150 lines
4.6 KiB
C
150 lines
4.6 KiB
C
|
// Copyright (c) 2002
|
||
|
// Utrecht University (The Netherlands),
|
||
|
// ETH Zurich (Switzerland),
|
||
|
// INRIA Sophia-Antipolis (France),
|
||
|
// Max-Planck-Institute Saarbruecken (Germany),
|
||
|
// and Tel-Aviv University (Israel). All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public License as
|
||
|
// published by the Free Software Foundation; either version 3 of the License,
|
||
|
// or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: LGPL-3.0+
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : ?
|
||
|
#ifndef CGAL_INTERSECTION_OBJECTSHD_H
|
||
|
#define CGAL_INTERSECTION_OBJECTSHD_H
|
||
|
|
||
|
#include <CGAL/basic.h>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
/*{\Manpage{Line_line_intersectionHd}{R}{intersecting two lines}}*/
|
||
|
|
||
|
template <class R>
|
||
|
class Line_line_intersectionHd {
|
||
|
|
||
|
typedef typename R::RT RT;
|
||
|
typedef typename R::FT FT;
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
|
||
|
public:
|
||
|
enum Intersection_result { NO_INTERSECTION, POINT, LINE };
|
||
|
|
||
|
Intersection_result operator()(
|
||
|
const Point_d& s1, const Point_d& t1,
|
||
|
const Point_d& s2, const Point_d& t2,
|
||
|
Point_d& p, FT& l1, FT& l2)
|
||
|
/*{\Mfunop returns |NO_INTERSECTION| if the lines which are represented by |s1t1|
|
||
|
and |s2t2| don't intersect, returns |POINT| if they intersect in a
|
||
|
unique point, and returns LINE if they are identical. In the |POINT|
|
||
|
case the point of intersection is assigned to |p|. Then |p = s1 + l1
|
||
|
* t1-s1| and |p = s2 + l2 * t2-s2|. \precond none of the point pairs
|
||
|
is degenerate.}*/
|
||
|
{
|
||
|
int d = s1.dimension(),i;
|
||
|
CGAL_assertion_msg(d==s2.dimension(),
|
||
|
"intersection: dimensions disagree!");
|
||
|
typename LA::Matrix M(d,2),S;
|
||
|
typename LA::Vector b(d), lambda(2), c;
|
||
|
RT D;
|
||
|
|
||
|
RT s1w = s1.homogeneous(d);
|
||
|
RT t1w = t1.homogeneous(d);
|
||
|
RT s2w = s2.homogeneous(d);
|
||
|
RT t2w = t2.homogeneous(d);
|
||
|
RT g1w = s1w*t1w;
|
||
|
RT g2w = s2w*t2w;
|
||
|
RT t12w = t1w*t2w;
|
||
|
|
||
|
/* init $d \times 2$ - matrix |M| and $d$ - vector |b| */
|
||
|
for (i = 0; i < d; i++) {
|
||
|
M(i,0) = g2w * (t1.homogeneous(i) * s1w - s1.homogeneous(i) * t1w);
|
||
|
M(i,1) = g1w * (s2.homogeneous(i) * t2w - t2.homogeneous(i) * s2w);
|
||
|
b[i] = t12w * (s2.homogeneous(i) * s1w - s1.homogeneous(i) * s2w);
|
||
|
}
|
||
|
|
||
|
if (LA::linear_solver(M,b,lambda,D,S,c)) {
|
||
|
if (S.column_dimension()>0) return LINE;
|
||
|
l1 = R::make_FT(lambda[0],D);
|
||
|
l2 = R::make_FT(lambda[1],D);
|
||
|
p = s1 + l1 * (t1 - s1);
|
||
|
return POINT;
|
||
|
}
|
||
|
return NO_INTERSECTION;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
/*{\Manpage {Line_hyperplane_intersectionHd}{R}
|
||
|
{intersecting a line and a hyperplane}}*/
|
||
|
|
||
|
template <class R>
|
||
|
class Line_hyperplane_intersectionHd {
|
||
|
typedef typename R::RT RT;
|
||
|
typedef typename R::FT FT;
|
||
|
typedef typename R::LA LA;
|
||
|
typedef typename R::Point_d Point_d;
|
||
|
typedef typename R::Hyperplane_d Hyperplane_d;
|
||
|
|
||
|
public:
|
||
|
enum Intersection_result { NO_INTERSECTION, POINT, LINE };
|
||
|
|
||
|
Intersection_result operator()(const Point_d& s, const Point_d& t,
|
||
|
const Hyperplane_d& h, Point_d& p, FT& lambda)
|
||
|
/*{\Mfunop returns |NO_INTERSECTION| if the line represented by |s1t1| and the
|
||
|
hyperplane |h| don't intersect, returns |POINT| if they intersect in a
|
||
|
unique point, and returns LINE if the line is part of the
|
||
|
hyperplane. In the |POINT| case the point of intersection is assigned
|
||
|
to |p|. Then |p = s1 + lambda * t1-s1|. \precond the point pair is
|
||
|
not degenerate.}*/
|
||
|
{
|
||
|
CGAL_assertion_msg((h.dimension()==s.dimension() &&
|
||
|
h.dimension()==t.dimension()),
|
||
|
"Line_hyperplane_intersection_d: dimensions do not agree.");
|
||
|
|
||
|
int d = h.dimension(),i;
|
||
|
RT S(0),T(0);
|
||
|
for (i=0; i<=d; ++i) {
|
||
|
S += h[i]*s.homogeneous(i);
|
||
|
T += h[i]*t.homogeneous(i);
|
||
|
}
|
||
|
bool s_contained = CGAL_NTS is_zero(S),
|
||
|
t_contained = CGAL_NTS is_zero(T);
|
||
|
if (s_contained && t_contained) { p = s; return LINE; }
|
||
|
if (s_contained) { p = s; return POINT; }
|
||
|
if (t_contained) { p = t; return POINT; }
|
||
|
// now the simple cases are done
|
||
|
|
||
|
RT D = S * t.homogeneous(d) - T * s.homogeneous(d);
|
||
|
if (CGAL_NTS is_zero(D)) return NO_INTERSECTION;
|
||
|
|
||
|
typename LA::Vector homog(d + 1);
|
||
|
for (i = 0; i < d; ++i)
|
||
|
homog[i] = S * t.homogeneous(i) - T * s.homogeneous(i);
|
||
|
homog[d] = D;
|
||
|
p = Point_d(d,homog.begin(),homog.end());
|
||
|
lambda = R::make_FT(S * t.homogeneous(d), D);
|
||
|
return POINT;
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
#include <CGAL/Kernel_d/intersection_objects_d.h>
|
||
|
|
||
|
#endif //CGAL_INTERSECTION_OBJECTSHD_H
|