dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Simple_polygon_visibility_2.h

691 lines
19 KiB
C
Raw Normal View History

// Copyright (c) 2013 Technical University Braunschweig (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s): Francisc Bungiu <fbungiu@gmail.com>
// Michael Hemmer <michael.hemmer@cgal.org>
// Ning Xu <longyin0904@gmail.com>
#ifndef CGAL_SIMPLE_POLYGON_VISIBILITY_2_H
#define CGAL_SIMPLE_POLYGON_VISIBILITY_2_H
#include <CGAL/license/Visibility_2.h>
#include <CGAL/tags.h>
#include <CGAL/enum.h>
#include <CGAL/Visibility_2/visibility_utils.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Kernel/global_functions_2.h>
#include <CGAL/Arr_walk_along_line_point_location.h>
#include <CGAL/assertions.h>
#include <stack>
// TODO:
// * fix handle needles = O(nlogn)
namespace CGAL {
template<class Arrangement_2_, class RegularizationCategory = CGAL::Tag_true>
class Simple_polygon_visibility_2 {
public:
typedef Arrangement_2_ Arrangement_2;
typedef typename Arrangement_2::Traits_2 Traits_2;
typedef typename Arrangement_2::Geometry_traits_2 Geometry_traits_2;
typedef typename Geometry_traits_2::Kernel K;
typedef typename K::Intersect_2 Intersect_2;
typedef typename Arrangement_2::Vertex_const_handle Vertex_const_handle;
typedef typename Arrangement_2::Halfedge_const_handle
Halfedge_const_handle;
typedef typename Arrangement_2::Halfedge_handle Halfedge_handle;
typedef typename Arrangement_2::Ccb_halfedge_const_circulator
Ccb_halfedge_const_circulator;
typedef typename Arrangement_2::Face_const_handle Face_const_handle;
typedef typename Arrangement_2::Face_handle Face_handle;
typedef typename Arrangement_2::Halfedge_around_vertex_const_circulator
Halfedge_around_vertex_const_circulator;
typedef typename Geometry_traits_2::Point_2 Point_2;
typedef typename Geometry_traits_2::Ray_2 Ray_2;
typedef typename Geometry_traits_2::Segment_2 Segment_2;
typedef typename Geometry_traits_2::Line_2 Line_2;
typedef typename Geometry_traits_2::Object_2 Object_2;
typedef RegularizationCategory Regularization_category;
typedef CGAL::Tag_false Supports_general_polygon_category;
typedef CGAL::Tag_true Supports_simple_polygon_category;
Simple_polygon_visibility_2() : p_arr(NULL), traits(NULL) {}
/*! Constructor given an arrangement and the Regularization tag. */
Simple_polygon_visibility_2(const Arrangement_2& arr):
p_arr(&arr) {
traits = p_arr->geometry_traits();
point_location.attach(arr);
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
inserted_artificial_starting_vertex = false;
}
std::string name() const { return std::string("S_visibility_2"); }
/*! Method to check if the visibility object is attached or not to
an arrangement*/
bool is_attached() const {
return (p_arr != NULL);
}
/*! Attaches the visibility object to the 'arr' arrangement */
void attach(const Arrangement_2& arr) {
if(p_arr != &arr){
detach();
p_arr = &arr;
traits = p_arr->geometry_traits();
point_location.attach(arr);
}
}
/*! Detaches the visibility object from the arrangement it is
attached to*/
void detach() {
point_location.detach();
p_arr = NULL;
traits = NULL;
vertices.clear();
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
inserted_artificial_starting_vertex = false;
}
/*! Getter method for the input arrangement*/
const Arrangement_2& arrangement_2() const {
return *p_arr;
}
/*! Computes the visibility object from the query point 'q' in the face
'face' and constructs the output in 'out_arr'*/
template <typename VARR>
typename VARR::Face_handle
compute_visibility(const Point_2& q,
const Face_const_handle face,
VARR& out_arr) const
{
CGAL_precondition(!face->is_unbounded());
out_arr.clear();
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
inserted_artificial_starting_vertex = false;
// Now retrieve the circulator to first visible vertex from triangulation
Ccb_halfedge_const_circulator circ = find_visible_start(face, q);
Ccb_halfedge_const_circulator curr = circ;
do {
vertices.push_back(curr->source()->point());
} while(++curr != circ);
vertices.push_back(vertices[0]);
visibility_region_impl(q);
return output(q, out_arr);
}
/*! Computes the visibility region of the query point 'q' located on the
halfedge 'he' and constructs the output in 'out_arr'*/
template <typename VARR>
typename VARR::Face_handle
compute_visibility(
const Point_2& q,
const Halfedge_const_handle he,
VARR& out_arr ) const
{
out_arr.clear();
query_pt_is_vertex = false;
query_pt_is_on_halfedge = false;
bool query_on_target = false;
if (q != he->source()->point()) {
if (q != he->target()->point()) {
vertices.push_back(he->target()->point());
query_pt_is_on_halfedge = true;
}
else {
query_pt_is_vertex = true;
query_on_target = true;
}
} else {
vertices.push_back( he->target()->point() );
query_pt_is_vertex = true;
}
Ccb_halfedge_const_circulator circ = he;
++circ;
Ccb_halfedge_const_circulator curr = circ;
do {
const Point_2& curr_vertex = curr->target()->point();
vertices.push_back(curr_vertex);
} while (++curr != circ);
if ( query_on_target ) {
vertices.push_back( vertices[0] );
}
visibility_region_impl(q);
return output(q, out_arr);
}
private:
typedef Arr_walk_along_line_point_location<Arrangement_2> Arr_point_location;
typedef typename Arr_point_location::result_type Location_result;
typedef std::vector<Point_2> Vertex_container;
typedef typename Vertex_container::size_type Size_type;
const Arrangement_2 *p_arr;
const Geometry_traits_2 *traits;
mutable Arr_point_location point_location;
/*! Stack of visibile points; manipulated when going through the sequence
of input vertices; contains the vertices of the visibility region after
the run of the algorithm*/
mutable std::stack<Point_2> stack;
/*! Sequence of input vertices*/
mutable Vertex_container vertices;
/*! State of visibility region algorithm*/
mutable enum {LEFT, RIGHT, SCANA, SCANB, SCANC, SCAND, FINISH} upcase;
mutable bool query_pt_is_vertex;
mutable bool query_pt_is_on_halfedge;
mutable bool inserted_artificial_starting_vertex;
template <typename VARR>
typename VARR::Face_handle
output(const Point_2& q, VARR& out_arr) const {
if(inserted_artificial_starting_vertex)
stack.pop();
std::vector<Point_2> points;
while(!stack.empty()) {
const Point_2& top = stack.top();
if (top != q || query_pt_is_vertex) {
points.push_back(top);
}
stack.pop();
}
if(inserted_artificial_starting_vertex) {
points.back() = points[0];
inserted_artificial_starting_vertex = false;
}
// Quick fix for now. Can be done faster
bool is_degenerate = false;
for(typename std::vector<Point_2>::size_type i = 0; i < points.size()-2;i++){
if(CGAL::orientation(points[i],points[i+1],points[i+2]) == CGAL::COLLINEAR){
is_degenerate = true;
break;
}
}
if(is_degenerate){
//std::cout << is_degenerate << std::endl;
std::vector<Segment_2> segments;
for(typename std::vector<Point_2>::size_type i = 0;i < points.size() - 1; ++i)
{
segments.push_back(Segment_2(points[i], points[i+1]));
}
CGAL::insert(out_arr, segments.begin(), segments.end());
}else{
points.pop_back();
//std::cout << " ordanary " << std::endl;
typename VARR::Vertex_handle v_last, v_first;
v_last = v_first =
out_arr.insert_in_face_interior(points[0],out_arr.unbounded_face());
for(unsigned int i = 0; i < points.size()-1; i++){
if(points[i] < points[(i+1)]){
v_last = out_arr.insert_from_left_vertex (
Segment_2(points[i], points[i+1]), v_last
)->target();
} else {
v_last = out_arr.insert_from_right_vertex(
Segment_2(points[i], points[i+1]), v_last
)->target();
}
}
out_arr.insert_at_vertices(
Segment_2(points.front(), points.back()),
v_last, v_first
);
}
CGAL_postcondition(out_arr.number_of_isolated_vertices() == 0);
CGAL_postcondition(stack.empty());
Visibility_2::conditional_regularize(out_arr, Regularization_category());
vertices.clear();
if (out_arr.faces_begin()->is_unbounded()) {
return ++out_arr.faces_begin();
}
else {
return out_arr.faces_begin();
}
}
/*! Finds a visible vertex from the query point 'q' in 'face'
to start the algorithm from*/
Ccb_halfedge_const_circulator find_visible_start(Face_const_handle face,
const Point_2 &q) const
{
Location_result result = point_location.ray_shoot_up(q);
if(const Halfedge_const_handle* e =
boost::get<Halfedge_const_handle>(&(result)))
{
CGAL_assertion((*e)->face() == face);
Point_2 p(q.x(),
traits->compute_y_at_x_2_object()(
Line_2((*e)->source()->point(),
(*e)->target()->point()) ,
q.x()));
vertices.push_back(p);
inserted_artificial_starting_vertex = true;
return (*e)->next()->ccb();
}
else if (const Vertex_const_handle* v =
boost::get<Vertex_const_handle>(&(result)))
{
Halfedge_around_vertex_const_circulator cir =
(*v)->incident_halfedges();
while(face != cir->face()) {
++cir;
}
return cir->next()->ccb();
}
else
{
CGAL_assertion_msg(false, "Should not be reachable.");
return Ccb_halfedge_const_circulator();
}
}
/*! Main method of the algorithm - initializes the stack and variables
and calles the corresponding methods acc. to the algorithm's state;
'q' - query point;
'i' - current vertex' index
'w' - endpoint of ray shot from query point */
void visibility_region_impl(const Point_2& q) const {
Size_type i = 0;
Point_2 w;
Orientation o = traits->orientation_2_object()(q, vertices[0], vertices[1]);
if ( o != RIGHT_TURN ) {
upcase = LEFT;
i = 1;
w = vertices[1];
stack.push(vertices[0]);
stack.push(vertices[1]);
}
else {
upcase = SCANA;
i = 1;
w = vertices[1];
stack.push(vertices[0]);
}
Ray_2 ray_origin( q, vertices[0] );
do {
switch(upcase) {
case LEFT:
left(i, w, q);
break;
case RIGHT:
right(i, w, q);
break;
case SCANA:
scana(i, w, q);
break;
case SCANB:
scanb(i, w);
break;
case SCANC:
scanc(i, w);
break;
case SCAND:
scand(i, w);
break;
case FINISH:
break;
}
if ( upcase == LEFT ) {
Point_2 s_t = stack.top();
stack.pop();
if (traits->orientation_2_object()(q, vertices[0], stack.top() )
== RIGHT_TURN
&&
traits->orientation_2_object()(q, vertices[0], s_t)
== LEFT_TURN )
{
Segment_2 seg( stack.top(), s_t );
if (Object_2 result = Intersect_2()(seg, ray_origin) )
{
const Point_2 * ipoint = object_cast<Point_2>(&result);
CGAL_assertion( ipoint != NULL );
s_t = *ipoint;
upcase = SCANB;
}
}
stack.push( s_t );
}
} while(upcase != FINISH);
}
/*! Method that handles the left turns in the vertex algorithm */
void left(Size_type& i, Point_2& w, const Point_2& q) const {
if (i >= vertices.size() - 1) {
upcase = FINISH;
}
else {
Point_2 s_t = stack.top();
stack.pop();
Point_2 s_t_prev = stack.top();
stack.push( s_t );
Orientation orient1 = traits->orientation_2_object()(
q,
vertices[i],
vertices[i+1] );
if ( orient1 != RIGHT_TURN ) {
// Case L2
upcase = LEFT;
stack.push( vertices[i+1] );
w = vertices[i+1];
i++;
} else {
Orientation orient2 = traits->orientation_2_object()(
s_t_prev,
vertices[i],
vertices[i+1] );
if ( orient2 == RIGHT_TURN ) {
// Case L3
upcase = SCANA;
w = vertices[i+1];
i++;
} else {
// Case L4
upcase = RIGHT;
w = vertices[i];
i++;
}
}
}
}
/*! Scans the stack such that all vertices that were pushed before to the
stack and are now not visible anymore. */
void right(Size_type& i, Point_2& w, const Point_2& q) const {
Point_2 s_j;
Point_2 s_j_prev;
Point_2 u;
int mode = 0;
Orientation orient1, orient2;
s_j_prev = stack.top();
orient2 = traits->orientation_2_object()( q, s_j_prev, vertices[i] );
while ( stack.size() > 1 ) {
s_j = s_j_prev;
orient1 = orient2;
stack.pop();
s_j_prev = stack.top();
orient2 = traits->orientation_2_object()( q, s_j_prev, vertices[i]);
if ( orient1 != LEFT_TURN && orient2 != RIGHT_TURN ) {
mode = 1;
break;
}
Segment_2 seg2( vertices[i-1], vertices[i] );
Segment_2 seg( s_j_prev, s_j );
if ( vertices[i-1] != s_j )
{
Object_2 result = Intersect_2()( seg, seg2 );
if(result) {
const Point_2 * ipoint = object_cast<Point_2>(&result);
CGAL_assertion( ipoint != NULL );
u = *ipoint;
mode = 2;
break;
}
}
}
CGAL_assertion( mode != 0 );
if ( mode == 1 ) {
orient1 = traits->orientation_2_object()(q, vertices[i], vertices[i+1] );
orient2 = traits->orientation_2_object()(vertices[i-1],
vertices[i],
vertices[i+1] );
if ( orient1 == RIGHT_TURN ) {
// Case R1
// Since the next action is RIGHT, we do not compute the intersection
// of (s_j,s_j_prev) and the ray (query_pt, vertices[i]),
// thus, (s_j,s_j_prev) is not shortcutted, but it is harmless
upcase = RIGHT;
stack.push( s_j );
w = vertices[i];
i++;
} else if ( orient2 == RIGHT_TURN ) {
// Case R2
Ray_2 ray( q, vertices[i] );
Segment_2 seg( s_j_prev, s_j );
Object_2 result = Intersect_2()( seg, ray );
const Point_2 * ipoint = object_cast<Point_2>(&result);
CGAL_assertion( ipoint != NULL );
u = *ipoint;
if ( stack.top() != u ) {
stack.push( u );
}
upcase = LEFT;
stack.push( vertices[i] );
stack.push( vertices[i+1] );
w = vertices[i+1];
i++;
} else {
// Case R3
Ray_2 ray( q, vertices[i] );
Segment_2 seg( s_j_prev, s_j );
Object_2 result = Intersect_2()( seg, ray );
const Point_2 * ipoint = object_cast<Point_2>(&result);
CGAL_assertion( ipoint != NULL );
u = *ipoint;
if ( stack.top() != u ) {
stack.push( u );
}
upcase = SCANC;
w = vertices[i];
i++;
}
} else if ( mode == 2 ) {
// Case R4
upcase = SCAND;
w = u;
}
}
/*! Scans the vertices starting from index 'i' for the first visible vertex
out of the back hidden window */
void scana(Size_type& i, Point_2& w, const Point_2& q) const {
// Scan v_i, v_i+1, ..., v_n for the first edge to intersect (z, s_t)
Point_2 u;
Size_type k = scan_edges( i, q, stack.top(), u, true );
Orientation orient1 =
traits->orientation_2_object()(q, vertices[k], vertices[k+1] );
if ( orient1 == RIGHT_TURN ) {
bool fwd = traits->
collinear_are_ordered_along_line_2_object()(q, stack.top(), u );
if ( !fwd ) {
// Case A1
upcase = RIGHT;
i = k+1;
w = u;
} else {
// Case A2
upcase = SCAND;
i = k+1;
w = u;
}
} else {
// Case A3
upcase = LEFT;
i = k+1;
stack.push( u );
if ( u != vertices[k+1] ) {
stack.push( vertices[k+1] );
}
w = vertices[k+1];
}
}
/*! Find the first edge interecting the segment (v_0, s_t) */
void scanb(Size_type& i, Point_2& w) const {
if ( i == vertices.size() - 1 ) {
upcase = FINISH;
return;
}
Point_2 u;
Size_type k = scan_edges( i, stack.top(), vertices[0], u, false );
if ( (k+1 == vertices.size()-1) && (vertices[0] == u) ) {
// Case B1
upcase = FINISH;
stack.push( vertices[0] );
} else {
// Case B2
upcase = RIGHT;
i = k+1;
w = u;
}
}
/*! Finds the exit from a general front hidden window by finding the first
vertex to the right of the ray defined by the query_point and w*/
void scanc(Size_type& i, Point_2& w) const {
Point_2 u;
Size_type k = scan_edges( i, stack.top(), w, u, false );
upcase = RIGHT;
i = k+1;
w = u;
}
/*! find the first edge intersecting the given window (s_t, w) */
void scand(Size_type& i, Point_2& w) const {
Point_2 u;
Size_type k = scan_edges( i, stack.top(), w, u, false );
upcase = LEFT;
i = k+1;
stack.push( u );
if ( u != vertices[k+1] ) {
stack.push( vertices[k+1] );
}
w = vertices[k+1];
}
/*! Scan edges v_i,v_{i+1},...,v_n, until find an edge intersecting given ray
or given segment. is_ray = true -> ray, false -> segment.
The intersection point is returned by u */
Size_type scan_edges( Size_type i,
const Point_2& ray_begin,
const Point_2& ray_end,
Point_2& u,
bool is_ray ) const
{
Orientation old_orient = RIGHT_TURN;
Ray_2 ray( ray_begin, ray_end );
Segment_2 s2( ray_begin, ray_end );
Size_type k;
Object_2 result;
for ( k = i; k+1 < vertices.size(); k++ ) {
Orientation curr_orient = traits->orientation_2_object()(
ray_begin,
ray_end,
vertices[k+1] );
if ( curr_orient != old_orient ) {
// Orientation switch, an intersection may occur
Segment_2 seg( vertices[k], vertices[k+1] );
if ( is_ray ) {
result = Intersect_2()( seg, ray );
if(result)
break;
} else {
result = Intersect_2()( seg, s2 );
if(result)
break;
}
}
old_orient = curr_orient;
}
CGAL_assertion( k+1<vertices.size() );
const Point_2 * ipoint = object_cast<Point_2>( &result );
if ( ipoint ) {
u = *ipoint;
} else {
u = vertices[k+1];
}
return k;
}
};
} // namespace CGAL
#endif