dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Construct_yao_graph_2.h

243 lines
8.7 KiB
C
Raw Normal View History

// Copyright (c) 2013-2015 The University of Western Sydney, Australia.
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
2020-10-13 12:44:25 +00:00
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Cone_spanners_2/include/CGAL/Construct_yao_graph_2.h $
// $Id: Construct_yao_graph_2.h 254d60f 2019-10-19T15:23:19+02:00 Sébastien Loriot
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Authors: Weisheng Si, Quincy Tse, Frédérik Paradis
/*! \file Construct_yao_graph_2.h
*
* This header implements the functor for constructing Yao graphs.
*/
#ifndef CGAL_CONSTRUCT_YAO_GRAPH_2_H
#define CGAL_CONSTRUCT_YAO_GRAPH_2_H
#include <CGAL/license/Cone_spanners_2.h>
#include <iostream>
#include <cstdlib>
#include <utility>
#include <CGAL/Compute_cone_boundaries_2.h>
#include <CGAL/Cone_spanners_2/Less_by_direction_2.h>
#include <CGAL/Cone_spanners_enum_2.h>
#include <boost/config.hpp>
#include <boost/graph/adjacency_list.hpp>
namespace CGAL {
2020-10-13 12:44:25 +00:00
/*! \ingroup PkgConeSpanners2Ref
\brief A template functor for constructing Yao graphs with a given set of 2D points and
a given initial direction for the cone boundaries.
\tparam Traits_ Must be either `CGAL::Exact_predicates_exact_constructions_kernel_with_root_of`
or `CGAL::Exact_predicates_inexact_constructions_kernel`.
\tparam Graph_ The graph type to store the constructed cone based spanner.
2020-10-13 12:44:25 +00:00
It must be <A HREF="https://www.boost.org/libs/graph/doc/adjacency_list.html">`boost::adjacency_list`</A>
with `Traits_::Point_2` as `VertexProperties`
*/
template <typename Traits_, typename Graph_>
class Construct_yao_graph_2 {
public:
/*! the geometric traits class. */
typedef Traits_ Traits;
/*! the specific type of `boost::adjacency_list`. */
typedef Graph_ Graph;
/*! the point type */
typedef typename Traits::Point_2 Point_2;
/*! the direction type */
typedef typename Traits::Direction_2 Direction_2;
private:
typedef typename Traits::Line_2 Line_2;
typedef Less_by_direction_2<Traits, Graph_> Less_by_direction;
// a type for the set to store vertices sorted by a direction
typedef std::set<typename Graph_::vertex_descriptor, Less_by_direction> Point_set;
/* Store the number of cones. */
unsigned int cone_number;
/* Store whether even, odd or all cones are selected to construct graph. */
Cones_selected cones_choice;
/* Store the directions of the rays dividing the plane. The initial direction will be
stored in rays[0]. */
std::vector<Direction_2> rays;
public:
/*!
\brief Constructor.
\param k Number of cones to divide space into
\param initial_direction A direction denoting one of the rays dividing the
cones. This allows arbitary rotations of the rays that divide
the plane. (default: positive x-axis)
\param cones_selected Indicates whether even, odd or all cones are
selected to construct graph.
*/
Construct_yao_graph_2 (unsigned int k,
Direction_2 initial_direction = Direction_2(1,0),
Cones_selected cones_selected = ALL_CONES
): cone_number(k), cones_choice(cones_selected), rays(std::vector<Direction_2>(k))
{
if (k<2) {
std::cout << "The number of cones must be larger than 1!" << std::endl;
CGAL_assertion(false);
}
/* Initialize a functor, specialization will happen here depending on the kernel type to
compute the cone boundaries either exactly or inexactly */
Compute_cone_boundaries_2<Traits> compute_cones;
// compute the rays using the functor
compute_cones(k, initial_direction, rays.begin());
}
/*!
\brief Function operator to construct a Yao graph.
\details For the details of this algorithm, please refer to the User Manual.
\tparam PointInputIterator an `InputIterator` with value type `Point_2`.
\param[in] start An iterator pointing to the first vertex of the input.
\param[in] end An iterator pointing to the past-the-end location of the input.
\param[out] g The constructed graph object.
*/
template <typename PointInputIterator>
Graph_& operator()(const PointInputIterator& start,
const PointInputIterator& end,
Graph_& g) {
// add vertices into the graph
for (PointInputIterator curr = start; curr != end; ++curr) {
g[boost::add_vertex(g)] = *curr;
}
unsigned int i; // ray index of the cw ray
unsigned int j; // index of the ccw ray
// add edges into the graph for every cone
int new_start = cones_choice != ALL_CONES ? cones_choice : 0;
int increment = cones_choice != ALL_CONES ? 2 : 1;
for (i = new_start; i < cone_number; i += increment) {
j = (i+1) % cone_number;
add_edges_in_cone(rays[i], rays[j], g);
}
return g;
}
/*! \brief returns the number of cones.
*/
unsigned int number_of_cones() const {
return cone_number;
}
/*! \brief outputs the set of directions to the iterator `result`.
\tparam DirectionOutputIterator an `OutputIterator` with value type `Direction_2`.
\return `result`
*/
template<class DirectionOutputIterator>
DirectionOutputIterator directions(DirectionOutputIterator result) {
typename std::vector<Direction_2>::iterator it;
for (it=rays.begin(); it!=rays.end(); it++) {
*result++ = *it;
}
return result;
}
protected:
/* Construct edges in one cone bounded by two directions.
\param cwBound The direction of the clockwise boundary of the cone.
\param ccwBound The direction of the counter-clockwise boundary.
\param g The Yao graph to be built.
*/
void add_edges_in_cone(const Direction_2& cwBound, const Direction_2& ccwBound, Graph_& g) {
if (ccwBound == cwBound) {
// Degenerate case, not allowed.
throw std::out_of_range("The cw boundary and the ccw boundary shouldn't be same!");
}
// Ordering
// here D1 is the reverse of D1 in the book, we find this is easier to implement
const Less_by_direction orderD1 (g, ccwBound);
const Less_by_direction orderD2 (g, cwBound);
typename Graph_::vertex_iterator vit, ve;
boost::tie(vit, ve) = boost::vertices(g);
// Step 1: Sort S according to order induced by D1
std::vector<typename Graph_::vertex_descriptor> S(vit, ve);
std::sort(S.begin (), S.end (), orderD1);
// Step 2: Initialise an empty set to store vertices sorted by orderD2
Point_set pst(orderD2);
// Step 3: visit S in orderD1
// insert 'it' into pst
// search the min in pst
for (typename std::vector<typename Graph_::vertex_descriptor>::const_iterator
it = S.begin(); it != S.end(); ++it) {
Less_euclidean_distance comp(g[*it], g);
pst.insert(*it);
// Find the last added node - O(logn)
typename Point_set::iterator it2 = pst.find(*it);
// Find minimum in pst from last ended node - O(n)
typename Point_set::iterator min = std::min_element(++it2, pst.end(), comp);
// add an edge
if (min != pst.end()) {
typename Graph_::edge_descriptor existing_e;
bool existing;
// check whether the edge already exists
boost::tie(existing_e, existing)=boost::edge(*it, *min, g);
if (!existing)
boost::add_edge(*it, *min, g);
}
} // end of for
}; // end of add edges in cone
/* Functor for comparing Euclidean distances of two vertices in a graph g to a given vertex.
It is implemented by encapsulating the CGAL::has_smaller_distance_to_point() function.
*/
struct Less_euclidean_distance {
const Point_2& p;
const Graph_& g;
// constructor
Less_euclidean_distance(const Point_2&p, const Graph_& g) : p(p), g(g) {}
// operator
bool operator() (const typename Point_set::iterator::value_type& i, const typename Point_set::iterator::value_type& j) {
const Point_2& p1 = g[i];
const Point_2& p2 = g[j];
return has_smaller_distance_to_point(p, p1, p2);
}
};
}; // class Construct_yao_graph_2
} // namespace CGAL
#endif