dust3d/third_party/libigl/include/igl/outer_element.cpp

281 lines
11 KiB
C++
Raw Normal View History

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2015 Qingnan Zhou <qnzhou@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "outer_element.h"
#include <iostream>
#include <vector>
template <
typename DerivedV,
typename DerivedF,
typename DerivedI,
typename IndexType,
typename DerivedA
>
IGL_INLINE void igl::outer_vertex(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::PlainObjectBase<DerivedF> & F,
const Eigen::PlainObjectBase<DerivedI> & I,
IndexType & v_index,
Eigen::PlainObjectBase<DerivedA> & A)
{
// Algorithm:
// Find an outer vertex (i.e. vertex reachable from infinity)
// Return the vertex with the largest X value.
// If there is a tie, pick the one with largest Y value.
// If there is still a tie, pick the one with the largest Z value.
// If there is still a tie, then there are duplicated vertices within the
// mesh, which violates the precondition.
typedef typename DerivedF::Scalar Index;
const Index INVALID = std::numeric_limits<Index>::max();
const size_t num_selected_faces = I.rows();
std::vector<size_t> candidate_faces;
Index outer_vid = INVALID;
typename DerivedV::Scalar outer_val = 0;
for (size_t i=0; i<num_selected_faces; i++)
{
size_t f = I(i);
for (size_t j=0; j<3; j++)
{
Index v = F(f, j);
auto vx = V(v, 0);
if (outer_vid == INVALID || vx > outer_val)
{
outer_val = vx;
outer_vid = v;
candidate_faces = {f};
} else if (v == outer_vid)
{
candidate_faces.push_back(f);
} else if (vx == outer_val)
{
// Break tie.
auto vy = V(v,1);
auto vz = V(v, 2);
auto outer_y = V(outer_vid, 1);
auto outer_z = V(outer_vid, 2);
assert(!(vy == outer_y && vz == outer_z));
bool replace = (vy > outer_y) ||
((vy == outer_y) && (vz > outer_z));
if (replace)
{
outer_val = vx;
outer_vid = v;
candidate_faces = {f};
}
}
}
}
assert(outer_vid != INVALID);
assert(candidate_faces.size() > 0);
v_index = outer_vid;
A.resize(candidate_faces.size());
std::copy(candidate_faces.begin(), candidate_faces.end(), A.data());
}
template<
typename DerivedV,
typename DerivedF,
typename DerivedI,
typename IndexType,
typename DerivedA
>
IGL_INLINE void igl::outer_edge(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::PlainObjectBase<DerivedF> & F,
const Eigen::PlainObjectBase<DerivedI> & I,
IndexType & v1,
IndexType & v2,
Eigen::PlainObjectBase<DerivedA> & A) {
// Algorithm:
// Find an outer vertex first.
// Find the incident edge with largest abs slope when projected onto XY plane.
// If there is a tie, check the signed slope and use the positive one.
// If there is still a tie, break it using the projected slope onto ZX plane.
// If there is still a tie, again check the signed slope and use the positive one.
// If there is still a tie, then there are multiple overlapping edges,
// which violates the precondition.
typedef typename DerivedV::Scalar Scalar;
typedef typename DerivedV::Index Index;
typedef typename Eigen::Matrix<Scalar, 3, 1> ScalarArray3;
typedef typename Eigen::Matrix<typename DerivedF::Scalar, 3, 1> IndexArray3;
const Index INVALID = std::numeric_limits<Index>::max();
Index outer_vid;
Eigen::Matrix<Index,Eigen::Dynamic,1> candidate_faces;
outer_vertex(V, F, I, outer_vid, candidate_faces);
const ScalarArray3& outer_v = V.row(outer_vid);
assert(candidate_faces.size() > 0);
auto get_vertex_index = [&](const IndexArray3& f, Index vid) -> Index
{
if (f[0] == vid) return 0;
if (f[1] == vid) return 1;
if (f[2] == vid) return 2;
assert(false);
return -1;
};
auto unsigned_value = [](Scalar v) -> Scalar {
if (v < 0) return v * -1;
else return v;
};
Scalar outer_slope_YX = 0;
Scalar outer_slope_ZX = 0;
Index outer_opp_vid = INVALID;
bool infinite_slope_detected = false;
std::vector<Index> incident_faces;
auto check_and_update_outer_edge = [&](Index opp_vid, Index fid) {
if (opp_vid == outer_opp_vid)
{
incident_faces.push_back(fid);
return;
}
const ScalarArray3 opp_v = V.row(opp_vid);
if (!infinite_slope_detected && outer_v[0] != opp_v[0])
{
// Finite slope
const ScalarArray3 diff = opp_v - outer_v;
const Scalar slope_YX = diff[1] / diff[0];
const Scalar slope_ZX = diff[2] / diff[0];
const Scalar u_slope_YX = unsigned_value(slope_YX);
const Scalar u_slope_ZX = unsigned_value(slope_ZX);
bool update = false;
if (outer_opp_vid == INVALID) {
update = true;
} else {
const Scalar u_outer_slope_YX = unsigned_value(outer_slope_YX);
if (u_slope_YX > u_outer_slope_YX) {
update = true;
} else if (u_slope_YX == u_outer_slope_YX &&
slope_YX > outer_slope_YX) {
update = true;
} else if (slope_YX == outer_slope_YX) {
const Scalar u_outer_slope_ZX =
unsigned_value(outer_slope_ZX);
if (u_slope_ZX > u_outer_slope_ZX) {
update = true;
} else if (u_slope_ZX == u_outer_slope_ZX &&
slope_ZX > outer_slope_ZX) {
update = true;
} else if (slope_ZX == u_outer_slope_ZX) {
assert(false);
}
}
}
if (update) {
outer_opp_vid = opp_vid;
outer_slope_YX = slope_YX;
outer_slope_ZX = slope_ZX;
incident_faces = {fid};
}
} else if (!infinite_slope_detected)
{
// Infinite slope
outer_opp_vid = opp_vid;
infinite_slope_detected = true;
incident_faces = {fid};
}
};
const size_t num_candidate_faces = candidate_faces.size();
for (size_t i=0; i<num_candidate_faces; i++)
{
const Index fid = candidate_faces(i);
const IndexArray3& f = F.row(fid);
size_t id = get_vertex_index(f, outer_vid);
Index next_vid = f((id+1)%3);
Index prev_vid = f((id+2)%3);
check_and_update_outer_edge(next_vid, fid);
check_and_update_outer_edge(prev_vid, fid);
}
v1 = outer_vid;
v2 = outer_opp_vid;
A.resize(incident_faces.size());
std::copy(incident_faces.begin(), incident_faces.end(), A.data());
}
template<
typename DerivedV,
typename DerivedF,
typename DerivedN,
typename DerivedI,
typename IndexType
>
IGL_INLINE void igl::outer_facet(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::PlainObjectBase<DerivedF> & F,
const Eigen::PlainObjectBase<DerivedN> & N,
const Eigen::PlainObjectBase<DerivedI> & I,
IndexType & f,
bool & flipped) {
// Algorithm:
// Find an outer edge.
// Find the incident facet with the largest absolute X normal component.
// If there is a tie, keep the one with positive X component.
// If there is still a tie, pick the face with the larger signed index
// (flipped face has negative index).
typedef typename DerivedV::Scalar Scalar;
typedef typename DerivedV::Index Index;
const size_t INVALID = std::numeric_limits<size_t>::max();
Index v1,v2;
Eigen::Matrix<Index,Eigen::Dynamic,1> incident_faces;
outer_edge(V, F, I, v1, v2, incident_faces);
assert(incident_faces.size() > 0);
auto generic_fabs = [&](const Scalar& val) -> const Scalar {
if (val >= 0) return val;
else return -val;
};
Scalar max_nx = 0;
size_t outer_fid = INVALID;
const size_t num_incident_faces = incident_faces.size();
for (size_t i=0; i<num_incident_faces; i++)
{
const auto& fid = incident_faces(i);
const Scalar nx = N(fid, 0);
if (outer_fid == INVALID) {
max_nx = nx;
outer_fid = fid;
} else {
if (generic_fabs(nx) > generic_fabs(max_nx)) {
max_nx = nx;
outer_fid = fid;
} else if (nx == -max_nx && nx > 0) {
max_nx = nx;
outer_fid = fid;
} else if (nx == max_nx) {
if ((max_nx >= 0 && outer_fid < fid) ||
(max_nx < 0 && outer_fid > fid)) {
max_nx = nx;
outer_fid = fid;
}
}
}
}
assert(outer_fid != INVALID);
f = outer_fid;
flipped = max_nx < 0;
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
template void igl::outer_facet<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<long, -1, 1, 0, -1, 1>, int>(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<long, -1, 1, 0, -1, 1> > const&, int&, bool&);
template void igl::outer_facet<Eigen::Matrix<double, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 1, -1, -1>, Eigen::Matrix<double, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 1, -1, -1>, unsigned long>(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 1, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 1, -1, -1> > const&, unsigned long&, bool&);
template void igl::outer_facet<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, int>(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, int&, bool&);
template void igl::outer_facet<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, int>(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, int&, bool&);
#endif