dust3d/third_party/libigl/include/igl/mosek/mosek_quadprog.cpp

344 lines
10 KiB
C++
Raw Normal View History

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "mosek_quadprog.h"
#include "mosek_guarded.h"
#include <cstdio>
#include "../find.h"
#include "../verbose.h"
#include "../speye.h"
#include "../matrix_to_list.h"
#include "../list_to_matrix.h"
#include "../harwell_boeing.h"
#include "../EPS.h"
igl::mosek::MosekData::MosekData()
{
// These are the default settings that worked well for BBW. Your miles may
// very well be kilometers.
// >1e0 NONSOLUTION
// 1e-1 artifacts in deformation
// 1e-3 artifacts in isolines
// 1e-4 seems safe
// 1e-8 MOSEK DEFAULT SOLUTION
douparam[MSK_DPAR_INTPNT_TOL_REL_GAP]=1e-8;
#if MSK_VERSION_MAJOR >= 8
douparam[MSK_DPAR_INTPNT_QO_TOL_REL_GAP]=1e-12;
#endif
// Force using multiple threads, not sure if MOSEK is properly destroying
//extra threads...
#if MSK_VERSION_MAJOR >= 7
intparam[MSK_IPAR_NUM_THREADS] = 6;
#elif MSK_VERSION_MAJOR == 6
intparam[MSK_IPAR_INTPNT_NUM_THREADS] = 6;
#endif
#if MSK_VERSION_MAJOR == 6
// Force turn off data check
intparam[MSK_IPAR_DATA_CHECK]=MSK_OFF;
#endif
// Turn off presolving
// intparam[MSK_IPAR_PRESOLVE_USE] = MSK_PRESOLVE_MODE_OFF;
// Force particular matrix reordering method
// MSK_ORDER_METHOD_NONE cuts time in half roughly, since half the time is
// usually spent reordering the matrix
// !! WARNING Setting this parameter to anything but MSK_ORDER_METHOD_FREE
// seems to have the effect of setting it to MSK_ORDER_METHOD_NONE
// *Or maybe Mosek is spending a bunch of time analyzing the matrix to
// choose the right ordering method when really any of them are
// instantaneous
intparam[MSK_IPAR_INTPNT_ORDER_METHOD] = MSK_ORDER_METHOD_NONE;
// 1.0 means optimizer is very lenient about declaring model infeasible
douparam[MSK_DPAR_INTPNT_TOL_INFEAS] = 1e-8;
// Hard to say if this is doing anything, probably nothing dramatic
douparam[MSK_DPAR_INTPNT_TOL_PSAFE]= 1e2;
// Turn off convexity check
intparam[MSK_IPAR_CHECK_CONVEXITY] = MSK_CHECK_CONVEXITY_NONE;
}
template <typename Index, typename Scalar>
IGL_INLINE bool igl::mosek::mosek_quadprog(
const Index n,
std::vector<Index> & Qi,
std::vector<Index> & Qj,
std::vector<Scalar> & Qv,
const std::vector<Scalar> & c,
const Scalar cf,
const Index m,
std::vector<Scalar> & Av,
std::vector<Index> & Ari,
const std::vector<Index> & Acp,
const std::vector<Scalar> & lc,
const std::vector<Scalar> & uc,
const std::vector<Scalar> & lx,
const std::vector<Scalar> & ux,
MosekData & mosek_data,
std::vector<Scalar> & x)
{
// I J V vectors of Q should all be same length
assert(Qv.size() == Qi.size());
assert(Qv.size() == Qj.size());
// number of columns in linear constraint matrix must be ≤ number of
// variables
assert( (int)Acp.size() == (n+1));
// linear bound vectors must be size of number of constraints or empty
assert( ((int)lc.size() == m) || ((int)lc.size() == 0));
assert( ((int)uc.size() == m) || ((int)uc.size() == 0));
// constant bound vectors must be size of number of variables or empty
assert( ((int)lx.size() == n) || ((int)lx.size() == 0));
assert( ((int)ux.size() == n) || ((int)ux.size() == 0));
// allocate space for solution in x
x.resize(n);
// variables for mosek task, env and result code
MSKenv_t env;
MSKtask_t task;
// Create the MOSEK environment
#if MSK_VERSION_MAJOR >= 7
mosek_guarded(MSK_makeenv(&env,NULL));
#elif MSK_VERSION_MAJOR == 6
mosek_guarded(MSK_makeenv(&env,NULL,NULL,NULL,NULL));
#endif
///* Directs the log stream to the 'printstr' function. */
//// Little function mosek needs in order to know how to print to std out
//const auto & printstr = [](void *handle, char str[])
//{
// printf("%s",str);
//}
//mosek_guarded(MSK_linkfunctoenvstream(env,MSK_STREAM_LOG,NULL,printstr));
// initialize mosek environment
#if MSK_VERSION_MAJOR <= 7
mosek_guarded(MSK_initenv(env));
#endif
// Create the optimization task
mosek_guarded(MSK_maketask(env,m,n,&task));
verbose("Creating task with %ld linear constraints and %ld variables...\n",m,n);
//// Tell mosek how to print to std out
//mosek_guarded(MSK_linkfunctotaskstream(task,MSK_STREAM_LOG,NULL,printstr));
// Give estimate of number of variables
mosek_guarded(MSK_putmaxnumvar(task,n));
if(m>0)
{
// Give estimate of number of constraints
mosek_guarded(MSK_putmaxnumcon(task,m));
// Give estimate of number of non zeros in A
mosek_guarded(MSK_putmaxnumanz(task,Av.size()));
}
// Give estimate of number of non zeros in Q
mosek_guarded(MSK_putmaxnumqnz(task,Qv.size()));
if(m>0)
{
// Append 'm' empty constraints, the constrainst will initially have no
// bounds
#if MSK_VERSION_MAJOR >= 7
mosek_guarded(MSK_appendcons(task,m));
#elif MSK_VERSION_MAJOR == 6
mosek_guarded(MSK_append(task,MSK_ACC_CON,m));
#endif
}
// Append 'n' variables
#if MSK_VERSION_MAJOR >= 7
mosek_guarded(MSK_appendvars(task,n));
#elif MSK_VERSION_MAJOR == 6
mosek_guarded(MSK_append(task,MSK_ACC_VAR,n));
#endif
// add a contant term to the objective
mosek_guarded(MSK_putcfix(task,cf));
// loop over variables
for(int j = 0;j<n;j++)
{
if(c.size() > 0)
{
// Set linear term c_j in the objective
mosek_guarded(MSK_putcj(task,j,c[j]));
}
// Set constant bounds on variable j
if(lx[j] == ux[j])
{
mosek_guarded(MSK_putbound(task,MSK_ACC_VAR,j,MSK_BK_FX,lx[j],ux[j]));
}else
{
mosek_guarded(MSK_putbound(task,MSK_ACC_VAR,j,MSK_BK_RA,lx[j],ux[j]));
}
if(m>0)
{
// Input column j of A
#if MSK_VERSION_MAJOR >= 7
mosek_guarded(
MSK_putacol(
task,
j,
Acp[j+1]-Acp[j],
&Ari[Acp[j]],
&Av[Acp[j]])
);
#elif MSK_VERSION_MAJOR == 6
mosek_guarded(
MSK_putavec(
task,
MSK_ACC_VAR,
j,
Acp[j+1]-Acp[j],
&Ari[Acp[j]],
&Av[Acp[j]])
);
#endif
}
}
// loop over constraints
for(int i = 0;i<m;i++)
{
// put bounds on constraints
mosek_guarded(MSK_putbound(task,MSK_ACC_CON,i,MSK_BK_RA,lc[i],uc[i]));
}
// Input Q for the objective (REMEMBER Q SHOULD ONLY BE LOWER TRIANGLE)
mosek_guarded(MSK_putqobj(task,Qv.size(),&Qi[0],&Qj[0],&Qv[0]));
// Set up task parameters
for(
std::map<MSKiparame,int>::iterator pit = mosek_data.intparam.begin();
pit != mosek_data.intparam.end();
pit++)
{
mosek_guarded(MSK_putintparam(task,pit->first,pit->second));
}
for(
std::map<MSKdparame,double>::iterator pit = mosek_data.douparam.begin();
pit != mosek_data.douparam.end();
pit++)
{
mosek_guarded(MSK_putdouparam(task,pit->first,pit->second));
}
// Now the optimizer has been prepared
MSKrescodee trmcode;
// run the optimizer
mosek_guarded(MSK_optimizetrm(task,&trmcode));
//// Print a summary containing information about the solution for debugging
//// purposes
//MSK_solutionsummary(task,MSK_STREAM_LOG);
// Get status of solution
MSKsolstae solsta;
#if MSK_VERSION_MAJOR >= 7
MSK_getsolsta (task,MSK_SOL_ITR,&solsta);
#elif MSK_VERSION_MAJOR == 6
MSK_getsolutionstatus(task,MSK_SOL_ITR,NULL,&solsta);
#endif
bool success = false;
switch(solsta)
{
case MSK_SOL_STA_OPTIMAL:
case MSK_SOL_STA_NEAR_OPTIMAL:
MSK_getsolutionslice(task,MSK_SOL_ITR,MSK_SOL_ITEM_XX,0,n,&x[0]);
//printf("Optimal primal solution\n");
//for(size_t j=0; j<n; ++j)
//{
// printf("x[%ld]: %g\n",j,x[j]);
//}
success = true;
break;
case MSK_SOL_STA_DUAL_INFEAS_CER:
case MSK_SOL_STA_PRIM_INFEAS_CER:
case MSK_SOL_STA_NEAR_DUAL_INFEAS_CER:
case MSK_SOL_STA_NEAR_PRIM_INFEAS_CER:
//printf("Primal or dual infeasibility certificate found.\n");
break;
case MSK_SOL_STA_UNKNOWN:
//printf("The status of the solution could not be determined.\n");
break;
default:
//printf("Other solution status.");
break;
}
MSK_deletetask(&task);
MSK_deleteenv(&env);
return success;
}
IGL_INLINE bool igl::mosek::mosek_quadprog(
const Eigen::SparseMatrix<double> & Q,
const Eigen::VectorXd & c,
const double cf,
const Eigen::SparseMatrix<double> & A,
const Eigen::VectorXd & lc,
const Eigen::VectorXd & uc,
const Eigen::VectorXd & lx,
const Eigen::VectorXd & ux,
MosekData & mosek_data,
Eigen::VectorXd & x)
{
using namespace Eigen;
using namespace std;
typedef int Index;
typedef double Scalar;
// Q should be square
assert(Q.rows() == Q.cols());
// Q should be symmetric
#ifdef EIGEN_HAS_A_BUG_AND_FAILS_TO_LET_ME_COMPUTE_Q_MINUS_Q_TRANSPOSE
assert( (Q-Q.transpose()).sum() < FLOAT_EPS);
#endif
// Only keep lower triangular part of Q
SparseMatrix<Scalar> QL;
//QL = Q.template triangularView<Lower>();
QL = Q.triangularView<Lower>();
VectorXi Qi,Qj;
VectorXd Qv;
find(QL,Qi,Qj,Qv);
vector<Index> vQi = matrix_to_list(Qi);
vector<Index> vQj = matrix_to_list(Qj);
vector<Scalar> vQv = matrix_to_list(Qv);
// Convert linear term
vector<Scalar> vc = matrix_to_list(c);
assert(lc.size() == A.rows());
assert(uc.size() == A.rows());
// Convert A to harwell boeing format
vector<Scalar> vAv;
vector<Index> vAr,vAc;
Index nr;
harwell_boeing(A,nr,vAv,vAr,vAc);
assert(lx.size() == Q.rows());
assert(ux.size() == Q.rows());
vector<Scalar> vlc = matrix_to_list(lc);
vector<Scalar> vuc = matrix_to_list(uc);
vector<Scalar> vlx = matrix_to_list(lx);
vector<Scalar> vux = matrix_to_list(ux);
vector<Scalar> vx;
bool ret = mosek_quadprog<Index,Scalar>(
Q.rows(),vQi,vQj,vQv,
vc,
cf,
nr,
vAv, vAr, vAc,
vlc,vuc,
vlx,vux,
mosek_data,
vx);
list_to_matrix(vx,x);
return ret;
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template declarations
#endif