dust3d/third_party/libigl/include/igl/scaf.h

102 lines
3.4 KiB
C
Raw Normal View History

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2018 Zhongshi Jiang <jiangzs@nyu.edu>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#ifndef IGL_SCAF_H
#define IGL_SCAF_H
#include "slim.h"
#include "igl_inline.h"
#include "MappingEnergyType.h"
namespace igl
{
// Use a similar interface to igl::slim
// Implement ready-to-use 2D version of the algorithm described in
// SCAF: Simplicial Complex Augmentation Framework for Bijective Maps
// Zhongshi Jiang, Scott Schaefer, Daniele Panozzo, ACM Trancaction on Graphics (Proc. SIGGRAPH Asia 2017)
// For a complete implementation and customized UI, please refer to https://github.com/jiangzhongshi/scaffold-map
struct SCAFData
{
double scaffold_factor = 10;
igl::MappingEnergyType scaf_energy = igl::MappingEnergyType::SYMMETRIC_DIRICHLET;
igl::MappingEnergyType slim_energy = igl::MappingEnergyType::SYMMETRIC_DIRICHLET;
// Output
int dim = 2;
double total_energy; // scaffold + isometric
double energy; // objective value
long mv_num = 0, mf_num = 0;
long sv_num = 0, sf_num = 0;
long v_num{}, f_num = 0;
Eigen::MatrixXd m_V; // input initial mesh V
Eigen::MatrixXi m_T; // input initial mesh F/T
// INTERNAL
Eigen::MatrixXd w_uv; // whole domain uv: mesh + free vertices
Eigen::MatrixXi s_T; // scaffold domain tets: scaffold tets
Eigen::MatrixXi w_T;
Eigen::VectorXd m_M; // mesh area or volume
Eigen::VectorXd s_M; // scaffold area or volume
Eigen::VectorXd w_M; // area/volume weights for whole
double mesh_measure; // area or volume
double proximal_p = 0;
Eigen::VectorXi frame_ids;
Eigen::VectorXi fixed_ids;
std::map<int, Eigen::RowVectorXd> soft_cons;
double soft_const_p = 1e4;
Eigen::VectorXi internal_bnd;
Eigen::MatrixXd rect_frame_V;
// multi-chart support
std::vector<int> component_sizes;
std::vector<int> bnd_sizes;
// reweightedARAP interior variables.
bool has_pre_calc = false;
Eigen::SparseMatrix<double> Dx_s, Dy_s, Dz_s;
Eigen::SparseMatrix<double> Dx_m, Dy_m, Dz_m;
Eigen::MatrixXd Ri_m, Ji_m, Ri_s, Ji_s;
Eigen::MatrixXd W_m, W_s;
};
// Compute necessary information to start using SCAF
// Inputs:
// V #V by 3 list of mesh vertex positions
// F #F by 3/3 list of mesh faces (triangles/tets)
// data igl::SCAFData
// slim_energy Energy type to minimize
// b list of boundary indices into V (soft constraint)
// bc #b by dim list of boundary conditions (soft constraint)
// soft_p Soft penalty factor (can be zero)
IGL_INLINE void scaf_precompute(
const Eigen::MatrixXd &V,
const Eigen::MatrixXi &F,
const Eigen::MatrixXd &V_init,
SCAFData &data,
MappingEnergyType slim_energy,
Eigen::VectorXi& b,
Eigen::MatrixXd& bc,
double soft_p);
// Run iter_num iterations of SCAF, with precomputed data
// Outputs:
// V_o (in SLIMData): #V by dim list of mesh vertex positions
IGL_INLINE Eigen::MatrixXd scaf_solve(SCAFData &data, int iter_num);
}
#ifndef IGL_STATIC_LIBRARY
# include "scaf.cpp"
#endif
#endif //IGL_SCAF_H