dust3d/third_party/libigl/include/igl/remesh_along_isoline.cpp

161 lines
5.5 KiB
C++
Raw Normal View History

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2018 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "remesh_along_isoline.h"
#include "list_to_matrix.h"
template <
typename DerivedV,
typename DerivedF,
typename DerivedS,
typename DerivedU,
typename DerivedG,
typename DerivedJ,
typename BCtype,
typename DerivedSU,
typename DerivedL>
IGL_INLINE void igl::remesh_along_isoline(
const Eigen::MatrixBase<DerivedV> & V,
const Eigen::MatrixBase<DerivedF> & F,
const Eigen::MatrixBase<DerivedS> & S,
const typename DerivedS::Scalar val,
Eigen::PlainObjectBase<DerivedU> & U,
Eigen::PlainObjectBase<DerivedG> & G,
Eigen::PlainObjectBase<DerivedSU> & SU,
Eigen::PlainObjectBase<DerivedJ> & J,
Eigen::SparseMatrix<BCtype> & BC,
Eigen::PlainObjectBase<DerivedL> & L)
{
igl::remesh_along_isoline(V.rows(),F,S,val,G,SU,J,BC,L);
U = BC * V;
}
template <
typename DerivedF,
typename DerivedS,
typename DerivedG,
typename DerivedJ,
typename BCtype,
typename DerivedSU,
typename DerivedL>
IGL_INLINE void igl::remesh_along_isoline(
const int num_vertices,
const Eigen::MatrixBase<DerivedF> & F,
const Eigen::MatrixBase<DerivedS> & S,
const typename DerivedS::Scalar val,
Eigen::PlainObjectBase<DerivedG> & G,
Eigen::PlainObjectBase<DerivedSU> & SU,
Eigen::PlainObjectBase<DerivedJ> & J,
Eigen::SparseMatrix<BCtype> & BC,
Eigen::PlainObjectBase<DerivedL> & L)
{
// Lazy implementation using vectors
//assert(val.size() == 1);
const int isoval_i = 0;
//auto isoval = val(isoval_i);
auto isoval = val;
std::vector<std::vector<typename DerivedG::Scalar> > vG;
std::vector<typename DerivedJ::Scalar> vJ;
std::vector<typename DerivedL::Scalar> vL;
std::vector<Eigen::Triplet<BCtype> > vBC;
int Ucount = 0;
for(int i = 0;i<num_vertices;i++)
{
vBC.emplace_back(Ucount,i,1.0);
Ucount++;
}
// Loop over each face
for(int f = 0;f<F.rows();f++)
{
bool Psign[2];
int P[2];
int count = 0;
for(int p = 0;p<3;p++)
{
const bool psign = S(F(f,p)) > isoval;
// Find crossings
const int n = (p+1)%3;
const bool nsign = S(F(f,n)) > isoval;
if(psign != nsign)
{
P[count] = p;
Psign[count] = psign;
// record crossing
count++;
}
}
assert(count == 0 || count == 2);
switch(count)
{
case 0:
{
// Easy case
std::vector<typename DerivedG::Scalar> row = {F(f,0),F(f,1),F(f,2)};
vG.push_back(row);
vJ.push_back(f);
vL.push_back( S(F(f,0))>isoval ? isoval_i+1 : isoval_i );
break;
}
case 2:
{
// Cut case
// flip so that P[1] is the one-off vertex
if(P[0] == 0 && P[1] == 2)
{
std::swap(P[0],P[1]);
std::swap(Psign[0],Psign[1]);
}
assert(Psign[0] != Psign[1]);
// Create two new vertices
for(int i = 0;i<2;i++)
{
const double bci = (isoval - S(F(f,(P[i]+1)%3)))/
(S(F(f,P[i]))-S(F(f,(P[i]+1)%3)));
vBC.emplace_back(Ucount,F(f,P[i]),bci);
vBC.emplace_back(Ucount,F(f,(P[i]+1)%3),1.0-bci);
Ucount++;
}
const int v0 = F(f,P[0]);
const int v01 = Ucount-2;
assert(((P[0]+1)%3) == P[1]);
const int v1 = F(f,P[1]);
const int v12 = Ucount-1;
const int v2 = F(f,(P[1]+1)%3);
// v0
// | \
// | \
// | \
// v01 \
// | \
// | \
// | \
// v1--v12---v2
typedef std::vector<typename DerivedG::Scalar> Row;
{Row row = {v01,v1,v12}; vG.push_back(row);vJ.push_back(f);vL.push_back(Psign[0]?isoval_i:isoval_i+1);}
{Row row = {v12,v2,v01}; vG.push_back(row);vJ.push_back(f);vL.push_back(Psign[1]?isoval_i:isoval_i+1);}
{Row row = {v2,v0,v01}; vG.push_back(row) ;vJ.push_back(f);vL.push_back(Psign[1]?isoval_i:isoval_i+1);}
break;
}
default: assert(false);
}
}
igl::list_to_matrix(vG,G);
igl::list_to_matrix(vJ,J);
igl::list_to_matrix(vL,L);
BC.resize(Ucount,num_vertices);
BC.setFromTriplets(vBC.begin(),vBC.end());
SU = BC * S;
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
template void igl::remesh_along_isoline<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::Matrix<double, -1, 1, 0, -1, 1>::Scalar, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::SparseMatrix<double, 0, int>&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
#endif