133 lines
4.5 KiB
C++
133 lines
4.5 KiB
C++
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
|
||
|
// Qingan Zhou <qnzhou@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#include "lexicographic_triangulation.h"
|
||
|
#include "sortrows.h"
|
||
|
|
||
|
#include <vector>
|
||
|
#include <list>
|
||
|
|
||
|
template<
|
||
|
typename DerivedP,
|
||
|
typename Orient2D,
|
||
|
typename DerivedF
|
||
|
>
|
||
|
IGL_INLINE void igl::lexicographic_triangulation(
|
||
|
const Eigen::MatrixBase<DerivedP>& P,
|
||
|
Orient2D orient2D,
|
||
|
Eigen::PlainObjectBase<DerivedF>& F)
|
||
|
{
|
||
|
typedef typename DerivedP::Scalar Scalar;
|
||
|
const size_t num_pts = P.rows();
|
||
|
if (num_pts < 3) {
|
||
|
throw "At least 3 points are required for triangulation!";
|
||
|
}
|
||
|
|
||
|
// Sort points in lexicographic order.
|
||
|
DerivedP ordered_P;
|
||
|
Eigen::VectorXi order;
|
||
|
igl::sortrows(P, true, ordered_P, order);
|
||
|
|
||
|
std::vector<Eigen::Vector3i> faces;
|
||
|
std::list<int> boundary;
|
||
|
const Scalar p0[] = {ordered_P(0, 0), ordered_P(0, 1)};
|
||
|
const Scalar p1[] = {ordered_P(1, 0), ordered_P(1, 1)};
|
||
|
for (size_t i=2; i<num_pts; i++) {
|
||
|
const Scalar curr_p[] = {ordered_P(i, 0), ordered_P(i, 1)};
|
||
|
if (faces.size() == 0) {
|
||
|
// All points processed so far are collinear.
|
||
|
// Check if the current point is collinear with every points before it.
|
||
|
auto orientation = orient2D(p0, p1, curr_p);
|
||
|
if (orientation != 0) {
|
||
|
// Add a fan of triangles eminating from curr_p.
|
||
|
if (orientation > 0) {
|
||
|
for (size_t j=0; j<=i-2; j++) {
|
||
|
faces.push_back({order[j], order[j+1], order[i]});
|
||
|
}
|
||
|
} else if (orientation < 0) {
|
||
|
for (size_t j=0; j<=i-2; j++) {
|
||
|
faces.push_back({order[j+1], order[j], order[i]});
|
||
|
}
|
||
|
}
|
||
|
// Initialize current boundary.
|
||
|
boundary.insert(boundary.end(), order.data(), order.data()+i+1);
|
||
|
if (orientation < 0) {
|
||
|
boundary.reverse();
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
const size_t bd_size = boundary.size();
|
||
|
assert(bd_size >= 3);
|
||
|
std::vector<short> orientations;
|
||
|
for (auto itr=boundary.begin(); itr!=boundary.end(); itr++) {
|
||
|
auto next_itr = std::next(itr, 1);
|
||
|
if (next_itr == boundary.end()) {
|
||
|
next_itr = boundary.begin();
|
||
|
}
|
||
|
const Scalar bd_p0[] = {P(*itr, 0), P(*itr, 1)};
|
||
|
const Scalar bd_p1[] = {P(*next_itr, 0), P(*next_itr, 1)};
|
||
|
auto orientation = orient2D(bd_p0, bd_p1, curr_p);
|
||
|
if (orientation < 0) {
|
||
|
faces.push_back({*next_itr, *itr, order[i]});
|
||
|
}
|
||
|
orientations.push_back(orientation);
|
||
|
}
|
||
|
|
||
|
auto left_itr = boundary.begin();
|
||
|
auto right_itr = boundary.begin();
|
||
|
auto curr_itr = boundary.begin();
|
||
|
for (size_t j=0; j<bd_size; j++, curr_itr++) {
|
||
|
size_t prev = (j+bd_size-1) % bd_size;
|
||
|
if (orientations[j] >= 0 && orientations[prev] < 0) {
|
||
|
right_itr = curr_itr;
|
||
|
} else if (orientations[j] < 0 && orientations[prev] >= 0) {
|
||
|
left_itr = curr_itr;
|
||
|
}
|
||
|
}
|
||
|
assert(left_itr != right_itr);
|
||
|
|
||
|
for (auto itr=left_itr; itr!=right_itr; itr++) {
|
||
|
if (itr == boundary.end()) itr = boundary.begin();
|
||
|
if (itr == right_itr) break;
|
||
|
if (itr == left_itr || itr == right_itr) continue;
|
||
|
itr = boundary.erase(itr);
|
||
|
if (itr == boundary.begin()) {
|
||
|
itr = boundary.end();
|
||
|
} else {
|
||
|
itr--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (right_itr == boundary.begin()) {
|
||
|
assert(std::next(left_itr, 1) == boundary.end());
|
||
|
boundary.insert(boundary.end(), order[i]);
|
||
|
} else {
|
||
|
assert(std::next(left_itr, 1) == right_itr);
|
||
|
boundary.insert(right_itr, order[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const size_t num_faces = faces.size();
|
||
|
if (num_faces == 0) {
|
||
|
// All input points are collinear.
|
||
|
// Do nothing here.
|
||
|
} else {
|
||
|
F.resize(num_faces, 3);
|
||
|
for (size_t i=0; i<num_faces; i++) {
|
||
|
F.row(i) = faces[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef IGL_STATIC_LIBRARY
|
||
|
template void igl::lexicographic_triangulation<Eigen::Matrix<double, -1, -1, 0, -1, -1>, short (*)(double const*, double const*, double const*), Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, short (*)(double const*, double const*, double const*), Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&);
|
||
|
#endif
|