dust3d/third_party/libigl/include/igl/mvc.cpp

197 lines
6.2 KiB
C++
Raw Normal View History

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "mvc.h"
#include <vector>
#include <cassert>
#include <iostream>
// Broken Implementation
IGL_INLINE void igl::mvc(const Eigen::MatrixXd &V, const Eigen::MatrixXd &C, Eigen::MatrixXd &W)
{
// at least three control points
assert(C.rows()>2);
// dimension of points
assert(C.cols() == 3 || C.cols() == 2);
assert(V.cols() == 3 || V.cols() == 2);
// number of polygon points
int num = C.rows();
Eigen::MatrixXd V1,C1;
int i_prev, i_next;
// check if either are 3D but really all z's are 0
bool V_flat = (V.cols() == 3) && (std::sqrt( (V.col(3)).dot(V.col(3)) ) < 1e-10);
bool C_flat = (C.cols() == 3) && (std::sqrt( (C.col(3)).dot(C.col(3)) ) < 1e-10);
// if both are essentially 2D then ignore z-coords
if((C.cols() == 2 || C_flat) && (V.cols() == 2 || V_flat))
{
// ignore z coordinate
V1 = V.block(0,0,V.rows(),2);
C1 = C.block(0,0,C.rows(),2);
}
else
{
// give dummy z coordinate to either mesh or poly
if(V.rows() == 2)
{
V1 = Eigen::MatrixXd(V.rows(),3);
V1.block(0,0,V.rows(),2) = V;
}
else
V1 = V;
if(C.rows() == 2)
{
C1 = Eigen::MatrixXd(C.rows(),3);
C1.block(0,0,C.rows(),2) = C;
}
else
C1 = C;
// check that C is planar
// average normal around poly corners
Eigen::Vector3d n = Eigen::Vector3d::Zero();
// take centroid as point on plane
Eigen::Vector3d p = Eigen::Vector3d::Zero();
for (int i = 0; i<num; ++i)
{
i_prev = (i>0)?(i-1):(num-1);
i_next = (i<num-1)?(i+1):0;
Eigen::Vector3d vnext = (C1.row(i_next) - C1.row(i)).transpose();
Eigen::Vector3d vprev = (C1.row(i_prev) - C1.row(i)).transpose();
n += vnext.cross(vprev);
p += C1.row(i);
}
p/=num;
n/=num;
// normalize n
n /= std::sqrt(n.dot(n));
// check that poly is really coplanar
#ifndef NDEBUG
for (int i = 0; i<num; ++i)
{
double dist_to_plane_C = std::abs((C1.row(i)-p.transpose()).dot(n));
assert(dist_to_plane_C<1e-10);
}
#endif
// check that poly is really coplanar
for (int i = 0; i<V1.rows(); ++i)
{
double dist_to_plane_V = std::abs((V1.row(i)-p.transpose()).dot(n));
if(dist_to_plane_V>1e-10)
std::cerr<<"Distance from V to plane of C is large..."<<std::endl;
}
// change of basis
Eigen::Vector3d b1 = C1.row(1)-C1.row(0);
Eigen::Vector3d b2 = n.cross(b1);
// normalize basis rows
b1 /= std::sqrt(b1.dot(b1));
b2 /= std::sqrt(b2.dot(b2));
n /= std::sqrt(n.dot(n));
//transpose of the basis matrix in the m-file
Eigen::Matrix3d basis = Eigen::Matrix3d::Zero();
basis.col(0) = b1;
basis.col(1) = b2;
basis.col(2) = n;
// change basis of rows vectors by right multiplying with inverse of matrix
// with basis vectors as rows
Eigen::ColPivHouseholderQR<Eigen::Matrix3d> solver = basis.colPivHouseholderQr();
// Throw away coordinates in normal direction
V1 = solver.solve(V1.transpose()).transpose().block(0,0,V1.rows(),2);
C1 = solver.solve(C1.transpose()).transpose().block(0,0,C1.rows(),2);
}
// vectors from V to every C, where CmV(i,j,:) is the vector from domain
// vertex j to handle i
double EPS = 1e-10;
Eigen::MatrixXd WW = Eigen::MatrixXd(C1.rows(), V1.rows());
Eigen::MatrixXd dist_C_V (C1.rows(), V1.rows());
std::vector< std::pair<int,int> > on_corner(0);
std::vector< std::pair<int,int> > on_segment(0);
for (int i = 0; i<C1.rows(); ++i)
{
i_prev = (i>0)?(i-1):(num-1);
i_next = (i<num-1)?(i+1):0;
// distance from each corner in C to the next corner so that edge_length(i)
// is the distance from C(i,:) to C(i+1,:) defined cyclically
double edge_length = std::sqrt((C1.row(i) - C1.row(i_next)).dot(C1.row(i) - C1.row(i_next)));
for (int j = 0; j<V1.rows(); ++j)
{
Eigen::VectorXd v = C1.row(i) - V1.row(j);
Eigen::VectorXd vnext = C1.row(i_next) - V1.row(j);
Eigen::VectorXd vprev = C1.row(i_prev) - V1.row(j);
// distance from V to every C, where dist_C_V(i,j) is the distance from domain
// vertex j to handle i
dist_C_V(i,j) = std::sqrt(v.dot(v));
double dist_C_V_next = std::sqrt(vnext.dot(vnext));
double a_prev = std::atan2(vprev[1],vprev[0]) - std::atan2(v[1],v[0]);
double a_next = std::atan2(v[1],v[0]) - std::atan2(vnext[1],vnext[0]);
// mean value coordinates
WW(i,j) = (std::tan(a_prev/2.0) + std::tan(a_next/2.0)) / dist_C_V(i,j);
if (dist_C_V(i,j) < EPS)
on_corner.push_back(std::make_pair(j,i));
else
// only in case of no-corner (no need for checking for multiple segments afterwards --
// should only be on one segment (otherwise must be on a corner and we already
// handled that)
// domain vertex j is on the segment from i to i+1 if the distances from vj to
// pi and pi+1 are about
if(std::abs((dist_C_V(i,j) + dist_C_V_next) / edge_length - 1) < EPS)
on_segment.push_back(std::make_pair(j,i));
}
}
// handle degenerate cases
// snap vertices close to corners
for (unsigned i = 0; i<on_corner.size(); ++i)
{
int vi = on_corner[i].first;
int ci = on_corner[i].second;
for (int ii = 0; ii<C.rows(); ++ii)
WW(ii,vi) = (ii==ci)?1:0;
}
// snap vertices close to segments
for (unsigned i = 0; i<on_segment.size(); ++i)
{
int vi = on_segment[i].first;
int ci = on_segment[i].second;
int ci_next = (ci<num-1)?(ci+1):0;
for (int ii = 0; ii<C.rows(); ++ii)
if (ii == ci)
WW(ii,vi) = dist_C_V(ci_next,vi);
else
{
if ( ii == ci_next)
WW(ii,vi) = dist_C_V(ci,vi);
else
WW(ii,vi) = 0;
}
}
// normalize W
for (int i = 0; i<V.rows(); ++i)
WW.col(i) /= WW.col(i).sum();
// we've made W transpose
W = WW.transpose();
}