dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Polynomial/bezout_matrix.h

616 lines
18 KiB
C
Raw Normal View History

// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany)
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Michael Hemmer
//
// ============================================================================
// TODO: The comments are all original EXACUS comments and aren't adapted. So
// they may be wrong now.
#ifndef CGAL_POLYNOMIAL_BEZOUT_MATRIX_H
#define CGAL_POLYNOMIAL_BEZOUT_MATRIX_H
#include <algorithm>
#include <CGAL/basic.h>
#include <CGAL/Polynomial_traits_d.h>
#include <CGAL/Polynomial/determinant.h>
#include <CGAL/use.h>
#include <vector>
namespace CGAL {
namespace internal {
/*! \ingroup CGAL_resultant_matrix
* \brief construct hybrid Bezout matrix of two polynomials
*
* If \c sub=0 , this function returns the hybrid Bezout matrix
* of \c f and \c g.
* The hybrid Bezout matrix of two polynomials \e f and \e g
* (seen as polynomials in one variable) is a
* square matrix of size max(deg(<I>f</I>), deg(<I>g</I>)) whose entries
* are expressions in the polynomials' coefficients.
* Its determinant is the resultant of \e f and \e g, maybe up to sign.
* The function computes the same matrix as the Maple command
* <I>BezoutMatrix</I>.
*
* If \c sub>0 , this function returns the matrix obtained by chopping
* off the \c sub topmost rows and the \c sub rightmost columns.
* Its determinant is the <I>sub</I>-th (scalar) subresultant
* of \e f and \e g, maybe up to sign.
*
* If specified, \c sub must be less than the degrees of both \e f and \e g.
*
* See also \c CGAL::hybrid_bezout_subresultant() and \c CGAL::sylvester_matrix() .
*
* A formal definition of the hybrid Bezout matrix and a proof for the
* subresultant property can be found in:
*
* Gema M.Diaz-Toca, Laureano Gonzalez-Vega: Various New Expressions for
* Subresultants and Their Applications. AAECC 15, 233-266 (2004)
*
*/
template <typename Polynomial_traits_d>
typename internal::Simple_matrix< typename Polynomial_traits_d::Coefficient_type >
hybrid_bezout_matrix(typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
int sub = 0)
{
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
typename Polynomial_traits_d::Get_coefficient coeff;
typedef typename internal::Simple_matrix<NT> Matrix;
int n = degree(f);
int m = degree(g);
CGAL_precondition((n >= 0) && !is_zero(f));
CGAL_precondition((m >= 0) && !is_zero(g));
CGAL_precondition(n > sub || sub == 0);
CGAL_precondition(m > sub || sub == 0);
int i, j, k, l;
NT s;
if (m > n) {
std::swap(f, g);
std::swap(m, n);
}
Matrix B(n-sub);
for (i = 1+sub; i <= m; i++) {
for (j = 1; j <= n-sub; j++) {
s = NT(0);
for (k = 0; k <= i-1; k++) {
l = n+i-j-k;
if ((l <= n) and (l >= n-(m-i))) {
s += coeff(f,l) * coeff(g,k);
}
}
for (k = 0; k <= n-(m-i+1); k++) {
l = n+i-j-k;
if ((l <= m) and (l >= i)) {
s -= coeff(f,k) * coeff(g,l);
}
}
B[i-sub-1][j-1] = s;
}
}
for (i = std::max(m+1, 1+sub); i <= n; i++) {
for (j = i-m; j <= std::min(i, n-sub); j++) {
B[i-sub-1][j-1] = coeff(g,i-j);
}
}
return B; // g++ 3.1+ has NRVO, so this should not be too expensive
}
/*! \ingroup CGAL_resultant_matrix
* \brief construct the symmetric Bezout matrix of two polynomials
*
* This function returns the (symmetric) Bezout matrix of \c f and \c g.
* The Bezout matrix of two polynomials \e f and \e g
* (seen as polynomials in one variable) is a
* square matrix of size max(deg(<I>f</I>), deg(<I>g</I>)) whose entries
* are expressions in the polynomials' coefficients.
* Its determinant is the resultant of \e f and \e g, maybe up to sign.
*
*/
template <typename Polynomial_traits_d>
typename internal::Simple_matrix<typename Polynomial_traits_d::Coefficient_type>
symmetric_bezout_matrix
(typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
int sub = 0)
{
// Note: The algorithm is taken from:
// Chionh, Zhang, Goldman: Fast Computation of the Bezout and Dixon Resultant
// Matrices. J.Symbolic Computation 33, 13-29 (2002)
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
CGAL_assertion_code(typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;)
CGAL_USE_TYPE(Polynomial);
typename Polynomial_traits_d::Get_coefficient coeff;
typedef typename internal::Simple_matrix<NT> Matrix;
int n = degree(f);
int m = degree(g);
CGAL_precondition((n >= 0) && !is_zero(f));
CGAL_precondition((m >= 0) && !is_zero(g));
int i,j,stop;
NT sum1,sum2;
if (m > n) {
std::swap(f, g);
std::swap(m, n);
}
CGAL_precondition((sub>=0) && sub < n);
int d = n - sub;
Matrix B(d);
// 1st step: Initialisation
for(i=0;i<d;i++) {
for(j=i;j<d;j++) {
sum1 = ((j+sub)+1>m) ? NT(0) : -coeff(f,i+sub)*coeff(g,(j+sub)+1);
sum2 = ((i+sub)>m) ? NT(0) : coeff(g,i+sub)*coeff(f,(j+sub)+1);
B[i][j]=sum1+sum2;
}
}
// 2nd Step: Recursion adding
// First, set up the first line correctly
for(i=0;i<d-1;i++) {
stop = (sub<d-1-i) ? sub : d-i-1;
for(j=1;j<=stop;j++) {
sum1 = ((i+sub+j)+1>m) ? NT(0)
: -coeff(f,sub-j)*coeff(g,(i+sub+j)+1);
sum2 = ((sub-j)>m) ? NT(0)
: coeff(g,sub-j)*coeff(f,(i+sub+j)+1);
B[0][i]+=sum1+sum2;
}
}
// Now, compute the rest
for(i=1;i<d-1;i++) {
for(j=i;j<d-1;j++) {
B[i][j]+=B[i-1][j+1];
}
}
//3rd Step: Exploit symmetry
for(i=1;i<d;i++) {
for(j=0;j<i;j++) {
B[i][j]=B[j][i];
}
}
return B;
}
/*! \ingroup CGAL_resultant_matrix
* \brief compute (sub)resultant as Bezout matrix determinant
*
* This function returns the determinant of the matrix returned
* by <TT>hybrid_bezout_matrix(f, g, sub)</TT> which is the
* resultant of \c f and \c g, maybe up to sign;
* or rather the <I>sub</I>-th (scalar) subresultant, if a non-zero third
* argument is given.
*
* If specified, \c sub must be less than the degrees of both \e f and \e g.
*
* This function might be faster than \c CGAL::Polynomial<..>::resultant() ,
* which computes the resultant from a subresultant remainder sequence.
* See also \c CGAL::sylvester_subresultant().
*/
template <class Polynomial_traits_d>
typename Polynomial_traits_d::Coefficient_type hybrid_bezout_subresultant(
typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
int sub = 0
) {
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
typedef internal::Simple_matrix<NT> Matrix;
CGAL_precondition((degree(f) >= 0));
CGAL_precondition((degree(g) >= 0));
if (is_zero(f) || is_zero(g)) return NT(0);
Matrix S = hybrid_bezout_matrix<Polynomial_traits_d>(f, g, sub);
CGAL_assertion(S.row_dimension() == S.column_dimension());
if (S.row_dimension() == 0) {
return NT(1);
} else {
return internal::determinant(S);
}
}
// Transforms the minors of the symmetric bezout matrix into the subresultant.
// Needs the appropriate power of the leading coedfficient of f and the
// degrees of f and g
template<class InputIterator,class OutputIterator,class NT>
void symmetric_minors_to_subresultants(InputIterator in,
OutputIterator out,
NT divisor,
int n,
int m,
bool swapped) {
typename CGAL::Algebraic_structure_traits<NT>::Integral_division idiv;
for(int i=0;i<m;i++) {
bool negate = ((n-m+i+1) & 2)>>1; // (n-m+i+1)==2 or 3 mod 4
negate=negate ^ (swapped & ((n-m+i+1)*(i+1)));
//...XOR (swapped AND (n-m+i+1)* (i+1) is odd)
*out = idiv(*in, negate ? -divisor : divisor);
in++;
out++;
}
}
/*! \ingroup CGAL_resultant_matrix
* \brief compute the principal subresultant coefficients as minors
* of the symmetric Bezout matrix.
*
* Returns the sequence sres<sub>0</sub>,..,sres<sub>m</sub>, where
* sres<sub>i</sub> denotes the ith principal subresultant coefficient
*
* The function uses an extension of the Berkowitz method to compute the
* determinant
* See also \c CGAL::minors_berkowitz
*/
template<class Polynomial_traits_d,class OutputIterator>
OutputIterator symmetric_bezout_subresultants(
typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
OutputIterator sres)
{
typedef typename Polynomial_traits_d::Polynomial_d Polynomial;
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename CGAL::Algebraic_structure_traits<Polynomial>::Is_zero is_zero;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
typedef typename internal::Simple_matrix<NT> Matrix;
int n = degree(f);
int m = degree(g);
bool swapped=false;
if(n < m) {
std::swap(f,g);
std::swap(n,m);
swapped=true;
}
Matrix B = symmetric_bezout_matrix<Polynomial_traits_d>(f,g);
// Compute a_0^{n-m}
NT divisor=ipower(lcoeff(f),n-m);
std::vector<NT> minors;
minors_berkowitz(B,std::back_inserter(minors),n,m);
CGAL::internal::symmetric_minors_to_subresultants(minors.begin(),sres,
divisor,n,m,swapped);
return sres;
}
/*
* Return a modified version of the hybrid bezout matrix such that the minors
* from the last k rows and columns give the subresultants
*/
template<class Polynomial_traits_d>
typename internal::Simple_matrix<typename Polynomial_traits_d::Coefficient_type>
modified_hybrid_bezout_matrix
(typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typedef typename internal::Simple_matrix<NT> Matrix;
typename Polynomial_traits_d::Degree degree;
int n = degree(f);
int m = degree(g);
int i,j;
bool negate, swapped=false;
if(n < m) {
std::swap(f,g); //(*)
std::swap(n,m);
swapped=true;
}
Matrix B = CGAL::internal::hybrid_bezout_matrix<Polynomial_traits_d>(f,g);
// swap columns
i=0;
while(i<n-i-1) {
B.swap_columns(i,n-i-1); // (**)
i++;
}
for(i=0;i<n;i++) {
negate=(n-i-1) & 1; // Negate every second column because of (**)
negate=negate ^ (swapped & (n-m+1)); // XOR negate everything because of(*)
if(negate) {
for(j=0;j<n;j++) {
B[j][i] *= -1;
}
}
}
return B;
}
/*! \ingroup CGAL_resultant_matrix
* \brief compute the principal subresultant coefficients as minors
* of the hybrid Bezout matrix.
*
* Returns the sequence sres<sub>0</sub>,...,sres<sub>m</sub>$, where
* sres<sub>i</sub> denotes the ith principal subresultant coefficient
*
* The function uses an extension of the Berkowitz method to compute the
* determinant
* See also \c CGAL::minors_berkowitz
*/
template<class Polynomial_traits_d,class OutputIterator>
OutputIterator hybrid_bezout_subresultants(
typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
OutputIterator sres)
{
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typedef typename internal::Simple_matrix<NT> Matrix;
int n = degree(f);
int m = degree(g);
Matrix B = CGAL::internal::modified_hybrid_bezout_matrix<Polynomial_traits_d>
(f,g);
if(n<m) {
std::swap(n,m);
}
return minors_berkowitz(B,sres,n,m);
}
// Swap entry A_ij with A_(n-i)(n-j) for square matrix A of dimension n
template<class NT>
void swap_entries(typename internal::Simple_matrix<NT> & A) {
CGAL_precondition(A.row_dimension()==A.column_dimension());
int n = A.row_dimension();
int i=0;
while(i<n-i-1) {
A.swap_rows(i,n-i-1);
A.swap_columns(i,n-i-1);
i++;
}
}
// Produce S-matrix with the given matrix and integers.
template<class NT,class InputIterator>
typename internal::Simple_matrix<NT> s_matrix(
const typename internal::Simple_matrix<NT>& B,
InputIterator num,int size)
{
typename internal::Simple_matrix<NT> S(size);
CGAL_precondition_code(int n = B.row_dimension();)
CGAL_precondition(n==(int)B.column_dimension());
int curr_num;
bool negate;
for(int i=0;i<size;i++) {
curr_num=(*num);
num++;
negate = curr_num<0;
if(curr_num<0) {
curr_num=-curr_num;
}
for(int j=0;j<size;j++) {
S[j][i]=negate ? -B[j][curr_num-1] : B[j][curr_num-1];
}
}
return S;
}
// Produces the integer sequence for the S-matrix, where c is the first entry
// of the sequence, s the number of desired diagonals and n the dimension
// of the base matrix
template<class OutputIterator>
OutputIterator s_matrix_integer_sequence(OutputIterator it,
int c,int s,int n) {
CGAL_precondition(0<s);
CGAL_precondition(s<=n);
// c is interpreted modulo s wrt to the representants {1,..,s}
c=c%s;
if(c==0) {
c=s;
}
int i, p=0, q=c;
while(q<=n) {
*it = q;
it++;
for(i=p+1;i<q;i++) {
*it = -i;
it++;
}
p = q;
q = q+s;
}
return it;
}
/*! \ingroup CGAL_resultant_matrix
* \brief computes the coefficients of the polynomial subresultant sequence
*
* Returns an upper triangular matrix <I>A</I> such that A<sub>i,j</sub> is
* the coefficient of <I>x<sup>j-1</sup></I> in the <I>i</I>th polynomial
* subresultant. In particular, the main diagonal contains the scalar
* subresultants.
*
* If \c d > 0 is specified, only the first \c d diagonals of <I>A</I> are
* computed. In particular, setting \c d to one yields exactly the same
* result as applying \c hybrid_subresultants or \c symmetric_subresultants
* (except the different output format).
*
* These coefficients are computed as special minors of the hybrid Bezout matrix.
* See also \c CGAL::minors_berkowitz
*/
template<typename Polynomial_traits_d>
typename internal::Simple_matrix<typename Polynomial_traits_d::Coefficient_type>
polynomial_subresultant_matrix(typename Polynomial_traits_d::Polynomial_d f,
typename Polynomial_traits_d::Polynomial_d g,
int d=0) {
typedef typename Polynomial_traits_d::Coefficient_type NT;
typename Polynomial_traits_d::Degree degree;
typename Polynomial_traits_d::Leading_coefficient lcoeff;
int n = degree(f);
int m = degree(g);
CGAL_precondition(n>=0);
CGAL_precondition(m>=0);
CGAL_precondition(d>=0);
typedef internal::Simple_matrix<NT> Matrix;
bool swapped=false;
if(n < m) {
std::swap(f,g);
std::swap(n,m);
swapped=true;
}
if(d==0) {
d=m;
};
Matrix B = CGAL::internal::symmetric_bezout_matrix<Polynomial_traits_d>(f,g);
// For easier notation, we swap all entries:
internal::swap_entries<NT>(B);
// Compute the S-matrices and collect the minors
std::vector<Matrix> s_mat(m);
std::vector<std::vector<NT> > coeffs(d);
for(int i = 1; i<=d;i++) {
std::vector<int> intseq;
internal::s_matrix_integer_sequence(std::back_inserter(intseq),i,d,n);
Matrix S = internal::s_matrix<NT>(B,intseq.begin(),(int)intseq.size());
internal::swap_entries<NT>(S);
//std::cout << S << std::endl;
int Sdim = S.row_dimension();
int number_of_minors=(Sdim < m) ? Sdim : Sdim;
internal::minors_berkowitz(S,std::back_inserter(coeffs[i-1]),
Sdim,number_of_minors);
}
// Now, rearrange the minors in the matrix
Matrix Ret(m,m,NT(0));
for(int i = 0; i < d; i++) {
for(int j = 0;j < m-i ; j++) {
int s_index=(n-m+j+i+1)%d;
if(s_index==0) {
s_index=d;
}
s_index--;
Ret[j][j+i]=coeffs[s_index][n-m+j];
}
}
typename CGAL::Algebraic_structure_traits<NT>::Integral_division idiv;
NT divisor = ipower(lcoeff(f),n-m);
int bit_mask = swapped ? 1 : 0;
// Divide through the divisor and set the correct sign
for(int i=0;i<m;i++) {
for(int j = i;j<m;j++) {
int negate = ((n-m+i+1) & 2)>>1; // (n-m+i+1)==2 or 3 mod 4
negate^=(bit_mask & ((n-m+i+1)*(i+1)));
//...XOR (swapped AND (n-m+i+1)* (i+1) is odd)
Ret[i][j] = idiv(Ret[i][j], negate>0 ? -divisor : divisor);
}
}
return Ret;
}
}
} //namespace CGAL
#endif // CGAL_POLYNOMIAL_BEZOUT_MATRIX_H
// EOF