130 lines
5.9 KiB
C
130 lines
5.9 KiB
C
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
#ifndef IGL_CANONICAL_QUATERNIONS_H
|
||
|
#define IGL_CANONICAL_QUATERNIONS_H
|
||
|
#include "igl_inline.h"
|
||
|
// Define some canonical quaternions for floats and doubles
|
||
|
// A Quaternion, q, is defined here as an arrays of four scalars (x,y,z,w),
|
||
|
// such that q = x*i + y*j + z*k + w
|
||
|
namespace igl
|
||
|
{
|
||
|
// Float versions
|
||
|
#define SQRT_2_OVER_2 0.707106781f
|
||
|
// Identity
|
||
|
const float IDENTITY_QUAT_F[4] = {0,0,0,1};
|
||
|
// The following match the Matlab canonical views
|
||
|
// X point right, Y pointing up and Z point out
|
||
|
const float XY_PLANE_QUAT_F[4] = {0,0,0,1};
|
||
|
// X points right, Y points *in* and Z points up
|
||
|
const float XZ_PLANE_QUAT_F[4] = {-SQRT_2_OVER_2,0,0,SQRT_2_OVER_2};
|
||
|
// X points out, Y points right, and Z points up
|
||
|
const float YZ_PLANE_QUAT_F[4] = {-0.5,-0.5,-0.5,0.5};
|
||
|
const float CANONICAL_VIEW_QUAT_F[][4] =
|
||
|
{
|
||
|
{ 0, 0, 0, 1}, // 0
|
||
|
{ 0, 0, SQRT_2_OVER_2, SQRT_2_OVER_2}, // 1
|
||
|
{ 0, 0, 1, 0}, // 2
|
||
|
{ 0, 0, SQRT_2_OVER_2,-SQRT_2_OVER_2}, // 3
|
||
|
|
||
|
{ 0, -1, 0, 0}, // 4
|
||
|
{-SQRT_2_OVER_2, SQRT_2_OVER_2, 0, 0}, // 5
|
||
|
{ -1, 0, 0, 0}, // 6
|
||
|
{-SQRT_2_OVER_2,-SQRT_2_OVER_2, 0, 0}, // 7
|
||
|
|
||
|
{ -0.5, -0.5, -0.5, 0.5}, // 8
|
||
|
{ 0,-SQRT_2_OVER_2, 0, SQRT_2_OVER_2}, // 9
|
||
|
{ 0.5, -0.5, 0.5, 0.5}, // 10
|
||
|
{ SQRT_2_OVER_2, 0, SQRT_2_OVER_2, 0}, // 11
|
||
|
|
||
|
{ SQRT_2_OVER_2, 0,-SQRT_2_OVER_2, 0}, // 12
|
||
|
{ 0.5, 0.5, -0.5, 0.5}, // 13
|
||
|
{ 0, SQRT_2_OVER_2, 0, SQRT_2_OVER_2}, // 14
|
||
|
{ -0.5, 0.5, 0.5, 0.5}, // 15
|
||
|
|
||
|
{ 0, SQRT_2_OVER_2, SQRT_2_OVER_2, 0}, // 16
|
||
|
{ -0.5, 0.5, 0.5, -0.5}, // 17
|
||
|
{-SQRT_2_OVER_2, 0, 0,-SQRT_2_OVER_2}, // 18
|
||
|
{ -0.5, -0.5, -0.5, -0.5}, // 19
|
||
|
|
||
|
{-SQRT_2_OVER_2, 0, 0, SQRT_2_OVER_2}, // 20
|
||
|
{ -0.5, -0.5, 0.5, 0.5}, // 21
|
||
|
{ 0,-SQRT_2_OVER_2, SQRT_2_OVER_2, 0}, // 22
|
||
|
{ 0.5, -0.5, 0.5, -0.5} // 23
|
||
|
};
|
||
|
#undef SQRT_2_OVER_2
|
||
|
// Double versions
|
||
|
#define SQRT_2_OVER_2 0.70710678118654757
|
||
|
// Identity
|
||
|
const double IDENTITY_QUAT_D[4] = {0,0,0,1};
|
||
|
// The following match the Matlab canonical views
|
||
|
// X point right, Y pointing up and Z point out
|
||
|
const double XY_PLANE_QUAT_D[4] = {0,0,0,1};
|
||
|
// X points right, Y points *in* and Z points up
|
||
|
const double XZ_PLANE_QUAT_D[4] = {-SQRT_2_OVER_2,0,0,SQRT_2_OVER_2};
|
||
|
// X points out, Y points right, and Z points up
|
||
|
const double YZ_PLANE_QUAT_D[4] = {-0.5,-0.5,-0.5,0.5};
|
||
|
const double CANONICAL_VIEW_QUAT_D[][4] =
|
||
|
{
|
||
|
{ 0, 0, 0, 1},
|
||
|
{ 0, 0, SQRT_2_OVER_2, SQRT_2_OVER_2},
|
||
|
{ 0, 0, 1, 0},
|
||
|
{ 0, 0, SQRT_2_OVER_2,-SQRT_2_OVER_2},
|
||
|
|
||
|
{ 0, -1, 0, 0},
|
||
|
{-SQRT_2_OVER_2, SQRT_2_OVER_2, 0, 0},
|
||
|
{ -1, 0, 0, 0},
|
||
|
{-SQRT_2_OVER_2,-SQRT_2_OVER_2, 0, 0},
|
||
|
|
||
|
{ -0.5, -0.5, -0.5, 0.5},
|
||
|
{ 0,-SQRT_2_OVER_2, 0, SQRT_2_OVER_2},
|
||
|
{ 0.5, -0.5, 0.5, 0.5},
|
||
|
{ SQRT_2_OVER_2, 0, SQRT_2_OVER_2, 0},
|
||
|
|
||
|
{ SQRT_2_OVER_2, 0,-SQRT_2_OVER_2, 0},
|
||
|
{ 0.5, 0.5, -0.5, 0.5},
|
||
|
{ 0, SQRT_2_OVER_2, 0, SQRT_2_OVER_2},
|
||
|
{ -0.5, 0.5, 0.5, 0.5},
|
||
|
|
||
|
{ 0, SQRT_2_OVER_2, SQRT_2_OVER_2, 0},
|
||
|
{ -0.5, 0.5, 0.5, -0.5},
|
||
|
{-SQRT_2_OVER_2, 0, 0,-SQRT_2_OVER_2},
|
||
|
{ -0.5, -0.5, -0.5, -0.5},
|
||
|
|
||
|
{-SQRT_2_OVER_2, 0, 0, SQRT_2_OVER_2},
|
||
|
{ -0.5, -0.5, 0.5, 0.5},
|
||
|
{ 0,-SQRT_2_OVER_2, SQRT_2_OVER_2, 0},
|
||
|
{ 0.5, -0.5, 0.5, -0.5}
|
||
|
};
|
||
|
#undef SQRT_2_OVER_2
|
||
|
#define NUM_CANONICAL_VIEW_QUAT 24
|
||
|
|
||
|
// NOTE: I want to rather be able to return a Q_type[][] but C++ is not
|
||
|
// making it easy. So instead I've written a per-element accessor
|
||
|
|
||
|
// Return element [i][j] of the corresponding CANONICAL_VIEW_QUAT_* of the
|
||
|
// given templated type
|
||
|
// Inputs:
|
||
|
// i index of quaternion
|
||
|
// j index of coordinate in quaternion i
|
||
|
// Returns values of CANONICAL_VIEW_QUAT_*[i][j]
|
||
|
template <typename Q_type>
|
||
|
IGL_INLINE Q_type CANONICAL_VIEW_QUAT(int i, int j);
|
||
|
// Template specializations for float and double
|
||
|
template <>
|
||
|
IGL_INLINE float CANONICAL_VIEW_QUAT<float>(int i, int j);
|
||
|
template <>
|
||
|
IGL_INLINE double CANONICAL_VIEW_QUAT<double>(int i, int j);
|
||
|
|
||
|
}
|
||
|
|
||
|
#ifndef IGL_STATIC_LIBRARY
|
||
|
# include "canonical_quaternions.cpp"
|
||
|
#endif
|
||
|
|
||
|
#endif
|