197 lines
6.2 KiB
C++
197 lines
6.2 KiB
C++
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
#include "mvc.h"
|
||
|
#include <vector>
|
||
|
#include <cassert>
|
||
|
#include <iostream>
|
||
|
|
||
|
// Broken Implementation
|
||
|
IGL_INLINE void igl::mvc(const Eigen::MatrixXd &V, const Eigen::MatrixXd &C, Eigen::MatrixXd &W)
|
||
|
{
|
||
|
|
||
|
// at least three control points
|
||
|
assert(C.rows()>2);
|
||
|
|
||
|
// dimension of points
|
||
|
assert(C.cols() == 3 || C.cols() == 2);
|
||
|
assert(V.cols() == 3 || V.cols() == 2);
|
||
|
|
||
|
// number of polygon points
|
||
|
int num = C.rows();
|
||
|
|
||
|
Eigen::MatrixXd V1,C1;
|
||
|
int i_prev, i_next;
|
||
|
|
||
|
// check if either are 3D but really all z's are 0
|
||
|
bool V_flat = (V.cols() == 3) && (std::sqrt( (V.col(3)).dot(V.col(3)) ) < 1e-10);
|
||
|
bool C_flat = (C.cols() == 3) && (std::sqrt( (C.col(3)).dot(C.col(3)) ) < 1e-10);
|
||
|
|
||
|
// if both are essentially 2D then ignore z-coords
|
||
|
if((C.cols() == 2 || C_flat) && (V.cols() == 2 || V_flat))
|
||
|
{
|
||
|
// ignore z coordinate
|
||
|
V1 = V.block(0,0,V.rows(),2);
|
||
|
C1 = C.block(0,0,C.rows(),2);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// give dummy z coordinate to either mesh or poly
|
||
|
if(V.rows() == 2)
|
||
|
{
|
||
|
V1 = Eigen::MatrixXd(V.rows(),3);
|
||
|
V1.block(0,0,V.rows(),2) = V;
|
||
|
}
|
||
|
else
|
||
|
V1 = V;
|
||
|
|
||
|
if(C.rows() == 2)
|
||
|
{
|
||
|
C1 = Eigen::MatrixXd(C.rows(),3);
|
||
|
C1.block(0,0,C.rows(),2) = C;
|
||
|
}
|
||
|
else
|
||
|
C1 = C;
|
||
|
|
||
|
// check that C is planar
|
||
|
// average normal around poly corners
|
||
|
|
||
|
Eigen::Vector3d n = Eigen::Vector3d::Zero();
|
||
|
// take centroid as point on plane
|
||
|
Eigen::Vector3d p = Eigen::Vector3d::Zero();
|
||
|
for (int i = 0; i<num; ++i)
|
||
|
{
|
||
|
i_prev = (i>0)?(i-1):(num-1);
|
||
|
i_next = (i<num-1)?(i+1):0;
|
||
|
Eigen::Vector3d vnext = (C1.row(i_next) - C1.row(i)).transpose();
|
||
|
Eigen::Vector3d vprev = (C1.row(i_prev) - C1.row(i)).transpose();
|
||
|
n += vnext.cross(vprev);
|
||
|
p += C1.row(i);
|
||
|
}
|
||
|
p/=num;
|
||
|
n/=num;
|
||
|
// normalize n
|
||
|
n /= std::sqrt(n.dot(n));
|
||
|
|
||
|
// check that poly is really coplanar
|
||
|
#ifndef NDEBUG
|
||
|
for (int i = 0; i<num; ++i)
|
||
|
{
|
||
|
double dist_to_plane_C = std::abs((C1.row(i)-p.transpose()).dot(n));
|
||
|
assert(dist_to_plane_C<1e-10);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// check that poly is really coplanar
|
||
|
for (int i = 0; i<V1.rows(); ++i)
|
||
|
{
|
||
|
double dist_to_plane_V = std::abs((V1.row(i)-p.transpose()).dot(n));
|
||
|
if(dist_to_plane_V>1e-10)
|
||
|
std::cerr<<"Distance from V to plane of C is large..."<<std::endl;
|
||
|
}
|
||
|
|
||
|
// change of basis
|
||
|
Eigen::Vector3d b1 = C1.row(1)-C1.row(0);
|
||
|
Eigen::Vector3d b2 = n.cross(b1);
|
||
|
// normalize basis rows
|
||
|
b1 /= std::sqrt(b1.dot(b1));
|
||
|
b2 /= std::sqrt(b2.dot(b2));
|
||
|
n /= std::sqrt(n.dot(n));
|
||
|
|
||
|
//transpose of the basis matrix in the m-file
|
||
|
Eigen::Matrix3d basis = Eigen::Matrix3d::Zero();
|
||
|
basis.col(0) = b1;
|
||
|
basis.col(1) = b2;
|
||
|
basis.col(2) = n;
|
||
|
|
||
|
// change basis of rows vectors by right multiplying with inverse of matrix
|
||
|
// with basis vectors as rows
|
||
|
Eigen::ColPivHouseholderQR<Eigen::Matrix3d> solver = basis.colPivHouseholderQr();
|
||
|
// Throw away coordinates in normal direction
|
||
|
V1 = solver.solve(V1.transpose()).transpose().block(0,0,V1.rows(),2);
|
||
|
C1 = solver.solve(C1.transpose()).transpose().block(0,0,C1.rows(),2);
|
||
|
|
||
|
}
|
||
|
|
||
|
// vectors from V to every C, where CmV(i,j,:) is the vector from domain
|
||
|
// vertex j to handle i
|
||
|
double EPS = 1e-10;
|
||
|
Eigen::MatrixXd WW = Eigen::MatrixXd(C1.rows(), V1.rows());
|
||
|
Eigen::MatrixXd dist_C_V (C1.rows(), V1.rows());
|
||
|
std::vector< std::pair<int,int> > on_corner(0);
|
||
|
std::vector< std::pair<int,int> > on_segment(0);
|
||
|
for (int i = 0; i<C1.rows(); ++i)
|
||
|
{
|
||
|
i_prev = (i>0)?(i-1):(num-1);
|
||
|
i_next = (i<num-1)?(i+1):0;
|
||
|
// distance from each corner in C to the next corner so that edge_length(i)
|
||
|
// is the distance from C(i,:) to C(i+1,:) defined cyclically
|
||
|
double edge_length = std::sqrt((C1.row(i) - C1.row(i_next)).dot(C1.row(i) - C1.row(i_next)));
|
||
|
for (int j = 0; j<V1.rows(); ++j)
|
||
|
{
|
||
|
Eigen::VectorXd v = C1.row(i) - V1.row(j);
|
||
|
Eigen::VectorXd vnext = C1.row(i_next) - V1.row(j);
|
||
|
Eigen::VectorXd vprev = C1.row(i_prev) - V1.row(j);
|
||
|
// distance from V to every C, where dist_C_V(i,j) is the distance from domain
|
||
|
// vertex j to handle i
|
||
|
dist_C_V(i,j) = std::sqrt(v.dot(v));
|
||
|
double dist_C_V_next = std::sqrt(vnext.dot(vnext));
|
||
|
double a_prev = std::atan2(vprev[1],vprev[0]) - std::atan2(v[1],v[0]);
|
||
|
double a_next = std::atan2(v[1],v[0]) - std::atan2(vnext[1],vnext[0]);
|
||
|
// mean value coordinates
|
||
|
WW(i,j) = (std::tan(a_prev/2.0) + std::tan(a_next/2.0)) / dist_C_V(i,j);
|
||
|
|
||
|
if (dist_C_V(i,j) < EPS)
|
||
|
on_corner.push_back(std::make_pair(j,i));
|
||
|
else
|
||
|
// only in case of no-corner (no need for checking for multiple segments afterwards --
|
||
|
// should only be on one segment (otherwise must be on a corner and we already
|
||
|
// handled that)
|
||
|
// domain vertex j is on the segment from i to i+1 if the distances from vj to
|
||
|
// pi and pi+1 are about
|
||
|
if(std::abs((dist_C_V(i,j) + dist_C_V_next) / edge_length - 1) < EPS)
|
||
|
on_segment.push_back(std::make_pair(j,i));
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// handle degenerate cases
|
||
|
// snap vertices close to corners
|
||
|
for (unsigned i = 0; i<on_corner.size(); ++i)
|
||
|
{
|
||
|
int vi = on_corner[i].first;
|
||
|
int ci = on_corner[i].second;
|
||
|
for (int ii = 0; ii<C.rows(); ++ii)
|
||
|
WW(ii,vi) = (ii==ci)?1:0;
|
||
|
}
|
||
|
|
||
|
// snap vertices close to segments
|
||
|
for (unsigned i = 0; i<on_segment.size(); ++i)
|
||
|
{
|
||
|
int vi = on_segment[i].first;
|
||
|
int ci = on_segment[i].second;
|
||
|
int ci_next = (ci<num-1)?(ci+1):0;
|
||
|
for (int ii = 0; ii<C.rows(); ++ii)
|
||
|
if (ii == ci)
|
||
|
WW(ii,vi) = dist_C_V(ci_next,vi);
|
||
|
else
|
||
|
{
|
||
|
if ( ii == ci_next)
|
||
|
WW(ii,vi) = dist_C_V(ci,vi);
|
||
|
else
|
||
|
WW(ii,vi) = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// normalize W
|
||
|
for (int i = 0; i<V.rows(); ++i)
|
||
|
WW.col(i) /= WW.col(i).sum();
|
||
|
|
||
|
// we've made W transpose
|
||
|
W = WW.transpose();
|
||
|
}
|