dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/int.h

298 lines
8.7 KiB
C
Raw Normal View History

// Copyright (c) 1999,2007
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Stefan Schirra, Michael Hemmer
#ifndef CGAL_INT_H
#define CGAL_INT_H
#include <CGAL/number_type_basic.h>
#include <CGAL/Modular_traits.h>
#include <CGAL/Modular_arithmetic/Residue_type.h>
namespace CGAL {
namespace INTERN_INT {
template< class Type >
class Is_square_per_double_conversion
: public CGAL::cpp98::binary_function< Type, Type&,
bool > {
public:
bool operator()( const Type& x,
Type& y ) const {
y = (Type) std::sqrt( (double)x );
return x == y * y;
}
bool operator()( const Type& x ) const {
Type y =
(Type) std::sqrt( (double)x );
return x == y * y;
}
};
} // INTERN_INT
// int
template<> class Algebraic_structure_traits< int >
: public Algebraic_structure_traits_base< int, Euclidean_ring_tag > {
public:
typedef Tag_false Is_exact;
typedef Tag_true Is_numerical_sensitive;
typedef INTERN_AST::Div_per_operator< Type > Div;
typedef INTERN_AST::Mod_per_operator< Type > Mod;
typedef INTERN_INT::
Is_square_per_double_conversion< Type > Is_square;
};
template <> class Real_embeddable_traits< int >
: public INTERN_RET::Real_embeddable_traits_base< int , CGAL::Tag_true > {};
/*! \ingroup CGAL_Modular_traits_spec
\brief Specialization of CGAL::Modular_traits for \c int.
A model of concept ModularTraits, supports \c int.
*/
template <typename T>
class Modular_traits;
template<>
class Modular_traits<int>{
public:
typedef int NT;
typedef ::CGAL::Tag_true Is_modularizable;
typedef Residue Residue_type;
struct Modular_image{
Residue_type operator()(int i){
return Residue_type(i);
}
};
struct Modular_image_representative{
NT operator()(const Residue_type& x){
return x.get_value();
}
};
};
// long
template<> class Algebraic_structure_traits< long int >
: public Algebraic_structure_traits_base< long int,
Euclidean_ring_tag > {
public:
typedef Tag_false Is_exact;
typedef Tag_true Is_numerical_sensitive;
typedef INTERN_AST::Div_per_operator< Type > Div;
typedef INTERN_AST::Mod_per_operator< Type > Mod;
typedef INTERN_INT::
Is_square_per_double_conversion< Type > Is_square;
};
template <> class Real_embeddable_traits< long int >
: public INTERN_RET::Real_embeddable_traits_base< long int , CGAL::Tag_true > {
public:
class To_interval
: public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
return Interval_nt<true>(x).pair();
}
};
};
/*! \ingroup CGAL_Modular_traits_spec
\brief Specialization of CGAL::Modular_traits for \c long.
A model of concept ModularTraits, supports \c long.
*/
template<>
class Modular_traits<long>{
public:
typedef long NT;
typedef ::CGAL::Tag_true Is_modularizable;
typedef Residue Residue_type;
struct Modular_image{
Residue_type operator()(long i){
return Residue_type(i);
}
};
struct Modular_image_representative{
NT operator()(const Residue_type& x){
return NT(x.get_value());
}
};
};
// short
template<> class Algebraic_structure_traits< short int >
: public Algebraic_structure_traits_base< short int,
Euclidean_ring_tag > {
public:
typedef Tag_false Is_exact;
typedef Tag_true Is_numerical_sensitive;
// Explicitly defined functors which have no support for implicit
// interoperability. This is nescessary because of the implicit conversion
// to int for binary operations between short ints.
class Integral_division
: public CGAL::cpp98::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y) const {
Algebraic_structure_traits<Type>::Div actual_div;
CGAL_precondition_msg( actual_div( x, y) * y == x,
"'x' must be divisible by 'y' in "
"Algebraic_structure_traits<...>::Integral_div()(x,y)" );
return actual_div( x, y);
}
};
class Gcd
: public CGAL::cpp98::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y) const {
Algebraic_structure_traits<Type>::Mod mod;
Algebraic_structure_traits<Type>::Unit_part unit_part;
Algebraic_structure_traits<Type>::Integral_division integral_div;
// First: the extreme cases and negative sign corrections.
if (x == Type(0)) {
if (y == Type(0))
return Type(0);
return integral_div( y, unit_part(y) );
}
if (y == Type(0))
return integral_div(x, unit_part(x) );
Type u = integral_div( x, unit_part(x) );
Type v = integral_div( y, unit_part(y) );
// Second: assuming mod is the most expensive op here, we don't compute it
// unnecessarily if u < v
if (u < v) {
v = mod(v,u);
// maintain invariant of v > 0 for the loop below
if ( v == Type(0) )
return u;
}
Type w;
do {
w = mod(u,v);
if ( w == Type(0))
return v;
u = mod(v,w);
if ( u == Type(0))
return w;
v = mod(w,u);
} while (v != Type(0));
return u;
}
};
class Div_mod {
public:
typedef Type first_argument_type;
typedef Type second_argument_type;
typedef Type& third_argument_type;
typedef Type& fourth_argument_type;
typedef void result_type;
void operator()( const Type& x,
const Type& y,
Type& q, Type& r) const {
q = Type(x / y);
r = Type(x % y);
CGAL_assertion(x == q * y + r);
return;
}
};
// based on \c Div_mod.
class Div
: public CGAL::cpp98::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y) const {
return Type(x / y);
};
};
// based on \c Div_mod.
class Mod
: public CGAL::cpp98::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y) const {
return Type(x % y);
};
};
typedef INTERN_INT::
Is_square_per_double_conversion< Type > Is_square;
};
template <> class Real_embeddable_traits< short int >
: public INTERN_RET::Real_embeddable_traits_base< short int , CGAL::Tag_true > {};
// unsigned int
template <> class Real_embeddable_traits< unsigned int >
: public INTERN_RET::Real_embeddable_traits_base< unsigned int , CGAL::Tag_true > {};
// unsigned long
template <> class Real_embeddable_traits< unsigned long >
: public INTERN_RET::Real_embeddable_traits_base< unsigned long , CGAL::Tag_true > {
public:
class To_interval
: public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
return Interval_nt<true>(x).pair();
}
};
};
// Note : "long long" support is in <CGAL/long_long.h>
} //namespace CGAL
#endif // CGAL_INT_H