dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/RS/ak_z_1.h

214 lines
10 KiB
C
Raw Normal View History

// Copyright (c) 2006-2013 INRIA Nancy-Grand Est (France). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
// Author: Luis Peñaranda <luis.penaranda@gmx.com>
#ifndef CGAL_RS_AK_Z_1_H
#define CGAL_RS_AK_Z_1_H
#include <cstddef> // included only to define size_t
#include <CGAL/Polynomial_traits_d.h>
#include "algebraic_z_1.h"
#include "comparator_1.h"
#include "signat_1.h"
#include "functors_z_1.h"
// This file defines the "Z-algebraic kernel". This kind of kernel performs
// all the internal operations using an integer polynomial type (the name
// "Z" comes from there). For this, a converter functor (passed as a
// template parameter) is used, which converts the input polynomial to the
// integer representation.
namespace CGAL{
namespace RS_AK1{
template <class ExtPolynomial_,
class IntPolynomial_,
class PolConverter_,
class Bound_,
class Isolator_,
class Refiner_,
class Ptraits_=CGAL::Polynomial_traits_d<ExtPolynomial_>,
class ZPtraits_=CGAL::Polynomial_traits_d<IntPolynomial_> >
class Algebraic_kernel_z_1{
public:
typedef ExtPolynomial_ Polynomial_1;
typedef IntPolynomial_ ZPolynomial_1;
typedef PolConverter_ PolConverter;
typedef typename Polynomial_1::NT Coefficient;
typedef Bound_ Bound;
private:
typedef Isolator_ Isolator;
typedef Refiner_ Refiner;
typedef Ptraits_ Ptraits;
typedef ZPtraits_ ZPtraits;
typedef CGAL::RS_AK1::Signat_1<ZPolynomial_1,Bound>
Signat;
typedef CGAL::RS_AK1::Simple_comparator_1<ZPolynomial_1,
Bound,
Refiner,
Signat,
ZPtraits>
Comparator;
public:
typedef CGAL::RS_AK1::Algebraic_z_1<Polynomial_1,
ZPolynomial_1,
Bound,
Refiner,
Comparator,
Ptraits,
ZPtraits>
Algebraic_real_1;
typedef size_t size_type;
typedef unsigned Multiplicity_type;
// default constructor and destructor
public:
Algebraic_kernel_z_1(){};
~Algebraic_kernel_z_1(){};
// functors from the CGAL concept
public:
typedef CGAL::RS_AK1::Construct_algebraic_real_z_1<Polynomial_1,
ZPolynomial_1,
PolConverter,
Algebraic_real_1,
Bound,
Coefficient,
Isolator>
Construct_algebraic_real_1;
typedef CGAL::RS_AK1::Compute_polynomial_z_1<Polynomial_1,
Algebraic_real_1>
Compute_polynomial_1;
typedef CGAL::RS_AK1::Isolate_z_1<Polynomial_1,
ZPolynomial_1,
PolConverter,
Bound,
Algebraic_real_1,
Isolator,
Comparator,
Signat,
Ptraits,
ZPtraits>
Isolate_1;
typedef typename Ptraits::Is_square_free Is_square_free_1;
typedef typename Ptraits::Make_square_free Make_square_free_1;
typedef typename Ptraits::Square_free_factorize Square_free_factorize_1;
typedef CGAL::RS_AK1::Is_coprime_z_1<Polynomial_1,Ptraits>
Is_coprime_1;
typedef CGAL::RS_AK1::Make_coprime_z_1<Polynomial_1,Ptraits>
Make_coprime_1;
typedef CGAL::RS_AK1::Solve_z_1<Polynomial_1,
ZPolynomial_1,
PolConverter,
Bound,
Algebraic_real_1,
Isolator,
Signat,
Ptraits,
ZPtraits>
Solve_1;
typedef CGAL::RS_AK1::Number_of_solutions_z_1<Polynomial_1,
ZPolynomial_1,
PolConverter,
Isolator>
Number_of_solutions_1;
typedef CGAL::RS_AK1::Sign_at_z_1<Polynomial_1,
ZPolynomial_1,
PolConverter,
Bound,
Algebraic_real_1,
Refiner,
Signat,
Ptraits,
ZPtraits>
Sign_at_1;
typedef CGAL::RS_AK1::Is_zero_at_z_1<Polynomial_1,
ZPolynomial_1,
PolConverter,
Bound,
Algebraic_real_1,
Refiner,
Signat,
Ptraits,
ZPtraits>
Is_zero_at_1;
typedef CGAL::RS_AK1::Compare_z_1<Algebraic_real_1,
Bound,
Comparator>
Compare_1;
typedef CGAL::RS_AK1::Bound_between_z_1<Algebraic_real_1,
Bound,
Comparator>
Bound_between_1;
typedef CGAL::RS_AK1::Approximate_absolute_z_1<Polynomial_1,
Bound,
Algebraic_real_1,
Refiner>
Approximate_absolute_1;
typedef CGAL::RS_AK1::Approximate_relative_z_1<Polynomial_1,
Bound,
Algebraic_real_1,
Refiner>
Approximate_relative_1;
#define CREATE_FUNCTION_OBJECT(T,N) \
T N##_object()const{return T();}
CREATE_FUNCTION_OBJECT(Construct_algebraic_real_1,
construct_algebraic_real_1)
CREATE_FUNCTION_OBJECT(Compute_polynomial_1,
compute_polynomial_1)
CREATE_FUNCTION_OBJECT(Isolate_1,
isolate_1)
CREATE_FUNCTION_OBJECT(Is_square_free_1,
is_square_free_1)
CREATE_FUNCTION_OBJECT(Make_square_free_1,
make_square_free_1)
CREATE_FUNCTION_OBJECT(Square_free_factorize_1,
square_free_factorize_1)
CREATE_FUNCTION_OBJECT(Is_coprime_1,
is_coprime_1)
CREATE_FUNCTION_OBJECT(Make_coprime_1,
make_coprime_1)
CREATE_FUNCTION_OBJECT(Solve_1,
solve_1)
CREATE_FUNCTION_OBJECT(Number_of_solutions_1,
number_of_solutions_1)
CREATE_FUNCTION_OBJECT(Sign_at_1,
sign_at_1)
CREATE_FUNCTION_OBJECT(Is_zero_at_1,
is_zero_at_1)
CREATE_FUNCTION_OBJECT(Compare_1,
compare_1)
CREATE_FUNCTION_OBJECT(Bound_between_1,
bound_between_1)
CREATE_FUNCTION_OBJECT(Approximate_absolute_1,
approximate_absolute_1)
CREATE_FUNCTION_OBJECT(Approximate_relative_1,
approximate_relative_1)
#undef CREATE_FUNCTION_OBJECT
}; // class Algebraic_kernel_z_1
} // namespace RS_AK1
} // namespace CGAL
#endif // CGAL_RS_AK_Z_1_H