dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Triangulation_hierarchy_3.h

868 lines
27 KiB
C
Raw Normal View History

// Copyright (c) 1998, 2001, 2003 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Olivier Devillers <Olivier.Devillers@sophia.inria.fr>
// Sylvain Pion
#ifndef CGAL_TRIANGULATION_HIERARCHY_3_H
#define CGAL_TRIANGULATION_HIERARCHY_3_H
#include <CGAL/license/Triangulation_3.h>
// Commented because the class is actually used by Delaunay_triangulation_hierarchy_3.h
// #define CGAL_DEPRECATED_HEADER "<CGAL/Triangulation_hierarchy_3.h>"
// #include <CGAL/internal/deprecation_warning.h>
// This class is deprecated, but must be kept for backward compatibility.
//
// It would be better to move its content to the Delaunay_triangulation_3
// specializations for Fast_location and make Triangulation_hierarchy_3 the
// empty nutshell instead.
//
// Then, later, maybe merge the Compact/Fast codes in a cleaner factorized way.
#include <CGAL/basic.h>
#include <CGAL/internal/Has_nested_type_Bare_point.h>
#include <CGAL/triangulation_assertions.h>
#include <CGAL/Triangulation_hierarchy_vertex_base_3.h>
#include <CGAL/Location_policy.h>
#include <CGAL/internal/boost/function_property_map.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/geometric_distribution.hpp>
#include <boost/random/variate_generator.hpp>
#include <boost/utility/result_of.hpp>
#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
#include <CGAL/Spatial_sort_traits_adapter_3.h>
#include <CGAL/spatial_sort.h>
#include <CGAL/internal/info_check.h>
#include <boost/tuple/tuple.hpp>
#include <boost/iterator/zip_iterator.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/mpl/if.hpp>
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
namespace CGAL {
template < class Tr >
class Triangulation_hierarchy_3
: public Tr
{
// parameterization of the hierarchy
// maximal number of points is 30^5 = 24 millions !
enum { ratio = 30 };
enum { minsize = 20};
enum { maxlevel = 5};
public:
typedef Tr Tr_Base;
typedef Fast_location Location_policy;
typedef typename Tr_Base::Geom_traits Geom_traits;
typedef typename Tr_Base::size_type size_type;
typedef typename Tr_Base::Vertex_handle Vertex_handle;
typedef typename Tr_Base::Cell_handle Cell_handle;
typedef typename Tr_Base::Vertex_iterator Vertex_iterator;
typedef typename Tr_Base::Vertex Vertex;
typedef typename Tr_Base::Locate_type Locate_type;
typedef typename Tr_Base::Finite_vertices_iterator Finite_vertices_iterator;
typedef typename Tr_Base::Finite_cells_iterator Finite_cells_iterator;
typedef typename Tr_Base::Finite_facets_iterator Finite_facets_iterator;
typedef typename Tr_Base::Finite_edges_iterator Finite_edges_iterator;
// this may be weighted or not
typedef typename Tr_Base::Point Point;
typedef typename Tr_Base::Weighted_tag Weighted_tag;
typedef typename Tr_Base::Periodic_tag Periodic_tag;
using Tr_Base::number_of_vertices;
using Tr_Base::geom_traits;
private:
// here is the stack of triangulations which form the hierarchy
Tr_Base* hierarchy[maxlevel];
boost::rand48 random;
void set_up_down(Vertex_handle up, Vertex_handle down)
{
up->set_down(down);
down->set_up(up);
}
public:
Triangulation_hierarchy_3(const Geom_traits& traits = Geom_traits());
Triangulation_hierarchy_3(const Triangulation_hierarchy_3& tr);
template < typename InputIterator >
Triangulation_hierarchy_3(InputIterator first, InputIterator last,
const Geom_traits& traits = Geom_traits())
: Tr_Base(traits)
{
hierarchy[0] = this;
for(int i=1; i<maxlevel; ++i)
hierarchy[i] = new Tr_Base(traits);
insert(first, last);
}
Triangulation_hierarchy_3 & operator=(const Triangulation_hierarchy_3& tr)
{
Triangulation_hierarchy_3 tmp(tr);
swap(tmp);
return *this;
}
~Triangulation_hierarchy_3();
void swap(Triangulation_hierarchy_3 &tr);
void clear();
// CHECKING
bool is_valid(bool verbose = false, int level = 0) const;
// INSERT REMOVE
Vertex_handle insert(const Point &p, Vertex_handle hint)
{
return insert(p, hint == Vertex_handle() ? this->infinite_cell() : hint->cell());
}
Vertex_handle insert(const Point &p, Cell_handle start = Cell_handle ());
Vertex_handle insert(const Point &p, Locate_type lt, Cell_handle loc,
int li, int lj);
#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
template < class InputIterator >
std::ptrdiff_t
insert( InputIterator first, InputIterator last,
typename boost::enable_if<
boost::is_convertible<
typename std::iterator_traits<InputIterator>::value_type,
Point
>
>::type* = NULL
)
#else
template < class InputIterator >
std::ptrdiff_t
insert( InputIterator first, InputIterator last)
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
{
size_type n = number_of_vertices();
std::vector<Point> points (first, last);
// Spatial sort can only be used with Geom_traits::Point_3: we need an adapter
typedef typename Geom_traits::Construct_point_3 Construct_point_3;
typedef typename boost::result_of<const Construct_point_3(const Point&)>::type Ret;
typedef CGAL::internal::boost_::function_property_map<Construct_point_3, Point, Ret> fpmap;
typedef CGAL::Spatial_sort_traits_adapter_3<Geom_traits, fpmap> Search_traits_3;
spatial_sort(points.begin(), points.end(),
Search_traits_3(
CGAL::internal::boost_::make_function_property_map<Point, Ret, Construct_point_3>(
geom_traits().construct_point_3_object()), geom_traits()));
// hints[i] is the vertex of the previously inserted point in level i.
// Thanks to spatial sort, they are better hints than what the hierarchy
// would give us.
Vertex_handle hints[maxlevel];
for (typename std::vector<Point>::const_iterator p = points.begin(), end = points.end();
p != end; ++p)
{
int vertex_level = random_level();
Vertex_handle v = hints[0] = hierarchy[0]->insert (*p, hints[0]);
Vertex_handle prev = v;
for (int level = 1; level <= vertex_level; ++level) {
v = hints[level] = hierarchy[level]->insert (*p, hints[level]);
set_up_down(v, prev);
prev = v;
}
}
return number_of_vertices() - n;
}
#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
private:
//top stands for tuple-or-pair
template <class Info>
const Point& top_get_first(const std::pair<Point,Info>& pair) const { return pair.first; }
template <class Info>
const Info& top_get_second(const std::pair<Point,Info>& pair) const { return pair.second; }
template <class Info>
const Point& top_get_first(const boost::tuple<Point,Info>& tuple) const { return boost::get<0>(tuple); }
template <class Info>
const Info& top_get_second(const boost::tuple<Point,Info>& tuple) const { return boost::get<1>(tuple); }
template<class Construct_bare_point, class Container>
struct Index_to_Bare_point
{
const typename Geom_traits::Point_3& operator()(const std::size_t& i) const
{
return cp(c[i]);
}
Index_to_Bare_point(const Container& c, const Construct_bare_point& cp)
: c(c), cp(cp) { }
const Container& c;
const Construct_bare_point cp;
};
template <class Tuple_or_pair,class InputIterator>
std::ptrdiff_t insert_with_info(InputIterator first,InputIterator last)
{
size_type n = number_of_vertices();
std::vector<std::size_t> indices;
std::vector<Point> points;
std::vector<typename Vertex::Info> infos;
std::size_t index=0;
for (InputIterator it=first;it!=last;++it){
Tuple_or_pair value=*it;
points.push_back( top_get_first(value) );
infos.push_back ( top_get_second(value) );
indices.push_back(index++);
}
// We need to sort the points and their info at the same time through
// the `indices` vector AND spatial sort can only handle Geom_traits::Point_3.
typedef typename Geom_traits::Construct_point_3 Construct_point_3;
typedef Index_to_Bare_point<Construct_point_3,
std::vector<Point> > Access_bare_point;
typedef typename boost::result_of<const Construct_point_3(const Point&)>::type Ret;
typedef CGAL::internal::boost_::function_property_map<Access_bare_point, std::size_t, Ret> fpmap;
typedef CGAL::Spatial_sort_traits_adapter_3<Geom_traits, fpmap> Search_traits_3;
Access_bare_point accessor(points, geom_traits().construct_point_3_object());
spatial_sort(indices.begin(), indices.end(),
Search_traits_3(
CGAL::internal::boost_::make_function_property_map<
std::size_t, Ret, Access_bare_point>(accessor),
geom_traits()));
// hints[i] is the vertex of the previously inserted point in level i.
// Thanks to spatial sort, they are better hints than what the hierarchy
// would give us.
Vertex_handle hints[maxlevel];
for (typename std::vector<std::size_t>::const_iterator
it = indices.begin(), end = indices.end();
it != end; ++it)
{
int vertex_level = random_level();
Vertex_handle v = hints[0] = hierarchy[0]->insert (points[*it], hints[0]);
v->info()=infos[*it];
Vertex_handle prev = v;
for (int level = 1; level <= vertex_level; ++level) {
v = hints[level] = hierarchy[level]->insert (points[*it], hints[level]);
set_up_down(v, prev);
prev = v;
}
}
return number_of_vertices() - n;
}
public:
template < class InputIterator >
std::ptrdiff_t
insert( InputIterator first,
InputIterator last,
typename boost::enable_if<
boost::is_convertible<
typename std::iterator_traits<InputIterator>::value_type,
std::pair<Point,typename internal::Info_check<Vertex>::type>
> >::type* =NULL
)
{
return insert_with_info< std::pair<Point,typename internal::Info_check<Vertex>::type> >(first,last);
}
template <class InputIterator_1,class InputIterator_2>
std::ptrdiff_t
insert( boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > first,
boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > last,
typename boost::enable_if<
boost::mpl::and_<
boost::is_convertible< typename std::iterator_traits<InputIterator_1>::value_type, Point >,
boost::is_convertible< typename std::iterator_traits<InputIterator_2>::value_type, typename internal::Info_check<Vertex>::type >
>
>::type* =NULL
)
{
return insert_with_info< boost::tuple<Point,typename internal::Info_check<Vertex>::type> >(first,last);
}
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
void remove(Vertex_handle v);
template < typename InputIterator >
size_type remove(InputIterator first, InputIterator beyond)
{
size_type n = number_of_vertices();
while (first != beyond) {
remove(*first);
++first;
}
return n - number_of_vertices();
}
template < typename InputIterator >
size_type remove_cluster(InputIterator first, InputIterator beyond)
{
CGAL_triangulation_precondition(!this->does_repeat_in_range(first, beyond));
CGAL_triangulation_precondition(!this->infinite_vertex_in_range(first, beyond));
size_type n = this->number_of_vertices();
std::vector<Vertex_handle> vo(first, beyond), vc;
int l=0;
while(1) {
size_type n = vo.size();
if(n == 0) break;
for(size_type i=0; i<n; i++) {
if(vo[i]->up() != Vertex_handle()) vc.push_back(vo[i]->up());
}
hierarchy[l++]->remove_cluster(vo.begin(), vo.end());
std::swap(vo,vc);
vc.clear();
}
return n - this->number_of_vertices();
}
Vertex_handle move_if_no_collision(Vertex_handle v, const Point &p);
Vertex_handle move(Vertex_handle v, const Point &p);
public: // some internal methods
// INSERT REMOVE DISPLACEMENT
// GIVING NEW FACES
template <class OutputItCells>
Vertex_handle insert_and_give_new_cells(const Point &p,
OutputItCells fit,
Cell_handle start = Cell_handle() );
template <class OutputItCells>
Vertex_handle insert_and_give_new_cells(const Point& p,
OutputItCells /* fit */,
Vertex_handle hint)
{
return insert_and_give_new_cells(p, hint == Vertex_handle() ?
this->infinite_cell() : hint->cell());
}
template <class OutputItCells>
Vertex_handle insert_and_give_new_cells(const Point& p,
Locate_type lt,
Cell_handle c, int li, int lj,
OutputItCells fit);
template <class OutputItCells>
void remove_and_give_new_cells(Vertex_handle v,
OutputItCells fit);
template <class OutputItCells>
Vertex_handle move_if_no_collision_and_give_new_cells(Vertex_handle v,
const Point &p, OutputItCells fit);
public:
//LOCATE
Cell_handle locate(const Point& p, Locate_type& lt, int& li, int& lj,
Vertex_handle hint) const
{
return locate(p, lt, li, lj, hint == Vertex_handle() ? this->infinite_cell() : hint->cell());
}
Cell_handle locate(const Point& p, Vertex_handle hint) const
{
return locate(p, hint == Vertex_handle() ? this->infinite_cell() : hint->cell());
}
Cell_handle locate(const Point& p, Locate_type& lt, int& li, int& lj,
Cell_handle start = Cell_handle ()) const;
Cell_handle locate(const Point& p, Cell_handle start = Cell_handle ()) const;
Vertex_handle
nearest_vertex(const Point& p, Cell_handle start = Cell_handle()) const;
protected:
struct locs {
Cell_handle pos;
int li, lj;
Locate_type lt;
};
void locate(const Point& p, Locate_type& lt, int& li, int& lj,
locs pos[maxlevel], Cell_handle start = Cell_handle ()) const;
int random_level();
};
template <class Tr >
Triangulation_hierarchy_3<Tr>::
Triangulation_hierarchy_3(const Geom_traits& traits)
: Tr_Base(traits)
{
hierarchy[0] = this;
for(int i=1;i<maxlevel;++i)
hierarchy[i] = new Tr_Base(traits);
}
// copy constructor duplicates vertices and cells
template <class Tr>
Triangulation_hierarchy_3<Tr>::
Triangulation_hierarchy_3(const Triangulation_hierarchy_3<Tr> &tr)
: Tr_Base(tr)
{
hierarchy[0] = this;
for(int i=1; i<maxlevel; ++i)
hierarchy[i] = new Tr_Base(*tr.hierarchy[i]);
// up and down have been copied in straightforward way
// compute a map at lower level
std::map< Vertex_handle, Vertex_handle > V;
for( Finite_vertices_iterator it = hierarchy[0]->finite_vertices_begin(),
end = hierarchy[0]->finite_vertices_end(); it != end; ++it)
if (it->up() != Vertex_handle())
V[ it->up()->down() ] = it;
for(int j=1; j<maxlevel; ++j) {
for( Finite_vertices_iterator it = hierarchy[j]->finite_vertices_begin(),
end = hierarchy[j]->finite_vertices_end(); it != end; ++it) {
// current it->down() pointer goes in original instead in copied triangulation
set_up_down(it, V[it->down()]);
// make map for next level
if (it->up() != Vertex_handle())
V[ it->up()->down() ] = it;
}
}
}
template <class Tr>
void
Triangulation_hierarchy_3<Tr>::
swap(Triangulation_hierarchy_3<Tr> &tr)
{
Tr_Base::swap(tr);
for(int i=1; i<maxlevel; ++i)
std::swap(hierarchy[i], tr.hierarchy[i]);
}
template <class Tr>
Triangulation_hierarchy_3<Tr>::
~Triangulation_hierarchy_3()
{
clear();
for(int i=1; i<maxlevel; ++i) {
delete hierarchy[i];
}
}
template <class Tr>
void
Triangulation_hierarchy_3<Tr>::
clear()
{
for(int i=0;i<maxlevel;++i)
hierarchy[i]->clear();
}
template <class Tr>
bool
Triangulation_hierarchy_3<Tr>::
is_valid(bool verbose, int level) const
{
bool result = true;
// verify correctness of triangulation at all levels
for(int i=0; i<maxlevel; ++i)
result = result && hierarchy[i]->is_valid(verbose, level);
// verify that lower level has no down pointers
for( Finite_vertices_iterator it = hierarchy[0]->finite_vertices_begin(),
end = hierarchy[0]->finite_vertices_end(); it != end; ++it)
result = result && (it->down() == Vertex_handle());
// verify that other levels has down pointer and reciprocal link is fine
for(int j=1; j<maxlevel; ++j)
for( Finite_vertices_iterator it = hierarchy[j]->finite_vertices_begin(),
end = hierarchy[j]->finite_vertices_end(); it != end; ++it)
result = result && &*(it) == &*(it->down()->up());
// verify that other levels has down pointer and reciprocal link is fine
for(int k=0; k<maxlevel-1; ++k)
for( Finite_vertices_iterator it = hierarchy[k]->finite_vertices_begin(),
end = hierarchy[k]->finite_vertices_end(); it != end; ++it)
result = result && ( it->up() == Vertex_handle() ||
&*it == &*(it->up())->down() );
return result;
}
template <class Tr>
typename Triangulation_hierarchy_3<Tr>::Vertex_handle
Triangulation_hierarchy_3<Tr>::
insert(const Point &p, Cell_handle start)
{
int vertex_level = random_level();
Locate_type lt;
int i, j;
// locate using hierarchy
locs positions[maxlevel];
locate(p, lt, i, j, positions, start);
// insert at level 0
Vertex_handle vertex = hierarchy[0]->insert(p,
positions[0].lt,
positions[0].pos,
positions[0].li,
positions[0].lj);
Vertex_handle previous = vertex;
Vertex_handle first = vertex;
int level = 1;
while (level <= vertex_level ){
if (positions[level].pos == Cell_handle())
vertex = hierarchy[level]->insert(p);
else
vertex = hierarchy[level]->insert(p,
positions[level].lt,
positions[level].pos,
positions[level].li,
positions[level].lj);
set_up_down(vertex, previous);
previous=vertex;
level++;
}
return first;
}
template <class Tr>
template <class OutputItCells>
typename Triangulation_hierarchy_3<Tr>::Vertex_handle
Triangulation_hierarchy_3<Tr>::
insert_and_give_new_cells(const Point &p, OutputItCells fit, Cell_handle start)
{
int vertex_level = random_level();
Locate_type lt;
int i, j;
// locate using hierarchy
locs positions[maxlevel];
locate(p, lt, i, j, positions, start);
// insert at level 0
Vertex_handle vertex = hierarchy[0]->insert_and_give_new_cells(p,
positions[0].lt,
positions[0].pos,
positions[0].li,
positions[0].lj,fit);
Vertex_handle previous = vertex;
Vertex_handle first = vertex;
int level = 1;
while (level <= vertex_level ){
if (positions[level].pos == Cell_handle())
vertex = hierarchy[level]->insert(p);
else
vertex = hierarchy[level]->insert(p,
positions[level].lt,
positions[level].pos,
positions[level].li,
positions[level].lj);
set_up_down(vertex, previous);
previous=vertex;
level++;
}
return first;
}
template <class Tr>
typename Triangulation_hierarchy_3<Tr>::Vertex_handle
Triangulation_hierarchy_3<Tr>::
insert(const Point &p, Locate_type lt, Cell_handle loc, int li, int lj)
{
int vertex_level = random_level();
// insert at level 0
Vertex_handle vertex = hierarchy[0]->insert(p,lt,loc,li,lj);
Vertex_handle previous = vertex;
Vertex_handle first = vertex;
if (vertex_level > 0) {
Locate_type lt;
int i, j;
// locate using hierarchy
locs positions[maxlevel];
locate(p, lt, i, j, positions, vertex->cell());
int level = 1;
while (level <= vertex_level ){
if (positions[level].pos == Cell_handle())
vertex = hierarchy[level]->insert(p);
else
vertex = hierarchy[level]->insert(p,
positions[level].lt,
positions[level].pos,
positions[level].li,
positions[level].lj);
set_up_down(vertex, previous);
previous=vertex;
level++;
}
}
return first;
}
template <class Tr>
template <class OutputItCells>
typename Triangulation_hierarchy_3<Tr>::Vertex_handle
Triangulation_hierarchy_3<Tr>::
insert_and_give_new_cells(const Point &p, Locate_type lt, Cell_handle loc,
int li, int lj, OutputItCells fit)
{
int vertex_level = random_level();
// insert at level 0
Vertex_handle vertex =
hierarchy[0]->insert_and_give_new_cells(p,lt,loc,li,lj,fit);
Vertex_handle previous = vertex;
Vertex_handle first = vertex;
if (vertex_level > 0) {
Locate_type lt;
int i, j;
// locate using hierarchy
locs positions[maxlevel];
locate(p, lt, i, j, positions, vertex->cell());
int level = 1;
while (level <= vertex_level ){
if (positions[level].pos == Cell_handle())
vertex = hierarchy[level]->insert(p);
else
vertex = hierarchy[level]->insert(p,
positions[level].lt,
positions[level].pos,
positions[level].li,
positions[level].lj);
set_up_down(vertex, previous);
previous=vertex;
level++;
}
}
return first;
}
template <class Tr>
void
Triangulation_hierarchy_3<Tr>::
remove(Vertex_handle v)
{
CGAL_triangulation_precondition(v != Vertex_handle());
for (int l = 0; l < maxlevel; ++l) {
Vertex_handle u = v->up();
hierarchy[l]->remove(v);
if (u == Vertex_handle())
break;
v = u;
}
}
template <class Tr>
template <class OutputItCells>
void
Triangulation_hierarchy_3<Tr>::
remove_and_give_new_cells(Vertex_handle v, OutputItCells fit)
{
CGAL_triangulation_precondition(v != Vertex_handle());
CGAL_triangulation_precondition(!is_infinite(v));
for (int l = 0; l < maxlevel; ++l) {
Vertex_handle u = v->up();
if(l) hierarchy[l]->remove(v);
else hierarchy[l]->remove_and_give_new_cells(v, fit);
if (u == Vertex_handle())
break;
v = u;
}
}
template <class Tr>
typename Triangulation_hierarchy_3<Tr>::Vertex_handle
Triangulation_hierarchy_3<Tr>::
move_if_no_collision(Vertex_handle v, const Point & p)
{
CGAL_triangulation_precondition(!this->is_infinite(v));
if(v->point() == p) return v;
Vertex_handle ans;
for (int l = 0; l < maxlevel; ++l) {
Vertex_handle u = v->up();
if(l) hierarchy[l]->move_if_no_collision(v, p);
else ans = hierarchy[l]->move_if_no_collision(v, p);
if(ans != v) return ans;
if (u == Vertex_handle())
break;
v = u;
}
return ans;
}
template <class Tr>
typename Triangulation_hierarchy_3<Tr>::Vertex_handle
Triangulation_hierarchy_3<Tr>::
move(Vertex_handle v, const Point & p)
{
CGAL_triangulation_precondition(!this->is_infinite(v));
if(v->point() == p) return v;
Vertex_handle w = move_if_no_collision(v,p);
if(w != v) {
remove(v);
return w;
}
return v;
}
template <class Tr>
template <class OutputItCells>
typename Triangulation_hierarchy_3<Tr>::Vertex_handle
Triangulation_hierarchy_3<Tr>::
move_if_no_collision_and_give_new_cells(
Vertex_handle v, const Point & p, OutputItCells fit)
{
CGAL_triangulation_precondition(!is_infinite(v));
if(v->point() == p) return v;
Vertex_handle ans;
for (int l = 0; l < maxlevel; ++l) {
Vertex_handle u = v->up();
if(l) hierarchy[l]->move_if_no_collision(v, p);
else ans =
hierarchy[l]->move_if_no_collision_and_give_new_cells(v, p, fit);
if(ans != v) return ans;
if (u == Vertex_handle())
break;
v = u;
}
return ans;
}
template <class Tr>
inline
typename Triangulation_hierarchy_3<Tr>::Cell_handle
Triangulation_hierarchy_3<Tr>::
locate(const Point& p, Locate_type& lt, int& li, int& lj, Cell_handle start) const
{
if (start != Cell_handle ())
return Tr_Base::locate (p, lt, li, lj, start);
locs positions[maxlevel];
locate(p, lt, li, lj, positions);
return positions[0].pos;
}
template <class Tr>
inline
typename Triangulation_hierarchy_3<Tr>::Cell_handle
Triangulation_hierarchy_3<Tr>::
locate(const Point& p, Cell_handle start) const
{
if (start != Cell_handle ())
return Tr_Base::locate (p, start);
Locate_type lt;
int li, lj;
return locate(p, lt, li, lj);
}
template <class Tr>
void
Triangulation_hierarchy_3<Tr>::
locate(const Point& p, Locate_type& lt, int& li, int& lj,
locs pos[maxlevel], Cell_handle start) const
{
int level = maxlevel;
// find the highest level with enough vertices
while (hierarchy[--level]->number_of_vertices() < (size_type) minsize) {
if ( ! level)
break; // do not go below 0
}
for (int i=level+1; i<maxlevel; ++i)
pos[i].pos = Cell_handle();
Cell_handle position = Cell_handle();
while(level > 0) {
// locate at that level from "position"
// result is stored in "position" for the next level
pos[level].pos = position = hierarchy[level]->locate(p,
pos[level].lt,
pos[level].li,
pos[level].lj,
position);
// find the nearest vertex.
Vertex_handle nearest = hierarchy[level]->nearest_vertex_in_cell(p, position);
// go at the same vertex on level below
nearest = nearest->down();
position = nearest->cell(); // incident cell
--level;
}
if (start != Cell_handle())
position = start;
pos[0].pos = hierarchy[0]->locate(p, lt, li, lj, position); // at level 0
pos[0].lt = lt;
pos[0].li = li;
pos[0].lj = lj;
}
template <class Tr>
typename Triangulation_hierarchy_3<Tr>::Vertex_handle
Triangulation_hierarchy_3<Tr>::
nearest_vertex(const Point& p, Cell_handle start) const
{
return Tr_Base::nearest_vertex(p, start != Cell_handle() ? start : locate(p));
}
template <class Tr>
int
Triangulation_hierarchy_3<Tr>::
random_level()
{
boost::geometric_distribution<> proba(1.0/ratio);
boost::variate_generator<boost::rand48&, boost::geometric_distribution<> > die(random, proba);
return (std::min)(die(), (int)maxlevel)-1;
}
} //namespace CGAL
#endif // CGAL_TRIANGULATION_HIERARCHY_3_H