dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/jet_smooth_point_set.h

295 lines
11 KiB
C
Raw Normal View History

2020-10-13 12:44:25 +00:00
// Copyright (c) 2007-09 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Point_set_processing_3/include/CGAL/jet_smooth_point_set.h $
// $Id: jet_smooth_point_set.h 93f1cd9 2020-07-16T09:53:31+02:00 Mael Rouxel-Labbé
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Pierre Alliez, Marc Pouget and Laurent Saboret
#ifndef CGAL_JET_SMOOTH_POINT_SET_H
#define CGAL_JET_SMOOTH_POINT_SET_H
#include <CGAL/license/Point_set_processing_3.h>
#include <CGAL/disable_warnings.h>
#include <CGAL/IO/trace.h>
#include <CGAL/Point_set_processing_3/internal/Neighbor_query.h>
#include <CGAL/Point_set_processing_3/internal/Callback_wrapper.h>
#include <CGAL/for_each.h>
#include <CGAL/Monge_via_jet_fitting.h>
#include <CGAL/property_map.h>
#include <CGAL/point_set_processing_assertions.h>
#include <functional>
#include <CGAL/boost/graph/Named_function_parameters.h>
#include <CGAL/boost/graph/named_params_helper.h>
#include <boost/iterator/zip_iterator.hpp>
#include <iterator>
#include <list>
namespace CGAL {
// ----------------------------------------------------------------------------
// Private section
// ----------------------------------------------------------------------------
/// \cond SKIP_IN_MANUAL
namespace internal {
/// Smoothes one point position using jet fitting on the k
/// nearest neighbors and reprojection onto the jet.
///
/// \pre `k >= 2`
///
/// @tparam Kernel Geometric traits class.
/// @tparam Tree KD-tree.
///
/// @return computed point
template <typename SvdTraits,
typename NeighborQuery
>
typename NeighborQuery::Kernel::Point_3
jet_smooth_point(
const typename NeighborQuery::Kernel::Point_3& query, ///< 3D point to project
NeighborQuery& neighbor_query, ///< KD-tree
const unsigned int k, ///< number of neighbors.
typename NeighborQuery::Kernel::FT neighbor_radius,
const unsigned int degree_fitting,
const unsigned int degree_monge)
{
// basic geometric types
typedef typename NeighborQuery::Kernel Kernel;
typedef typename Kernel::Point_3 Point;
// types for jet fitting
typedef Monge_via_jet_fitting< Kernel,
Simple_cartesian<double>,
SvdTraits> Monge_jet_fitting;
typedef typename Monge_jet_fitting::Monge_form Monge_form;
std::vector<Point> points;
// query using as fallback minimum requires nb points for jet fitting (d+1)*(d+2)/2
neighbor_query.get_points (query, k, neighbor_radius, std::back_inserter(points),
(degree_fitting + 1) * (degree_fitting + 2) / 2);
// performs jet fitting
Monge_jet_fitting monge_fit;
Monge_form monge_form = monge_fit(points.begin(), points.end(),
degree_fitting, degree_monge);
// output projection of query point onto the jet
return monge_form.origin();
}
} /* namespace internal */
/// \endcond
// ----------------------------------------------------------------------------
// Public section
// ----------------------------------------------------------------------------
/**
\ingroup PkgPointSetProcessing3Algorithms
Smoothes the range of `points` using jet fitting on the
nearest neighbors and reprojection onto the jet.
As this method relocates the points, it
should not be called on containers sorted w.r.t. point locations.
\pre `k >= 2`
\tparam ConcurrencyTag enables sequential versus parallel algorithm. Possible values are `Sequential_tag`,
`Parallel_tag`, and `Parallel_if_available_tag`.
\tparam PointRange is a model of `Range`. The value type of
its iterator is the key type of the named parameter `point_map`.
\param points input point range.
\param k number of neighbors
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
\cgalNamedParamsBegin
\cgalParamNBegin{point_map}
\cgalParamDescription{a property map associating points to the elements of the point set `points`}
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`}
\cgalParamDefault{`CGAL::Identity_property_map<geom_traits::Point_3>`}
\cgalParamNEnd
\cgalParamNBegin{neighbor_radius}
\cgalParamDescription{the spherical neighborhood radius}
\cgalParamType{floating scalar value}
\cgalParamDefault{`0` (no limit)}
\cgalParamExtra{If provided, the neighborhood of a query point is computed with a fixed spherical
radius instead of a fixed number of neighbors. In that case, the parameter
`k` is used as a limit on the number of points returned by each spherical
query (to avoid overly large number of points in high density areas).}
\cgalParamNEnd
\cgalParamNBegin{degree_fitting}
\cgalParamDescription{the degree of fitting}
\cgalParamType{unsigned int}
\cgalParamDefault{`2`}
\cgalParamExtra{see `CGAL::Monge_via_jet_fitting`}
\cgalParamNEnd
\cgalParamNBegin{degree_monge}
\cgalParamDescription{the Monge degree}
\cgalParamType{unsigned int}
\cgalParamDefault{`2`}
\cgalParamExtra{see `CGAL::Monge_via_jet_fitting`}
\cgalParamNEnd
\cgalParamNBegin{svd_traits}
\cgalParamDescription{the linear algebra algorithm used in the class `CGAL::Monge_via_jet_fitting`}
\cgalParamType{a class fitting the requirements of `CGAL::Monge_via_jet_fitting`}
\cgalParamDefault{If \ref thirdpartyEigen "Eigen" 3.2 (or greater) is available
and `CGAL_EIGEN3_ENABLED` is defined, then `CGAL::Eigen_svd` is used.}
\cgalParamNEnd
\cgalParamNBegin{callback}
\cgalParamDescription{a mechanism to get feedback on the advancement of the algorithm
while it's running and to interrupt it if needed}
\cgalParamType{an instance of `std::function<bool(double)>`.}
\cgalParamDefault{unused}
\cgalParamExtra{It is called regularly when the
algorithm is running: the current advancement (between 0. and
1.) is passed as parameter. If it returns `true`, then the
algorithm continues its execution normally; if it returns
`false`, the algorithm is stopped and the remaining points are left unchanged.}
\cgalParamExtra{The callback will be copied and therefore needs to be lightweight.}
\cgalParamExtra{When `CGAL::Parallel_tag` is used, the `callback` mechanism is called asynchronously
on a separate thread and shouldn't access or modify the variables that are parameters of the algorithm.}
\cgalParamNEnd
\cgalParamNBegin{geom_traits}
\cgalParamDescription{an instance of a geometric traits class}
\cgalParamType{a model of `Kernel`}
\cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
\cgalParamNEnd
\cgalNamedParamsEnd
*/
template <typename ConcurrencyTag,
typename PointRange,
typename NamedParameters
>
void
jet_smooth_point_set(
PointRange& points,
unsigned int k,
const NamedParameters& np)
{
using parameters::choose_parameter;
using parameters::get_parameter;
// basic geometric types
typedef typename PointRange::iterator iterator;
typedef typename CGAL::GetPointMap<PointRange, NamedParameters>::type PointMap;
typedef typename Point_set_processing_3::GetK<PointRange, NamedParameters>::Kernel Kernel;
typedef typename GetSvdTraits<NamedParameters>::type SvdTraits;
CGAL_static_assertion_msg(!(boost::is_same<SvdTraits,
typename GetSvdTraits<NamedParameters>::NoTraits>::value),
"Error: no SVD traits");
PointMap point_map = choose_parameter<PointMap>(get_parameter(np, internal_np::point_map));
typename Kernel::FT neighbor_radius = choose_parameter(get_parameter(np, internal_np::neighbor_radius),
typename Kernel::FT(0));
unsigned int degree_fitting = choose_parameter(get_parameter(np, internal_np::degree_fitting), 2);
unsigned int degree_monge = choose_parameter(get_parameter(np, internal_np::degree_monge), 2);
const std::function<bool(double)>& callback = choose_parameter(get_parameter(np, internal_np::callback),
std::function<bool(double)>());
// types for K nearest neighbors search structure
typedef Point_set_processing_3::internal::Neighbor_query<Kernel, PointRange&, PointMap> Neighbor_query;
// precondition: at least one element in the container.
// to fix: should have at least three distinct points
// but this is costly to check
CGAL_point_set_processing_precondition(points.begin() != points.end());
// precondition: at least 2 nearest neighbors
CGAL_point_set_processing_precondition(k >= 2);
// Instanciate a KD-tree search.
Neighbor_query neighbor_query (points, point_map);
// Iterates over input points and mutates them.
// Implementation note: the cast to Point& allows to modify only the point's position.
std::size_t nb_points = points.size();
Point_set_processing_3::internal::Callback_wrapper<ConcurrencyTag>
callback_wrapper (callback, nb_points);
std::vector<typename Kernel::Point_3> smoothed (points.size());
typedef boost::zip_iterator
<boost::tuple<iterator,
typename std::vector<typename Kernel::Point_3>::iterator> > Zip_iterator;
CGAL::for_each<ConcurrencyTag>
(CGAL::make_range (boost::make_zip_iterator (boost::make_tuple (points.begin(), smoothed.begin())),
boost::make_zip_iterator (boost::make_tuple (points.end(), smoothed.end()))),
[&](const typename Zip_iterator::reference& t)
{
if (callback_wrapper.interrupted())
return false;
get<1>(t) = CGAL::internal::jet_smooth_point<SvdTraits>
(get (point_map, get<0>(t)), neighbor_query,
k,
neighbor_radius,
degree_fitting,
degree_monge);
++ callback_wrapper.advancement();
return true;
});
callback_wrapper.join();
// Finally, update points
CGAL::for_each<ConcurrencyTag>
(CGAL::make_range (boost::make_zip_iterator (boost::make_tuple (points.begin(), smoothed.begin())),
boost::make_zip_iterator (boost::make_tuple (points.end(), smoothed.end()))),
[&](const typename Zip_iterator::reference& t)
{
put (point_map, get<0>(t), get<1>(t));
return true;
});
}
/// \cond SKIP_IN_MANUAL
// variant with default NP
template <typename ConcurrencyTag,
typename PointRange>
void
jet_smooth_point_set(
PointRange& points,
unsigned int k) ///< number of neighbors.
{
jet_smooth_point_set<ConcurrencyTag>
(points, k, CGAL::Point_set_processing_3::parameters::all_default(points));
}
/// \endcond
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif // CGAL_JET_SMOOTH_POINT_SET_H