dust3d/third_party/libigl/include/igl/bijective_composite_harmoni...

116 lines
4.7 KiB
C++
Raw Normal View History

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2017 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "bijective_composite_harmonic_mapping.h"
#include "slice.h"
#include "doublearea.h"
#include "harmonic.h"
//#include "matlab/MatlabWorkspace.h"
#include <iostream>
template <
typename DerivedV,
typename DerivedF,
typename Derivedb,
typename Derivedbc,
typename DerivedU>
IGL_INLINE bool igl::bijective_composite_harmonic_mapping(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedF> & F,
const Eigen::MatrixBase<Derivedb> & b,
const Eigen::MatrixBase<Derivedbc> & bc,
Eigen::PlainObjectBase<DerivedU> & U)
{
return bijective_composite_harmonic_mapping(V,F,b,bc,1,200,20,true,U);
}
template <
typename DerivedV,
typename DerivedF,
typename Derivedb,
typename Derivedbc,
typename DerivedU>
IGL_INLINE bool igl::bijective_composite_harmonic_mapping(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedF> & F,
const Eigen::MatrixBase<Derivedb> & b,
const Eigen::MatrixBase<Derivedbc> & bc,
const int min_steps,
const int max_steps,
const int num_inner_iters,
const bool test_for_flips,
Eigen::PlainObjectBase<DerivedU> & U)
{
typedef typename Derivedbc::Scalar Scalar;
assert(V.cols() == 2 && bc.cols() == 2 && "Input should be 2D");
assert(F.cols() == 3 && "F should contain triangles");
int tries = 0;
int nsteps = min_steps;
Derivedbc bc0;
slice(V,b,1,bc0);
// It's difficult to check for flips "robustly" in the sense that the input
// mesh might not have positive/consistent sign to begin with.
while(nsteps<=max_steps)
{
U = V;
int flipped = 0;
int nans = 0;
int step = 0;
for(;step<=nsteps;step++)
{
const Scalar t = ((Scalar)step)/((Scalar)nsteps);
// linearly interpolate boundary conditions
// TODO: replace this with something that guarantees a homotopic "morph"
// of the boundary conditions. Something like "Homotopic Morphing of
// Planar Curves" [Dym et al. 2015] but also handling multiple connected
// components.
Derivedbc bct = bc0 + t*(bc - bc0);
// Compute dsicrete harmonic map using metric of previous step
for(int iter = 0;iter<num_inner_iters;iter++)
{
//std::cout<<nsteps<<" t: "<<t<<" iter: "<<iter;
//igl::matlab::MatlabWorkspace mw;
//mw.save(U,"U");
//mw.save_index(F,"F");
//mw.save_index(b,"b");
//mw.save(bct,"bct");
//mw.write("numerical.mat");
harmonic(DerivedU(U),F,b,bct,1,U);
igl::slice(U,b,1,bct);
nans = (U.array() != U.array()).count();
if(test_for_flips)
{
Eigen::Matrix<Scalar,Eigen::Dynamic,1> A;
doublearea(U,F,A);
flipped = (A.array() < 0 ).count();
//std::cout<<" "<<flipped<<" nan? "<<(U.array() != U.array()).any()<<std::endl;
if(flipped == 0 && nans == 0) break;
}
}
if(flipped > 0 || nans>0) break;
}
if(flipped == 0 && nans == 0)
{
return step == nsteps+1;
}
nsteps *= 2;
}
//std::cout<<"failed to finish in "<<nsteps<<"..."<<std::endl;
return false;
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
// generated by autoexplicit.sh
template bool igl::bijective_composite_harmonic_mapping<Eigen::Matrix<double, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 1, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> >&);
// generated by autoexplicit.sh
template bool igl::bijective_composite_harmonic_mapping<Eigen::Matrix<double, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 1, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, int, int, int, bool, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> >&);
#endif