
Kernel kernel;
|
||
|
|
||
|
typename Kernel_::Construct_vertex_2
|
||
|
construct_vertex = kernel.construct_vertex_2_object();
|
||
|
|
||
|
ps = construct_vertex(seg, 0);
|
||
|
pt = construct_vertex(seg, 1);
|
||
|
|
||
|
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
|
||
|
is_degen = (res == EQUAL);
|
||
|
is_pt_max = (res == SMALLER);
|
||
|
|
||
|
CGAL_precondition_msg(! is_degen,
|
||
|
"Cannot construct a degenerate segment.");
|
||
|
|
||
|
l = kernel.construct_line_2_object()(seg);
|
||
|
is_vert = kernel.is_vertical_2_object()(seg);
|
||
|
|
||
|
return (*this);
|
||
|
}
|
||
|
|
||
|
/*! Obtain the (lexicographically) left endpoint.
|
||
|
*/
|
||
|
const Point_2& left() const { return (is_pt_max ? ps : pt); }
|
||
|
|
||
|
/*! Set the (lexicographically) left endpoint.
|
||
|
* \param p The point to set.
|
||
|
* \pre p lies on the supporting line to the left of the right endpoint.
|
||
|
*/
|
||
|
void set_left(const Point_2& p)
|
||
|
{
|
||
|
CGAL_precondition (! is_degen);
|
||
|
CGAL_precondition_code (
|
||
|
Kernel kernel;
|
||
|
);
|
||
|
CGAL_precondition
|
||
|
(Segment_assertions::_assert_is_point_on (p, l,
|
||
|
Has_exact_division()) &&
|
||
|
kernel.compare_xy_2_object() (p, right()) == SMALLER);
|
||
|
|
||
|
if (is_pt_max) ps = p;
|
||
|
else pt = p;
|
||
|
}
|
||
|
|
||
|
/*! Obtain the (lexicographically) right endpoint.
|
||
|
*/
|
||
|
const Point_2& right() const { return (is_pt_max ? pt : ps); }
|
||
|
|
||
|
/*! Set the (lexicographically) right endpoint.
|
||
|
* \param p The point to set.
|
||
|
* \pre p lies on the supporting line to the right of the left endpoint.
|
||
|
*/
|
||
|
void set_right(const Point_2& p)
|
||
|
{
|
||
|
CGAL_precondition(! is_degen);
|
||
|
CGAL_precondition_code(
|
||
|
Kernel kernel;
|
||
|
);
|
||
|
CGAL_precondition
|
||
|
(Segment_assertions::_assert_is_point_on (p, l,
|
||
|
Has_exact_division()) &&
|
||
|
kernel.compare_xy_2_object() (p, left()) == LARGER);
|
||
|
|
||
|
if (is_pt_max) pt = p;
|
||
|
else ps = p;
|
||
|
}
|
||
|
|
||
|
/*! Obtain the supporting line.
|
||
|
*/
|
||
|
const Line_2& line() const
|
||
|
{
|
||
|
CGAL_precondition(! is_degen);
|
||
|
return (l);
|
||
|
}
|
||
|
|
||
|
/*! Determine whether the curve is vertical.
|
||
|
*/
|
||
|
bool is_vertical() const
|
||
|
{
|
||
|
CGAL_precondition(! is_degen);
|
||
|
return (is_vert);
|
||
|
}
|
||
|
|
||
|
/*! Determine whether the curve is directed lexicographic from left to right
|
||
|
*/
|
||
|
bool is_directed_right() const { return (is_pt_max); }
|
||
|
|
||
|
/*! Determine whether the given point is in the x-range of the segment.
|
||
|
* \param p The query point.
|
||
|
* \return (true) is in the x-range of the segment; (false) if it is not.
|
||
|
*/
|
||
|
bool is_in_x_range(const Point_2& p) const
|
||
|
{
|
||
|
Kernel kernel;
|
||
|
typename Kernel_::Compare_x_2 compare_x = kernel.compare_x_2_object();
|
||
|
const Comparison_result res1 = compare_x(p, left());
|
||
|
|
||
|
if (res1 == SMALLER) return (false);
|
||
|
else if (res1 == EQUAL) return (true);
|
||
|
|
||
|
const Comparison_result res2 = compare_x(p, right());
|
||
|
return (res2 != LARGER);
|
||
|
}
|
||
|
|
||
|
/*! Determine whether the given point is in the y-range of the segment.
|
||
|
* \param p The query point.
|
||
|
* \return (true) is in the y-range of the segment; (false) if it is not.
|
||
|
*/
|
||
|
bool is_in_y_range(const Point_2& p) const
|
||
|
{
|
||
|
Kernel kernel;
|
||
|
typename Kernel_::Compare_y_2 compare_y = kernel.compare_y_2_object();
|
||
|
const Comparison_result res1 = compare_y (p, left());
|
||
|
|
||
|
if (res1 == SMALLER) return (false);
|
||
|
else if (res1 == EQUAL) return (true);
|
||
|
|
||
|
const Comparison_result res2 = compare_y (p, right());
|
||
|
return (res2 != LARGER);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
public:
|
||
|
// Traits objects
|
||
|
typedef typename Kernel::Point_2 Point_2;
|
||
|
typedef Arr_segment_2<Kernel> X_monotone_curve_2;
|
||
|
typedef Arr_segment_2<Kernel> Curve_2;
|
||
|
typedef unsigned int Multiplicity;
|
||
|
|
||
|
public:
|
||
|
/*! Default constructor. */
|
||
|
Arr_segment_traits_2() {}
|
||
|
|
||
|
/// \name Basic functor definitions.
|
||
|
//@{
|
||
|
|
||
|
class Compare_x_2 {
|
||
|
protected:
|
||
|
typedef Arr_segment_traits_2<Kernel> Traits;
|
||
|
|
||
|
/*! The traits (in case it has state) */
|
||
|
const Traits& m_traits;
|
||
|
|
||
|
/*! Constructor
|
||
|
* \param traits the traits (in case it has state)
|
||
|
*/
|
||
|
Compare_x_2(const Traits& traits) : m_traits(traits) {}
|
||
|
|
||
|
friend class Arr_segment_traits_2<Kernel>;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* Compare the x-coordinates of two points.
|
||
|
* \param p1 The first point.
|
||
|
* \param p2 The second point.
|
||
|
* \return LARGER if x(p1) > x(p2);
|
||
|
* SMALLER if x(p1) < x(p2);
|
||
|
* EQUAL if x(p1) = x(p2).
|
||
|
*/
|
||
|
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
|
||
|
{
|
||
|
const Kernel& kernel = m_traits;
|
||
|
|
||
|
return (kernel.compare_x_2_object()(p1, p2));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get a Compare_x_2 functor object. */
|
||
|
Compare_x_2 compare_x_2_object() const { return Compare_x_2(*this); }
|
||
|
|
||
|
class Compare_xy_2 {
|
||
|
protected:
|
||
|
typedef Arr_segment_traits_2<Kernel> Traits;
|
||
|
|
||
|
/*! The traits (in case it has state) */
|
||
|
const Traits& m_traits;
|
||
|
|
||
|
/*! Constructor
|
||
|
* \param traits the traits (in case it has state)
|
||
|
*/
|
||
|
Compare_xy_2(const Traits& traits) : m_traits(traits) {}
|
||
|
|
||
|
friend class Arr_segment_traits_2<Kernel>;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* Compare two points lexicographically: by x, then by y.
|
||
|
* \param p1 The first point.
|
||
|
* \param p2 The second point.
|
||
|
* \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2);
|
||
|
* SMALLER if x(p1) < x(p2), or if x(p1) = x(p2) and y(p1) < y(p2);
|
||
|
* EQUAL if the two points are equal.
|
||
|
*/
|
||
|
Comparison_result operator()(const Point_2& p1, const Point_2& p2) const
|
||
|
{
|
||
|
const Kernel& kernel = m_traits;
|
||
|
return (kernel.compare_xy_2_object()(p1, p2));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get a Compare_xy_2 functor object. */
|
||
|
Compare_xy_2 compare_xy_2_object() const { return Compare_xy_2(*this); }
|
||
|
|
||
|
class Construct_min_vertex_2 {
|
||
|
public:
|
||
|
/*!
|
||
|
* Get the left endpoint of the x-monotone curve (segment).
|
||
|
* \param cv The curve.
|
||
|
* \return The left endpoint.
|
||
|
*/
|
||
|
const Point_2& operator()(const X_monotone_curve_2& cv) const
|
||
|
{ return (cv.left()); }
|
||
|
};
|
||
|
|
||
|
/*! Get a Construct_min_vertex_2 functor object. */
|
||
|
Construct_min_vertex_2 construct_min_vertex_2_object() const
|
||
|
{ return Construct_min_vertex_2(); }
|
||
|
|
||
|
class Construct_max_vertex_2 {
|
||
|
public:
|
||
|
/*!
|
||
|
* Get the right endpoint of the x-monotone curve (segment).
|
||
|
* \param cv The curve.
|
||
|
* \return The right endpoint.
|
||
|
*/
|
||
|
const Point_2& operator() (const X_monotone_curve_2& cv) const
|
||
|
{ return (cv.right()); }
|
||
|
};
|
||
|
|
||
|
/*! Get a Construct_max_vertex_2 functor object. */
|
||
|
Construct_max_vertex_2 construct_max_vertex_2_object() const
|
||
|
{ return Construct_max_vertex_2(); }
|
||
|
|
||
|
class Is_vertical_2 {
|
||
|
public:
|
||
|
/*!
|
||
|
* Check whether the given x-monotone curve is a vertical segment.
|
||
|
* \param cv The curve.
|
||
|
* \return (true) if the curve is a vertical segment; (false) otherwise.
|
||
|
*/
|
||
|
bool operator()(const X_monotone_curve_2& cv) const
|
||
|
{ return (cv.is_vertical()); }
|
||
|
};
|
||
|
|
||
|
/*! Get an Is_vertical_2 functor object. */
|
||
|
Is_vertical_2 is_vertical_2_object () const
|
||
|
{ return Is_vertical_2(); }
|
||
|
|
||
|
class Compare_y_at_x_2 {
|
||
|
protected:
|
||
|
typedef Arr_segment_traits_2<Kernel> Traits;
|
||
|
|
||
|
/*! The traits (in case it has state) */
|
||
|
const Traits& m_traits;
|
||
|
|
||
|
/*! Constructor
|
||
|
* \param traits the traits (in case it has state)
|
||
|
*/
|
||
|
Compare_y_at_x_2(const Traits& traits) : m_traits(traits) {}
|
||
|
|
||
|
friend class Arr_segment_traits_2<Kernel>;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* Return the location of the given point with respect to the input curve.
|
||
|
* \param cv The curve.
|
||
|
* \param p The point.
|
||
|
* \pre p is in the x-range of cv.
|
||
|
* \return SMALLER if y(p) < cv(x(p)), i.e. the point is below the curve;
|
||
|
* LARGER if y(p) > cv(x(p)), i.e. the point is above the curve;
|
||
|
* EQUAL if p lies on the curve.
|
||
|
*/
|
||
|
Comparison_result operator()(const Point_2& p,
|
||
|
const X_monotone_curve_2& cv) const
|
||
|
{
|
||
|
CGAL_precondition (cv.is_in_x_range(p));
|
||
|
|
||
|
const Kernel& kernel = m_traits;
|
||
|
|
||
|
if (! cv.is_vertical()) {
|
||
|
// Compare p with the segment's supporting line.
|
||
|
return (kernel.compare_y_at_x_2_object()(p, cv.line()));
|
||
|
}
|
||
|
else {
|
||
|
// Compare with the vertical segment's end-points.
|
||
|
typename Kernel::Compare_y_2 compare_y = kernel.compare_y_2_object();
|
||
|
Comparison_result res1 = compare_y(p, cv.left());
|
||
|
Comparison_result res2 = compare_y(p, cv.right());
|
||
|
|
||
|
return (res1 == res2) ? res1 : EQUAL;
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get a Compare_y_at_x_2 functor object. */
|
||
|
Compare_y_at_x_2 compare_y_at_x_2_object() const
|
||
|
{ return Compare_y_at_x_2(*this); }
|
||
|
|
||
|
class Compare_y_at_x_left_2 {
|
||
|
protected:
|
||
|
typedef Arr_segment_traits_2<Kernel> Traits;
|
||
|
|
||
|
/*! The traits (in case it has state) */
|
||
|
const Traits& m_traits;
|
||
|
|
||
|
/*! Constructor
|
||
|
* \param traits the traits (in case it has state)
|
||
|
*/
|
||
|
Compare_y_at_x_left_2(const Traits& traits) : m_traits(traits) {}
|
||
|
|
||
|
friend class Arr_segment_traits_2<Kernel>;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* Compare the y value of two x-monotone curves immediately to the left
|
||
|
* of their intersection point.
|
||
|
* \param cv1 The first curve.
|
||
|
* \param cv2 The second curve.
|
||
|
* \param p The intersection point.
|
||
|
* \pre The point p lies on both curves, and both of them must be also be
|
||
|
* defined (lexicographically) to its left.
|
||
|
* \return The relative position of cv1 with respect to cv2 immediately to
|
||
|
* the left of p: SMALLER, LARGER or EQUAL.
|
||
|
*/
|
||
|
Comparison_result operator()(const X_monotone_curve_2& cv1,
|
||
|
const X_monotone_curve_2& cv2,
|
||
|
const Point_2& CGAL_assertion_code(p)) const
|
||
|
{
|
||
|
const Kernel& kernel = m_traits;
|
||
|
|
||
|
// Make sure that p lies on both curves, and that both are defined to its
|
||
|
// left (so their left endpoint is lexicographically smaller than p).
|
||
|
CGAL_precondition_code(
|
||
|
typename Kernel::Compare_xy_2 compare_xy =
|
||
|
kernel.compare_xy_2_object();
|
||
|
);
|
||
|
|
||
|
CGAL_precondition(
|
||
|
(m_traits.compare_y_at_x_2_object()(p, cv1) == EQUAL) &&
|
||
|
(m_traits.compare_y_at_x_2_object()(p, cv2) == EQUAL));
|
||
|
|
||
|
CGAL_precondition(compare_xy(cv1.left(), p) == SMALLER &&
|
||
|
compare_xy(cv2.left(), p) == SMALLER);
|
||
|
|
||
|
// Compare the slopes of the two segments to determine their relative
|
||
|
// position immediately to the left of q.
|
||
|
// Notice we use the supporting lines in order to compare the slopes,
|
||
|
// and that we swap the order of the curves in order to obtain the
|
||
|
// correct result to the left of p.
|
||
|
return (kernel.compare_slope_2_object()(cv2.line(), cv1.line()));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get a Compare_y_at_x_left_2 functor object. */
|
||
|
Compare_y_at_x_left_2 compare_y_at_x_left_2_object () const
|
||
|
{ return Compare_y_at_x_left_2(*this); }
|
||
|
|
||
|
class Compare_y_at_x_right_2 {
|
||
|
protected:
|
||
|
typedef Arr_segment_traits_2<Kernel> Traits;
|
||
|
|
||
|
/*! The traits (in case it has state) */
|
||
|
const Traits& m_traits;
|
||
|
|
||
|
/*! Constructor
|
||
|
* \param traits the traits (in case it has state)
|
||
|
*/
|
||
|
Compare_y_at_x_right_2(const Traits& traits) : m_traits(traits) {}
|
||
|
|
||
|
friend class Arr_segment_traits_2<Kernel>;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* Compare the y value of two x-monotone curves immediately to the right
|
||
|
* of their intersection point.
|
||
|
* \param cv1 The first curve.
|
||
|
* \param cv2 The second curve.
|
||
|
* \param p The intersection point.
|
||
|
* \pre The point p lies on both curves, and both of them must be also be
|
||
|
* defined (lexicographically) to its right.
|
||
|
* \return The relative position of cv1 with respect to cv2 immediately to
|
||
|
* the right of p: SMALLER, LARGER or EQUAL.
|
||
|
*/
|
||
|
Comparison_result operator()(const X_monotone_curve_2& cv1,
|
||
|
const X_monotone_curve_2& cv2,
|
||
|
const Point_2& CGAL_assertion_code(p)) const
|
||
|
{
|
||
|
const Kernel& kernel = m_traits;
|
||
|
|
||
|
// Make sure that p lies on both curves, and that both are defined to its
|
||
|
// right (so their right endpoint is lexicographically larger than p).
|
||
|
CGAL_precondition_code (
|
||
|
typename Kernel::Compare_xy_2 compare_xy =
|
||
|
kernel.compare_xy_2_object();
|
||
|
);
|
||
|
|
||
|
CGAL_precondition(
|
||
|
(m_traits.compare_y_at_x_2_object()(p, cv1) == EQUAL) &&
|
||
|
(m_traits.compare_y_at_x_2_object()(p, cv2) == EQUAL));
|
||
|
|
||
|
CGAL_precondition(compare_xy(cv1.right(), p) == LARGER &&
|
||
|
compare_xy(cv2.right(), p) == LARGER);
|
||
|
|
||
|
// Compare the slopes of the two segments to determine their relative
|
||
|
// position immediately to the left of q.
|
||
|
// Notice we use the supporting lines in order to compare the slopes.
|
||
|
return (kernel.compare_slope_2_object()(cv1.line(), cv2.line()));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get a Compare_y_at_x_right_2 functor object. */
|
||
|
Compare_y_at_x_right_2 compare_y_at_x_right_2_object() const
|
||
|
{ return Compare_y_at_x_right_2(*this); }
|
||
|
|
||
|
class Equal_2 {
|
||
|
protected:
|
||
|
typedef Arr_segment_traits_2<Kernel> Traits;
|
||
|
|
||
|
/*! The traits (in case it has state) */
|
||
|
const Traits& m_traits;
|
||
|
|
||
|
/*! Constructor
|
||
|
* \param traits the traits (in case it has state)
|
||
|
*/
|
||
|
Equal_2(const Traits& traits) : m_traits(traits) {}
|
||
|
|
||
|
friend class Arr_segment_traits_2<Kernel>;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* Check if the two x-monotone curves are the same (have the same graph).
|
||
|
* \param cv1 The first curve.
|
||
|
* \param cv2 The second curve.
|
||
|
* \return (true) if the two curves are the same; (false) otherwise.
|
||
|
*/
|
||
|
bool operator()(const X_monotone_curve_2& cv1,
|
||
|
const X_monotone_curve_2& cv2) const
|
||
|
{
|
||
|
const Kernel& kernel = m_traits;
|
||
|
typename Kernel::Equal_2 equal = kernel.equal_2_object();
|
||
|
|
||
|
return (equal(cv1.left(), cv2.left()) &&
|
||
|
equal(cv1.right(), cv2.right()));
|
||
|
}
|
||
|
|
||
|
/*! Determine whether the two points are the same.
|
||
|
* \param p1 The first point.
|
||
|
* \param p2 The second point.
|
||
|
* \return (true) if the two point are the same; (false) otherwise.
|
||
|
*/
|
||
|
bool operator() (const Point_2& p1, const Point_2& p2) const
|
||
|
{
|
||
|
const Kernel& kernel = m_traits;
|
||
|
return (kernel.equal_2_object()(p1, p2));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get an Equal_2 functor object. */
|
||
|
Equal_2 equal_2_object() const { return Equal_2(*this); }
|
||
|
//@}
|
||
|
|
||
|
/// \name Functor definitions for supporting intersections.
|
||
|
//@{
|
||
|
|
||
|
class Make_x_monotone_2 {
|
||
|
public:
|
||
|
/*!
|
||
|
* Cut the given curve into x-monotone subcurves and insert them into the
|
||
|
* given output iterator. As segments are always x_monotone, only one
|
||
|
* object will be contained in the iterator.
|
||
|
* \param cv The curve.
|
||
|
* \param oi The output iterator, whose value-type is Object.
|
||
|
* \return The past-the-end iterator.
|
||
|
*/
|
||
|
template<class OutputIterator>
|
||
|
OutputIterator operator()(const Curve_2& cv, OutputIterator oi) const
|
||
|
{
|
||
|
// Wrap the segment with an object.
|
||
|
*oi = make_object (cv);
|
||
|
++oi;
|
||
|
return (oi);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get a Make_x_monotone_2 functor object. */
|
||
|
Make_x_monotone_2 make_x_monotone_2_object() const
|
||
|
{ return Make_x_monotone_2(); }
|
||
|
|
||
|
class Split_2 {
|
||
|
protected:
|
||
|
typedef Arr_segment_traits_2<Kernel> Traits;
|
||
|
|
||
|
/*! The traits (in case it has state) */
|
||
|
const Traits& m_traits;
|
||
|
|
||
|
/*! Constructor
|
||
|
* \param traits the traits (in case it has state)
|
||
|
*/
|
||
|
Split_2(const Traits& traits) : m_traits(traits) {}
|
||
|
|
||
|
friend class Arr_segment_traits_2<Kernel>;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* Split a given x-monotone curve at a given point into two sub-curves.
|
||
|
* \param cv The curve to split
|
||
|
* \param p The split point.
|
||
|
* \param c1 Output: The left resulting subcurve (p is its right endpoint).
|
||
|
* \param c2 Output: The right resulting subcurve (p is its left endpoint).
|
||
|
* \pre p lies on cv but is not one of its end-points.
|
||
|
*/
|
||
|
void operator()(const X_monotone_curve_2& cv, const Point_2& p,
|
||
|
X_monotone_curve_2& c1, X_monotone_curve_2& c2) const
|
||
|
{
|
||
|
// Make sure that p lies on the interior of the curve.
|
||
|
CGAL_precondition_code (
|
||
|
const Kernel& kernel = m_traits;
|
||
|
typename Kernel::Compare_xy_2 compare_xy =
|
||
|
kernel.compare_xy_2_object();
|
||
|
);
|
||
|
|
||
|
CGAL_precondition(
|
||
|
(m_traits.compare_y_at_x_2_object()(p, cv) == EQUAL) &&
|
||
|
compare_xy(cv.left(), p) == SMALLER &&
|
||
|
compare_xy(cv.right(), p) == LARGER);
|
||
|
|
||
|
// Perform the split.
|
||
|
c1 = cv;
|
||
|
c1.set_right (p);
|
||
|
|
||
|
c2 = cv;
|
||
|
c2.set_left (p);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get a Split_2 functor object. */
|
||
|
Split_2 split_2_object () const { return Split_2(*this); }
|
||
|
|
||
|
class Intersect_2 {
|
||
|
protected:
|
||
|
typedef Arr_segment_traits_2<Kernel> Traits;
|
||
|
|
||
|
/*! The traits (in case it has state) */
|
||
|
const Traits& m_traits;
|
||
|
|
||
|
/*! Constructor
|
||
|
* \param traits the traits (in case it has state)
|
||
|
*/
|
||
|
Intersect_2(const Traits& traits) : m_traits(traits) {}
|
||
|
|
||
|
friend class Arr_segment_traits_2<Kernel>;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* Find the intersections of the two given curves and insert them into the
|
||
|
* given output iterator. As two segments may intersect only once, only a
|
||
|
* single intersection will be contained in the iterator.
|
||
|
* \param cv1 The first curve.
|
||
|
* \param cv2 The second curve.
|
||
|
* \param oi The output iterator.
|
||
|
* \return The past-the-end iterator.
|
||
|
*/
|
||
|
template<class OutputIterator>
|
||
|
OutputIterator operator() (const X_monotone_curve_2& cv1,
|
||
|
const X_monotone_curve_2& cv2,
|
||
|
OutputIterator oi) const
|
||
|
{
|
||
|
// Intersect the two supporting lines.
|
||
|
const Kernel& kernel = m_traits;
|
||
|
CGAL::Object obj = kernel.intersect_2_object()(cv1.line(), cv2.line());
|
||
|
|
||
|
if (obj.is_empty()) {
|
||
|
// The supporting line are parallel lines and do not intersect:
|
||
|
return (oi);
|
||
|
}
|
||
|
|
||
|
// Check if we have a single intersection point.
|
||
|
const Point_2 *ip = object_cast<Point_2> (&obj);
|
||
|
|
||
|
if (ip != NULL) {
|
||
|
// Check if the intersection point ip lies on both segments.
|
||
|
const bool ip_on_cv1 = cv1.is_vertical() ? cv1.is_in_y_range(*ip) :
|
||
|
cv1.is_in_x_range(*ip);
|
||
|
|
||
|
if (ip_on_cv1) {
|
||
|
const bool ip_on_cv2 = cv2.is_vertical() ? cv2.is_in_y_range(*ip) :
|
||
|
cv2.is_in_x_range(*ip);
|
||
|
|
||
|
if (ip_on_cv2) {
|
||
|
// Create a pair representing the point with its multiplicity,
|
||
|
// which is always 1 for line segments.
|
||
|
std::pair<Point_2, Multiplicity> ip_mult (*ip, 1);
|
||
|
*oi = make_object (ip_mult);
|
||
|
oi++;
|
||
|
}
|
||
|
}
|
||
|
return (oi);
|
||
|
}
|
||
|
|
||
|
// In this case, the two supporting lines overlap.
|
||
|
// The overlapping segment is therefore [p_l,p_r], where p_l is the
|
||
|
// rightmost of the two left endpoints and p_r is the leftmost of the
|
||
|
// two right endpoints.
|
||
|
typename Kernel::Compare_xy_2 compare_xy = kernel.compare_xy_2_object();
|
||
|
Point_2 p_l, p_r;
|
||
|
|
||
|
if (compare_xy (cv1.left(), cv2.left()) == SMALLER) p_l = cv2.left();
|
||
|
else p_l = cv1.left();
|
||
|
|
||
|
if (compare_xy (cv1.right(), cv2.right()) == SMALLER) p_r = cv1.right();
|
||
|
else p_r = cv2.right();
|
||
|
|
||
|
// Examine the resulting segment.
|
||
|
const Comparison_result res = compare_xy (p_l, p_r);
|
||
|
|
||
|
if (res == SMALLER) {
|
||
|
// We have discovered an overlapping segment:
|
||
|
if (cv1.is_directed_right() == cv2.is_directed_right()) {
|
||
|
// cv1 and cv2 have the same directions, maintain this direction
|
||
|
// in the overlap segment
|
||
|
if (cv1.is_directed_right()) {
|
||
|
X_monotone_curve_2 overlap_seg(cv1.line(), p_l, p_r);
|
||
|
*oi++ = make_object(overlap_seg);
|
||
|
}
|
||
|
else {
|
||
|
X_monotone_curve_2 overlap_seg(cv1.line(), p_r, p_l);
|
||
|
*oi++ = make_object(overlap_seg);
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
// cv1 and cv2 have opposite directions, the overlap segment
|
||
|
// will be directed from left to right
|
||
|
X_monotone_curve_2 overlap_seg(cv1.line(), p_l, p_r);
|
||
|
*oi++ = make_object(overlap_seg);
|
||
|
}
|
||
|
}
|
||
|
else if (res == EQUAL) {
|
||
|
// The two segment have the same supporting line, but they just share
|
||
|
// a common endpoint. Thus we have an intersection point, but we leave
|
||
|
// the multiplicity of this point undefined.
|
||
|
std::pair<Point_2, Multiplicity> ip_mult(p_r, 0);
|
||
|
*oi++ = make_object(ip_mult);
|
||
|
}
|
||
|
|
||
|
return (oi);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get an Intersect_2 functor object. */
|
||
|
Intersect_2 intersect_2_object() const { return Intersect_2(*this); }
|
||
|
|
||
|
class Are_mergeable_2 {
|
||
|
protected:
|
||
|
typedef Arr_segment_traits_2<Kernel> Traits;
|
||
|
|
||
|
/*! The traits (in case it has state) */
|
||
|
const Traits& m_traits;
|
||
|
|
||
|
/*! Constructor
|
||
|
* \param traits the traits (in case it has state)
|
||
|
*/
|
||
|
Are_mergeable_2(const Traits& traits) : m_traits(traits) {}
|
||
|
|
||
|
friend class Arr_segment_traits_2<Kernel>;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* Check whether it is possible to merge two given x-monotone curves.
|
||
|
* \param cv1 The first curve.
|
||
|
* \param cv2 The second curve.
|
||
|
* \return (true) if the two curves are mergeable, that is, if they are
|
||
|
* supported by the same line; (false) otherwise.
|
||
|
* \pre cv1 and cv2 share a common endpoint.
|
||
|
*/
|
||
|
bool operator()(const X_monotone_curve_2& cv1,
|
||
|
const X_monotone_curve_2& cv2) const
|
||
|
{
|
||
|
if (!m_traits.equal_2_object()(cv1.right(), cv2.left()) &&
|
||
|
!m_traits.equal_2_object()(cv2.right(), cv1.left()))
|
||
|
return false;
|
||
|
|
||
|
// Check whether the two curves have the same supporting line.
|
||
|
const Kernel& kernel = m_traits;
|
||
|
typename Kernel::Equal_2 equal = kernel.equal_2_object();
|
||
|
return (equal(cv1.line(), cv2.line()) ||
|
||
|
equal(cv1.line(),
|
||
|
kernel.construct_opposite_line_2_object()(cv2.line())));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get an Are_mergeable_2 functor object. */
|
||
|
Are_mergeable_2 are_mergeable_2_object() const
|
||
|
{ return Are_mergeable_2(*this); }
|
||
|
|
||
|
/*! \class Merge_2
|
||
|
* A functor that merges two x-monotone arcs into one.
|
||
|
*/
|
||
|
class Merge_2 {
|
||
|
protected:
|
||
|
typedef Arr_segment_traits_2<Kernel> Traits;
|
||
|
|
||
|
/*! The traits (in case it has state) */
|
||
|
const Traits& m_traits;
|
||
|
|
||
|
/*! Constructor
|
||
|
* \param traits the traits (in case it has state)
|
||
|
*/
|
||
|
Merge_2(const Traits& traits) : m_traits(traits) {}
|
||
|
|
||
|
friend class Arr_segment_traits_2<Kernel>;
|
||
|
|
||
|
public:
|
||
|
/*!
|
||
|
* Merge two given x-monotone curves into a single curve (segment).
|
||
|
* \param cv1 The first curve.
|
||
|
* \param cv2 The second curve.
|
||
|
* \param c Output: The merged curve.
|
||
|
* \pre The two curves are mergeable.
|
||
|
*/
|
||
|
void operator()(const X_monotone_curve_2& cv1,
|
||
|
const X_monotone_curve_2& cv2,
|
||
|
X_monotone_curve_2& c) const
|
||
|
{
|
||
|
CGAL_precondition(m_traits.are_mergeable_2_object()(cv1, cv2));
|
||
|
|
||
|
Equal_2 equal = m_traits.equal_2_object();
|
||
|
|
||
|
// Check which curve extends to the right of the other.
|
||
|
if (equal(cv1.right(), cv2.left())) {
|
||
|
// cv2 extends cv1 to the right.
|
||
|
c = cv1;
|
||
|
c.set_right(cv2.right());
|
||
|
}
|
||
|
else {
|
||
|
CGAL_precondition(equal(cv2.right(), cv1.left()));
|
||
|
|
||
|
// cv1 extends cv2 to the right.
|
||
|
c = cv2;
|
||
|
c.set_right(cv1.right());
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get a Merge_2 functor object. */
|
||
|
Merge_2 merge_2_object() const { return Merge_2(*this); }
|
||
|
//@}
|
||
|
|
||
|
/// \name Functor definitions for the landmarks point-location strategy.
|
||
|
//@{
|
||
|
typedef double Approximate_number_type;
|
||
|
|
||
|
class Approximate_2 {
|
||
|
public:
|
||
|
/*!
|
||
|
* Return an approximation of a point coordinate.
|
||
|
* \param p The exact point.
|
||
|
* \param i The coordinate index (either 0 or 1).
|
||
|
* \pre i is either 0 or 1.
|
||
|
* \return An approximation of p's x-coordinate (if i == 0), or an
|
||
|
* approximation of p's y-coordinate (if i == 1).
|
||
|
*/
|
||
|
Approximate_number_type operator()(const Point_2& p, int i) const
|
||
|
{
|
||
|
CGAL_precondition((i == 0) || (i == 1));
|
||
|
return (i == 0) ? (CGAL::to_double(p.x())) : (CGAL::to_double(p.y()));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Get an Approximate_2 functor object. */
|
||
|
Approximate_2 approximate_2_object() const { return Approximate_2(); }
|
||
|
|
||
|
class Construct_x_monotone_curve_2 {
|
||
|
public:
|
||
|
/*!
|
||
|
* Return an x-monotone curve connecting the two given endpoints.
|
||
|
* \param p The first point.
|
||
|
* \param q The second point.
|
||
|
* \pre p and q must not be the same.
|
||
|
* \return A segment connecting p and q.
|
||
|
*/
|
||
|
X_monotone_curve_2 operator()(const Point_2& p, const Point_2& q) const
|
||
|
{ return (X_monotone_curve_2(p, q)); }
|
||
|
};
|
||
|
|
||
|
/*! Get a Construct_x_monotone_curve_2 functor object. */
|
||
|
Construct_x_monotone_curve_2 construct_x_monotone_curve_2_object() const
|
||
|
{ return Construct_x_monotone_curve_2(); }
|
||
|
//@}
|
||
|
|
||
|
/// \name Functor definitions for the Boolean set-operation traits.
|
||
|
//@{
|
||
|
|
||
|
class Trim_2 {
|
||
|
protected:
|
||
|
typedef Arr_segment_traits_2<Kernel> Traits;
|
||
|
|
||
|
/*! The traits (in case it has state). */
|
||
|
const Traits& m_traits;
|
||
|
|
||
|
/*! Constructor
|
||
|
* \param traits the traits (in case it has state)
|
||
|
*/
|
||
|
Trim_2(const Traits& traits) : m_traits(traits) {}
|
||
|
|
||
|
friend class Arr_segment_traits_2<Kernel>;
|
||
|
|
||
|
/*! Obtain a trimmed version of a line.
|
||
|
* \param xseg The x-monotone segment.
|
||
|
* \param src the new start endpoint.
|
||
|
* \param tgt the new end endpoint.
|
||
|
* \return The trimmed x-monotone segment.
|
||
|
* \pre src != tgt
|
||
|
* \pre both points must lie on segment
|
||
|
*/
|
||
|
public:
|
||
|
X_monotone_curve_2 operator()(const X_monotone_curve_2& xcv,
|
||
|
const Point_2& src,
|
||
|
const Point_2& tgt)const
|
||
|
{
|
||
|
CGAL_precondition_code(Equal_2 equal = m_traits.equal_2_object());
|
||
|
CGAL_precondition_code(Compare_y_at_x_2 compare_y_at_x =
|
||
|
m_traits.compare_y_at_x_2_object());
|
||
|
Compare_x_2 compare_x_2 = m_traits.compare_x_2_object();
|
||
|
|
||
|
// check whether source and taget are two distinct points and they lie
|
||
|
// on the line.
|
||
|
CGAL_precondition(!equal(src, tgt));
|
||
|
CGAL_precondition(compare_y_at_x(src, xcv) == EQUAL);
|
||
|
CGAL_precondition(compare_y_at_x(tgt, xcv) == EQUAL);
|
||
|
|
||
|
// exchange src and tgt IF they do not conform with the direction
|
||
|
X_monotone_curve_2 trimmed_segment;
|
||
|
|
||
|
if (xcv.is_directed_right() && compare_x_2(src, tgt) == LARGER)
|
||
|
trimmed_segment = X_monotone_curve_2(tgt, src);
|
||
|
else if (!xcv.is_directed_right() && compare_x_2(src, tgt) == SMALLER )
|
||
|
trimmed_segment = X_monotone_curve_2(tgt, src);
|
||
|
else trimmed_segment = X_monotone_curve_2(src, tgt);
|
||
|
return (trimmed_segment);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
//get a Trim_2 functor object
|
||
|
Trim_2 trim_2_object() const { return Trim_2(*this); }
|
||
|
|
||
|
class Compare_endpoints_xy_2
|
||
|
{
|
||
|
public:
|
||
|
/*!
|
||
|
* Compare the endpoints of an $x$-monotone curve lexicographically.
|
||
|
* (assuming the curve has a designated source and target points).
|
||
|
* \param cv The curve.
|
||
|
* \return SMALLER if the curve is directed right;
|
||
|
* LARGER if the curve is directed left.
|
||
|
*/
|
||
|
Comparison_result operator() (const X_monotone_curve_2& cv) const
|
||
|
{ return (cv.is_directed_right()) ? (SMALLER) : (LARGER); }
|
||
|
};
|
||
|
|
||
|
/*! Get a Compare_endpoints_xy_2 functor object. */
|
||
|
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const
|
||
|
{ return Compare_endpoints_xy_2(); }
|
||
|
|
||
|
class Construct_opposite_2 {
|
||
|
public:
|
||
|
/*!
|
||
|
* Construct an opposite x-monotone (with swapped source and target).
|
||
|
* \param cv The curve.
|
||
|
* \return The opposite curve.
|
||
|
*/
|
||
|
X_monotone_curve_2 operator()(const X_monotone_curve_2& cv) const
|
||
|
{ return (cv.flip()); }
|
||
|
};
|
||
|
|
||
|
/*! Get a Construct_opposite_2 functor object. */
|
||
|
Construct_opposite_2 construct_opposite_2_object() const
|
||
|
{ return Construct_opposite_2(); }
|
||
|
//@}
|
||
|
};
|
||
|
|
||
|
/*!
|
||
|
* \class A representation of a segment, as used by the Arr_segment_traits_2
|
||
|
* traits-class.
|
||
|
*/
|
||
|
template <class Kernel_>
|
||
|
class Arr_segment_2 :
|
||
|
public Arr_segment_traits_2<Kernel_>::_Segment_cached_2
|
||
|
{
|
||
|
typedef Kernel_ Kernel;
|
||
|
typedef typename Arr_segment_traits_2<Kernel>::_Segment_cached_2 Base;
|
||
|
typedef typename Kernel::Segment_2 Segment_2;
|
||
|
typedef typename Kernel::Point_2 Point_2;
|
||
|
typedef typename Kernel::Line_2 Line_2;
|
||
|
|
||
|
public:
|
||
|
/*! Default constructor. */
|
||
|
Arr_segment_2() : Base() {}
|
||
|
|
||
|
/*! Constructor from a "kernel" segment.
|
||
|
* \param seg The segment.
|
||
|
* \pre The segment is not degenerate.
|
||
|
*/
|
||
|
Arr_segment_2(const Segment_2& seg) : Base(seg) {}
|
||
|
|
||
|
/*! Construct a segment from two end-points.
|
||
|
* \param source The source point.
|
||
|
* \param target The target point.
|
||
|
* \pre The two points are not the same.
|
||
|
*/
|
||
|
Arr_segment_2(const Point_2& source, const Point_2& target) :
|
||
|
Base(source,target)
|
||
|
{}
|
||
|
|
||
|
/*! Construct a segment from a line and two end-points.
|
||
|
* \param line The supporting line.
|
||
|
* \param source The source point.
|
||
|
* \param target The target point.
|
||
|
* \pre Both source and target must be on the supporting line.
|
||
|
* \pre The two points are not the same.
|
||
|
*/
|
||
|
Arr_segment_2(const Line_2& line,
|
||
|
const Point_2& source, const Point_2& target) :
|
||
|
Base(line,source,target)
|
||
|
{}
|
||
|
|
||
|
/*! Cast to a segment.
|
||
|
*/
|
||
|
operator Segment_2() const
|
||
|
{
|
||
|
Kernel kernel;
|
||
|
Segment_2 seg = kernel.construct_segment_2_object()(this->ps, this->pt);
|
||
|
return (seg);
|
||
|
}
|
||
|
|
||
|
/*! Create a bounding box for the segment.
|
||
|
*/
|
||
|
Bbox_2 bbox() const
|
||
|
{
|
||
|
Kernel kernel;
|
||
|
Segment_2 seg = kernel.construct_segment_2_object()(this->ps, this->pt);
|
||
|
return (kernel.construct_bbox_2_object() (seg));
|
||
|
}
|
||
|
|
||
|
/*! Obtain the segment source.
|
||
|
*/
|
||
|
const Point_2& source() const { return (this->ps); }
|
||
|
|
||
|
/*! Obtain the segment target.
|
||
|
*/
|
||
|
const Point_2& target() const { return (this->pt); }
|
||
|
|
||
|
/*! Flip the segment (swap its source and target).
|
||
|
*/
|
||
|
Arr_segment_2 flip() const
|
||
|
{
|
||
|
Arr_segment_2 opp;
|
||
|
opp.l = this->l;
|
||
|
opp.ps = this->pt;
|
||
|
opp.pt = this->ps;
|
||
|
opp.is_pt_max = !(this->is_pt_max);
|
||
|
opp.is_vert = this->is_vert;
|
||
|
opp.is_degen = this->is_degen;
|
||
|
|
||
|
return (opp);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/*! Exporter for the segment class used by the traits-class.
|
||
|
*/
|
||
|
template <class Kernel, class OutputStream>
|
||
|
OutputStream& operator<<(OutputStream& os, const Arr_segment_2<Kernel>& seg)
|
||
|
{
|
||
|
os << static_cast<typename Kernel::Segment_2>(seg);
|
||
|
return (os);
|
||
|
}
|
||
|
|
||
|
/*! Importer for the segment class used by the traits-class.
|
||
|
*/
|
||
|
template <class Kernel, class InputStream>
|
||
|
InputStream& operator>>(InputStream& is, Arr_segment_2<Kernel>& seg)
|
||
|
{
|
||
|
typename Kernel::Segment_2 kernel_seg;
|
||
|
is >> kernel_seg;
|
||
|
seg = kernel_seg;
|
||
|
return (is);
|
||
|
}
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
#include <CGAL/enable_warnings.h>
|
||
|
|
||
|
#endif
|