483 lines
14 KiB
C
483 lines
14 KiB
C
|
// Copyright (c) 2005-2008 Inria Loria (France).
|
||
|
/*
|
||
|
* author: Bruno Levy, INRIA, project ALICE
|
||
|
* website: http://www.loria.fr/~levy/software
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Lesser General Public
|
||
|
* License as published by the Free Software Foundation, either version 3
|
||
|
* of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* This library is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Lesser General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Lesser General Public
|
||
|
* License along with this library; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*
|
||
|
* Scientific work that use this software can reference the website and
|
||
|
* the following publication:
|
||
|
*
|
||
|
* @INPROCEEDINGS {levy:NMDGP:05,
|
||
|
* AUTHOR = Bruno Levy,
|
||
|
* TITLE = Numerical Methods for Digital Geometry Processing,
|
||
|
* BOOKTITLE =Israel Korea Bi-National Conference,
|
||
|
* YEAR=November 2005,
|
||
|
* URL=http://www.loria.fr/~levy/php/article.php?pub=../publications/papers/2005/Numerics
|
||
|
* }
|
||
|
*
|
||
|
* Laurent Saboret 2005-2006: Changes for CGAL:
|
||
|
* - Added OpenNL namespace
|
||
|
* - DefaultLinearSolverTraits is now a model of the SparseLinearAlgebraTraits_d concept
|
||
|
* - Added SymmetricLinearSolverTraits
|
||
|
* - copied Jacobi preconditioner from Graphite 1.9 code
|
||
|
*
|
||
|
* $URL$
|
||
|
* $Id$
|
||
|
* SPDX-License-Identifier: LGPL-3.0+
|
||
|
*/
|
||
|
|
||
|
|
||
|
#ifndef __OPENNL_LINEAR_SOLVER__
|
||
|
#define __OPENNL_LINEAR_SOLVER__
|
||
|
|
||
|
#include <CGAL/OpenNL/conjugate_gradient.h>
|
||
|
#include <CGAL/OpenNL/bicgstab.h>
|
||
|
#include <CGAL/OpenNL/preconditioner.h>
|
||
|
#include <CGAL/OpenNL/sparse_matrix.h>
|
||
|
#include <CGAL/OpenNL/full_vector.h>
|
||
|
|
||
|
#include <vector>
|
||
|
#include <iostream>
|
||
|
#include <cstdlib>
|
||
|
|
||
|
#include <CGAL/use.h>
|
||
|
|
||
|
namespace OpenNL {
|
||
|
|
||
|
|
||
|
|
||
|
// Class DefaultLinearSolverTraits
|
||
|
// is a traits class for solving general sparse linear systems.
|
||
|
// It uses BICGSTAB solver with Jacobi preconditioner.
|
||
|
//
|
||
|
// Concept: Model of the SparseLinearAlgebraTraits_d concept.
|
||
|
|
||
|
template
|
||
|
<
|
||
|
class COEFFTYPE, // type of matrix and vector coefficients
|
||
|
class MATRIX = SparseMatrix<COEFFTYPE>, // model of SparseLinearSolverTraits_d::Matrix
|
||
|
class VECTOR = FullVector<COEFFTYPE> // model of SparseLinearSolverTraits_d::Vector
|
||
|
>
|
||
|
class DefaultLinearSolverTraits
|
||
|
{
|
||
|
// Public types
|
||
|
public:
|
||
|
typedef COEFFTYPE CoeffType ;
|
||
|
typedef COEFFTYPE NT;
|
||
|
typedef MATRIX Matrix ;
|
||
|
typedef VECTOR Vector ;
|
||
|
|
||
|
// Private types
|
||
|
private:
|
||
|
typedef Jacobi_Preconditioner<NT> Preconditioner ;
|
||
|
typedef Solver_preconditioned_BICGSTAB<Matrix, Preconditioner, Vector>
|
||
|
Preconditioned_solver ;
|
||
|
typedef Solver_BICGSTAB<Matrix, Vector> Solver ;
|
||
|
|
||
|
// Public operations
|
||
|
public:
|
||
|
// Default contructor, copy constructor, operator=() and destructor are fine
|
||
|
|
||
|
// Solve the sparse linear system "A*X = B"
|
||
|
// Return true on success. The solution is then (1/D) * X.
|
||
|
//
|
||
|
// Preconditions:
|
||
|
// - A.row_dimension() == B.dimension()
|
||
|
// - A.column_dimension() == X.dimension()
|
||
|
bool linear_solver (const Matrix& A, const Vector& B, Vector& X, NT& D)
|
||
|
{
|
||
|
D = 1; // OpenNL does not support homogeneous coordinates
|
||
|
|
||
|
// Solve using BICGSTAB solver with preconditioner
|
||
|
Preconditioned_solver preconditioned_solver ;
|
||
|
NT omega = 1.5;
|
||
|
Preconditioner C(A, omega);
|
||
|
X = B;
|
||
|
if (preconditioned_solver.solve(A, C, B, X))
|
||
|
return true;
|
||
|
|
||
|
// On error, solve using BICGSTAB solver without preconditioner
|
||
|
#ifdef DEBUG_TRACE
|
||
|
std::cerr << " Failure of BICGSTAB solver with Jacobi preconditioner. "
|
||
|
<< "Trying BICGSTAB." << std::endl;
|
||
|
#endif
|
||
|
Solver solver ;
|
||
|
X = B;
|
||
|
return solver.solve(A, B, X) ;
|
||
|
}
|
||
|
} ;
|
||
|
|
||
|
// Class SymmetricLinearSolverTraits
|
||
|
// is a traits class for solving symmetric positive definite sparse linear systems.
|
||
|
// It uses Conjugate Gradient solver with Jacobi preconditioner.
|
||
|
//
|
||
|
// Concept: Model of the SparseLinearAlgebraTraits_d concept.
|
||
|
|
||
|
template
|
||
|
<
|
||
|
class COEFFTYPE, // type of matrix and vector coefficients
|
||
|
class MATRIX = SparseMatrix<COEFFTYPE>, // model of SparseLinearSolverTraits_d::Matrix
|
||
|
class VECTOR = FullVector<COEFFTYPE> // model of SparseLinearSolverTraits_d::Vector
|
||
|
>
|
||
|
class SymmetricLinearSolverTraits
|
||
|
{
|
||
|
// Public types
|
||
|
public:
|
||
|
typedef COEFFTYPE CoeffType ;
|
||
|
typedef COEFFTYPE NT;
|
||
|
typedef MATRIX Matrix ;
|
||
|
typedef VECTOR Vector ;
|
||
|
|
||
|
// Private types
|
||
|
private:
|
||
|
typedef Jacobi_Preconditioner<NT> Preconditioner ;
|
||
|
typedef Solver_preconditioned_CG<Matrix, Preconditioner, Vector>
|
||
|
Preconditioned_solver ;
|
||
|
typedef Solver_CG<Matrix, Vector> Solver ;
|
||
|
|
||
|
// Public operations
|
||
|
public:
|
||
|
// Default contructor, copy constructor, operator=() and destructor are fine
|
||
|
|
||
|
// Solve the sparse linear system "A*X = B"
|
||
|
// Return true on success. The solution is then (1/D) * X.
|
||
|
//
|
||
|
// Preconditions:
|
||
|
// - A.row_dimension() == B.dimension()
|
||
|
// - A.column_dimension() == X.dimension()
|
||
|
bool linear_solver (const Matrix& A, const Vector& B, Vector& X, NT& D)
|
||
|
{
|
||
|
D = 1; // OpenNL does not support homogeneous coordinates
|
||
|
|
||
|
// Solve using Conjugate Gradient solver with preconditioner
|
||
|
Preconditioned_solver preconditioned_solver ;
|
||
|
NT omega = 1.5;
|
||
|
Preconditioner C(A, omega);
|
||
|
X = B;
|
||
|
if (preconditioned_solver.solve(A, C, B, X))
|
||
|
return true;
|
||
|
|
||
|
// On error, solve using Conjugate Gradient solver without preconditioner
|
||
|
#ifdef DEBUG_TRACE
|
||
|
std::cerr << " Failure of Conjugate Gradient solver with Jacobi preconditioner. "
|
||
|
<< "Trying Conjugate Gradient." << std::endl;
|
||
|
#endif
|
||
|
Solver solver ;
|
||
|
X = B;
|
||
|
return solver.solve(A, B, X) ;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Solves a linear system or minimizes a quadratic form.
|
||
|
*
|
||
|
* Requirements for its traits class: must be a model of SparseLinearSolverTraits_d concept
|
||
|
*/
|
||
|
template <class TRAITS>
|
||
|
class LinearSolver
|
||
|
{
|
||
|
protected:
|
||
|
enum State {
|
||
|
INITIAL, IN_SYSTEM, IN_ROW, CONSTRUCTED, SOLVED
|
||
|
} ;
|
||
|
|
||
|
public:
|
||
|
typedef TRAITS Traits ;
|
||
|
typedef typename Traits::Matrix Matrix ;
|
||
|
typedef typename Traits::Vector Vector ;
|
||
|
typedef typename Traits::NT CoeffType ;
|
||
|
|
||
|
class Variable {
|
||
|
public:
|
||
|
Variable() : x_(0), index_(-1), locked_(false) { }
|
||
|
double value() const { return x_; }
|
||
|
void set_value(double x_in) { x_ = x_in ; }
|
||
|
void lock() { locked_ = true ; }
|
||
|
void unlock() { locked_ = false ; }
|
||
|
bool is_locked() const { return locked_ ; }
|
||
|
unsigned int index() const {
|
||
|
CGAL_assertion(index_ != -1) ;
|
||
|
return (unsigned int)(index_) ;
|
||
|
}
|
||
|
void set_index(unsigned int index_in) {
|
||
|
index_ = index_in ;
|
||
|
}
|
||
|
private:
|
||
|
CoeffType x_ ;
|
||
|
int index_ ;
|
||
|
bool locked_ ;
|
||
|
} ;
|
||
|
|
||
|
|
||
|
LinearSolver(unsigned int nb_variables) {
|
||
|
state_ = INITIAL ;
|
||
|
least_squares_ = false ;
|
||
|
nb_variables_ = nb_variables ;
|
||
|
variable_ = new Variable[nb_variables] ;
|
||
|
A_ = NULL ;
|
||
|
x_ = NULL ;
|
||
|
b_ = NULL ;
|
||
|
}
|
||
|
|
||
|
~LinearSolver() {
|
||
|
delete[] variable_ ;
|
||
|
delete A_ ;
|
||
|
delete x_ ;
|
||
|
delete b_ ;
|
||
|
}
|
||
|
|
||
|
// __________________ Parameters ________________________
|
||
|
|
||
|
void set_least_squares(bool x) { least_squares_ = x ; }
|
||
|
|
||
|
// __________________ Access ____________________________
|
||
|
|
||
|
int nb_variables() const { return nb_variables_ ; }
|
||
|
|
||
|
Variable& variable(unsigned int idx) {
|
||
|
CGAL_assertion(idx < nb_variables_) ;
|
||
|
return variable_[idx] ;
|
||
|
}
|
||
|
|
||
|
const Variable& variable(unsigned int idx) const {
|
||
|
CGAL_assertion(idx < nb_variables_) ;
|
||
|
return variable_[idx] ;
|
||
|
}
|
||
|
|
||
|
// _________________ Construction _______________________
|
||
|
|
||
|
void begin_system() {
|
||
|
current_row_ = 0 ;
|
||
|
transition(INITIAL, IN_SYSTEM) ;
|
||
|
// Enumerate free variables.
|
||
|
unsigned int index = 0 ;
|
||
|
for(int ii=0; ii < nb_variables() ; ii++) {
|
||
|
Variable& v = variable(ii) ;
|
||
|
if(!v.is_locked()) {
|
||
|
v.set_index(index) ;
|
||
|
index++ ;
|
||
|
}
|
||
|
}
|
||
|
unsigned int n = index ;
|
||
|
A_ = new Matrix(static_cast<int>(n)) ;
|
||
|
x_ = new Vector(n) ;
|
||
|
b_ = new Vector(n) ;
|
||
|
for(unsigned int i=0; i<n; i++) {
|
||
|
(*x_)[i] = 0 ;
|
||
|
(*b_)[i] = 0 ;
|
||
|
}
|
||
|
variables_to_vector() ;
|
||
|
}
|
||
|
|
||
|
void begin_row() {
|
||
|
transition(IN_SYSTEM, IN_ROW) ;
|
||
|
af_.clear() ;
|
||
|
if_.clear() ;
|
||
|
al_.clear() ;
|
||
|
xl_.clear() ;
|
||
|
bk_ = 0 ;
|
||
|
}
|
||
|
|
||
|
void set_right_hand_side(double b) {
|
||
|
check_state(IN_ROW) ;
|
||
|
bk_ = b ;
|
||
|
}
|
||
|
|
||
|
void add_coefficient(unsigned int iv, double a) {
|
||
|
check_state(IN_ROW) ;
|
||
|
Variable& v = variable(iv) ;
|
||
|
if(v.is_locked()) {
|
||
|
al_.push_back(a) ;
|
||
|
xl_.push_back(v.value()) ;
|
||
|
} else {
|
||
|
af_.push_back(a) ;
|
||
|
if_.push_back(v.index()) ;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void normalize_row(CoeffType weight = 1) {
|
||
|
check_state(IN_ROW) ;
|
||
|
CoeffType norm = 0.0 ;
|
||
|
unsigned int nf = af_.size() ;
|
||
|
for(unsigned int i=0; i<nf; i++) {
|
||
|
norm += af_[i] * af_[i] ;
|
||
|
}
|
||
|
unsigned int nl = al_.size() ;
|
||
|
for(unsigned int i=0; i<nl; i++) {
|
||
|
norm += al_[i] * al_[i] ;
|
||
|
}
|
||
|
norm = sqrt(norm) ;
|
||
|
CGAL_assertion( fabs(norm)>1e-40 );
|
||
|
scale_row(weight / norm) ;
|
||
|
}
|
||
|
|
||
|
void scale_row(CoeffType s) {
|
||
|
check_state(IN_ROW) ;
|
||
|
unsigned int nf = af_.size() ;
|
||
|
for(unsigned int i=0; i<nf; i++) {
|
||
|
af_[i] *= s ;
|
||
|
}
|
||
|
unsigned int nl = al_.size() ;
|
||
|
for(unsigned int i=0; i<nl; i++) {
|
||
|
al_[i] *= s ;
|
||
|
}
|
||
|
bk_ *= s ;
|
||
|
}
|
||
|
|
||
|
void end_row() {
|
||
|
if(least_squares_) {
|
||
|
std::size_t nf = af_.size() ;
|
||
|
std::size_t nl = al_.size() ;
|
||
|
for(std::size_t i=0; i<nf; i++) {
|
||
|
for(std::size_t j=0; j<nf; j++) {
|
||
|
A_->add_coef(if_[i], if_[j], af_[i] * af_[j]) ;
|
||
|
}
|
||
|
}
|
||
|
CoeffType S = - bk_ ;
|
||
|
for(std::size_t j=0; j<nl; j++) {
|
||
|
S += al_[j] * xl_[j] ;
|
||
|
}
|
||
|
for(std::size_t i=0; i<nf; i++) {
|
||
|
(*b_)[if_[i]] -= af_[i] * S ;
|
||
|
}
|
||
|
} else {
|
||
|
std::size_t nf = af_.size() ;
|
||
|
std::size_t nl = al_.size() ;
|
||
|
for(std::size_t i=0; i<nf; i++) {
|
||
|
A_->add_coef(current_row_, if_[i], af_[i]) ;
|
||
|
}
|
||
|
(*b_)[current_row_] = bk_ ;
|
||
|
for(std::size_t i=0; i<nl; i++) {
|
||
|
(*b_)[current_row_] -= al_[i] * xl_[i] ;
|
||
|
}
|
||
|
}
|
||
|
current_row_++ ;
|
||
|
transition(IN_ROW, IN_SYSTEM) ;
|
||
|
}
|
||
|
|
||
|
void end_system() {
|
||
|
transition(IN_SYSTEM, CONSTRUCTED) ;
|
||
|
}
|
||
|
|
||
|
// ----------------------------- Solver -------------------------------
|
||
|
|
||
|
// Solves a linear system or minimizes a quadratic form.
|
||
|
// Return true on success.
|
||
|
// (modified for SparseLinearAlgebraTraits_d concept)
|
||
|
bool solve()
|
||
|
{
|
||
|
check_state(CONSTRUCTED) ;
|
||
|
|
||
|
// Solve the sparse linear system "A*X = B". On success, the solution is (1/D) * X.
|
||
|
Traits solver_traits;
|
||
|
CoeffType D;
|
||
|
bool success = solver_traits.linear_solver(*A_, *b_, *x_, D) ;
|
||
|
CGAL_assertion(D == 1.0); // WARNING: this library does not support homogeneous coordinates!
|
||
|
|
||
|
vector_to_variables() ;
|
||
|
|
||
|
transition(CONSTRUCTED, SOLVED) ;
|
||
|
|
||
|
delete A_ ; A_ = NULL ;
|
||
|
delete b_ ; b_ = NULL ;
|
||
|
delete x_ ; x_ = NULL ;
|
||
|
|
||
|
return success;
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
|
||
|
// ----------- Converting between user representation and the internal representation -----
|
||
|
|
||
|
void vector_to_variables() {
|
||
|
for(int ii=0; ii < nb_variables(); ii++) {
|
||
|
Variable& v = variable(ii) ;
|
||
|
if(!v.is_locked()) {
|
||
|
v.set_value( (*x_)[v.index()] ) ;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void variables_to_vector() {
|
||
|
for(int ii=0; ii < nb_variables(); ii++) {
|
||
|
Variable& v = variable(ii) ;
|
||
|
if(!v.is_locked()) {
|
||
|
(*x_)[v.index()] = v.value() ;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ----------- Finite state automaton (checks that calling sequence is respected) ---------
|
||
|
|
||
|
std::string state_to_string(State s) {
|
||
|
switch(s) {
|
||
|
case INITIAL:
|
||
|
return "initial" ;
|
||
|
case IN_SYSTEM:
|
||
|
return "in system" ;
|
||
|
case IN_ROW:
|
||
|
return "in row" ;
|
||
|
case CONSTRUCTED:
|
||
|
return "constructed" ;
|
||
|
case SOLVED:
|
||
|
return "solved" ;
|
||
|
}
|
||
|
// Should not go there.
|
||
|
CGAL_error();
|
||
|
return "undefined" ;
|
||
|
}
|
||
|
|
||
|
void check_state(State s) {
|
||
|
CGAL_USE(s);
|
||
|
CGAL_assertion(state_ == s) ;
|
||
|
}
|
||
|
|
||
|
void transition(State from, State to) {
|
||
|
check_state(from) ;
|
||
|
state_ = to ;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
// --------------- parameters --------------------------
|
||
|
bool least_squares_ ;
|
||
|
|
||
|
// --------------- user representation --------------
|
||
|
unsigned int nb_variables_ ;
|
||
|
Variable* variable_ ;
|
||
|
|
||
|
// --------------- construction -----------------------
|
||
|
State state_ ;
|
||
|
unsigned int current_row_ ;
|
||
|
std::vector<CoeffType> af_ ;
|
||
|
std::vector<unsigned int> if_ ;
|
||
|
std::vector<CoeffType> al_ ;
|
||
|
std::vector<CoeffType> xl_ ;
|
||
|
double bk_ ;
|
||
|
|
||
|
// --------------- internal representation ---------
|
||
|
Matrix* A_ ;
|
||
|
Vector* x_ ;
|
||
|
Vector* b_ ;
|
||
|
|
||
|
} ;
|
||
|
|
||
|
|
||
|
} // namespace OpenNL
|
||
|
|
||
|
#endif
|