dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Periodic_3_triangulation_3.h

4465 lines
161 KiB
C
Raw Normal View History

// Copyright (c) 1999-2003,2006-2009,2014-2015,2017 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
// Sylvain Pion <Sylvain.Pion@sophia.inria.fr>
// Nico Kruithof <Nico.Kruithof@sophia.inria.fr>
// Manuel Caroli <Manuel.Caroli@sophia.inria.fr>
// Aymeric Pelle <Aymeric.Pelle@sophia.inria.fr>
// Mael Rouxel-Labbé
#ifndef CGAL_PERIODIC_3_TRIANGULATION_3_H
#define CGAL_PERIODIC_3_TRIANGULATION_3_H
#include <CGAL/license/Periodic_3_triangulation_3.h>
#include <CGAL/basic.h>
#include <boost/tuple/tuple.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/uniform_smallint.hpp>
#include <boost/random/variate_generator.hpp>
#include <boost/unordered_map.hpp>
#include <CGAL/internal/Periodic_3_triangulation_iterators_3.h>
#include <CGAL/Periodic_3_triangulation_ds_cell_base_3.h>
#include <CGAL/Periodic_3_triangulation_ds_vertex_base_3.h>
#include <CGAL/Periodic_3_triangulation_traits_3.h>
#include <CGAL/Triangulation_data_structure_3.h>
#include <CGAL/Triangulation_cell_base_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>
#include <CGAL/triangulation_assertions.h>
#include <CGAL/internal/canonicalize_helper.h>
#include <CGAL/array.h>
#include <CGAL/internal/Exact_type_selector.h>
#include <CGAL/NT_converter.h>
#include <CGAL/Unique_hash_map.h>
#include <CGAL/use.h>
#ifndef CGAL_NO_STRUCTURAL_FILTERING
#include <CGAL/internal/Static_filters/tools.h>
#include <CGAL/Triangulation_structural_filtering_traits.h>
#include <CGAL/determinant.h>
#endif // no CGAL_NO_STRUCTURAL_FILTERING
#include <iostream>
#include <algorithm>
#include <cmath>
#include <functional>
#include <list>
#include <utility>
namespace CGAL {
template < class GT, class TDS > class Periodic_3_triangulation_3;
template < class GT, class TDS > std::istream& operator>>
(std::istream& is, Periodic_3_triangulation_3<GT,TDS>& tr);
template < class GT, class TDS > std::ostream& operator<<
(std::ostream& os, const Periodic_3_triangulation_3<GT,TDS>& tr);
#ifndef CGAL_NO_STRUCTURAL_FILTERING
namespace internal {
// structural filtering is performed only for EPIC
struct Periodic_structural_filtering_3_tag {};
struct No_periodic_structural_filtering_3_tag {};
template <bool filter>
struct Periodic_structural_filtering_selector_3
{
#ifdef FORCE_STRUCTURAL_FILTERING
typedef Periodic_structural_filtering_3_tag Tag;
#else
typedef No_periodic_structural_filtering_3_tag Tag;
#endif
};
template <>
struct Periodic_structural_filtering_selector_3<true>
{
typedef Periodic_structural_filtering_3_tag Tag;
};
}
#endif // no CGAL_NO_STRUCTURAL_FILTERING
/**\class Periodic_3_triangulation_3
*
* \brief Implements functionality for computing in periodic space.
*
* There are several things that are special to computing in $\mathbb{T}^3$
* such as
* - periodicity --> offsets
* - no infinite vertex
* - no degenerate dimensions
* All functions that are affected can be found in this class. When it is
* necessary to provide different implementations for Delaunay and regular
* triangulation, we work with visitors.
*/
template < class GT,
class TDS = Triangulation_data_structure_3 <
Triangulation_vertex_base_3<GT,
Periodic_3_triangulation_ds_vertex_base_3<> >,
Triangulation_cell_base_3<GT,
Periodic_3_triangulation_ds_cell_base_3<> > > >
class Periodic_3_triangulation_3
: public Triangulation_utils_3
{
friend std::istream& operator>> <>
(std::istream& is, Periodic_3_triangulation_3<GT, TDS>& tr);
typedef Periodic_3_triangulation_3<GT,TDS> Self;
public:
typedef GT Geometric_traits;
typedef TDS Triangulation_data_structure;
typedef typename GT::Periodic_3_offset_3 Offset;
typedef typename GT::Iso_cuboid_3 Iso_cuboid;
typedef CGAL::cpp11::array<int, 3> Covering_sheets;
// point types
typedef typename TDS::Vertex::Point Point;
typedef typename GT::Point_3 Point_3;
typedef std::pair<Point, Offset> Periodic_point;
typedef std::pair<Point_3, Offset> Periodic_point_3;
typedef typename GT::Segment_3 Segment;
typedef typename GT::Triangle_3 Triangle;
typedef typename GT::Tetrahedron_3 Tetrahedron;
typedef CGAL::cpp11::array<Periodic_point, 2> Periodic_segment;
typedef CGAL::cpp11::array<Periodic_point, 3> Periodic_triangle;
typedef CGAL::cpp11::array<Periodic_point, 4> Periodic_tetrahedron;
typedef CGAL::cpp11::array<Periodic_point_3, 2> Periodic_segment_3;
typedef CGAL::cpp11::array<Periodic_point_3, 3> Periodic_triangle_3;
typedef CGAL::cpp11::array<Periodic_point_3, 4> Periodic_tetrahedron_3;
typedef typename TDS::Vertex Vertex;
typedef typename TDS::Cell Cell;
typedef typename TDS::Facet Facet;
typedef typename TDS::Edge Edge;
typedef typename TDS::Vertex_handle Vertex_handle;
typedef typename TDS::Cell_handle Cell_handle;
typedef typename TDS::size_type size_type;
typedef typename TDS::difference_type difference_type;
typedef typename TDS::Cell_iterator Cell_iterator;
typedef typename TDS::Facet_iterator Facet_iterator;
typedef typename TDS::Edge_iterator Edge_iterator;
typedef typename TDS::Vertex_iterator Vertex_iterator;
typedef typename TDS::Cell_circulator Cell_circulator;
typedef typename TDS::Facet_circulator Facet_circulator;
typedef Cell_iterator All_cells_iterator;
typedef Facet_iterator All_facets_iterator;
typedef Edge_iterator All_edges_iterator;
typedef Vertex_iterator All_vertices_iterator;
typedef Periodic_3_triangulation_unique_vertex_iterator_3<Self>
Unique_vertex_iterator;
private:
typedef typename GT::FT FT;
typedef std::pair< Vertex_handle, Offset > Virtual_vertex;
typedef boost::unordered_map<Vertex_handle, Virtual_vertex>
Virtual_vertex_map;
typedef typename Virtual_vertex_map::const_iterator
Virtual_vertex_map_it;
typedef boost::unordered_map<Vertex_handle, std::vector<Vertex_handle > >
Virtual_vertex_reverse_map;
typedef typename Virtual_vertex_reverse_map::const_iterator
Virtual_vertex_reverse_map_it;
typedef Triple< Vertex_handle, Vertex_handle, Vertex_handle >
Vertex_triple;
public:
typedef Periodic_3_triangulation_tetrahedron_iterator_3<Self>
Periodic_tetrahedron_iterator;
typedef Periodic_3_triangulation_triangle_iterator_3<Self>
Periodic_triangle_iterator;
typedef Periodic_3_triangulation_segment_iterator_3<Self>
Periodic_segment_iterator;
typedef Periodic_3_triangulation_point_iterator_3<Self>
Periodic_point_iterator;
typedef Point value_type;
typedef const value_type& const_reference;
//Tag to distinguish regular triangulations from others
typedef Tag_false Weighted_tag;
// Tag to distinguish periodic triangulations from others
typedef Tag_true Periodic_tag;
public:
enum Iterator_type {
STORED = 0,
UNIQUE, //1
STORED_COVER_DOMAIN, //2
UNIQUE_COVER_DOMAIN };//3
enum Locate_type {
VERTEX = 0,
EDGE, //1
FACET, //2
CELL, //3
EMPTY , //4
OUTSIDE_CONVEX_HULL, // unused, for compatibility with Alpha_shape_3
OUTSIDE_AFFINE_HULL }; // unused, for compatibility with Alpha_shape_3
// unused and undocumented types and functions required to be
// compatible with Alpha_shape_3 / Periodic_3_mesh_3
public:
typedef Cell_iterator Finite_cells_iterator;
typedef Facet_iterator Finite_facets_iterator;
typedef Edge_iterator Finite_edges_iterator;
typedef Vertex_iterator Finite_vertices_iterator;
int dimension() const { return (number_of_vertices() == 0) ? -2 : 3; }
template<class T>
bool is_infinite(const T&, int = 0, int = 0) const { return false; }
size_type number_of_finite_cells() const { return number_of_cells(); }
size_type number_of_finite_facets() const { return number_of_facets(); }
size_type number_of_finite_edges() const { return number_of_edges(); }
size_type number_of_finite_vertices() const { return number_of_vertices(); }
private:
Geometric_traits _gt;
Triangulation_data_structure _tds;
protected:
/// map of offsets for periodic copies of vertices
Virtual_vertex_map virtual_vertices;
Virtual_vertex_reverse_map virtual_vertices_reverse;
protected:
/// v_offsets temporarily stores all the vertices on the border of a
/// conflict region.
mutable std::vector<Vertex_handle> v_offsets;
/// Determines if we currently compute in 3-cover or 1-cover.
Covering_sheets _cover;
public:
/** @name Creation */ //@{
Periodic_3_triangulation_3(const Iso_cuboid& domain = Iso_cuboid(0,0,0, 1,1,1),
const Geometric_traits& gt = Geometric_traits())
: _gt(gt), _tds()
{
typedef typename internal::Exact_field_selector<FT>::Type EFT;
typedef NT_converter<FT,EFT> NTC;
CGAL_USE_TYPE(NTC);
CGAL_triangulation_precondition_code( NTC ntc; )
CGAL_triangulation_precondition(ntc(domain.xmax())-ntc(domain.xmin())
== ntc(domain.ymax())-ntc(domain.ymin()));
CGAL_triangulation_precondition(ntc(domain.ymax())-ntc(domain.ymin())
== ntc(domain.zmax())-ntc(domain.zmin()));
CGAL_triangulation_precondition(ntc(domain.zmax())-ntc(domain.zmin())
== ntc(domain.xmax())-ntc(domain.xmin()));
_gt.set_domain(domain);
_cover = CGAL::make_array(3,3,3);
init_tds();
}
protected:
// Copy constructor helpers
class Finder;
public:
// Copy constructor duplicates vertices and cells
Periodic_3_triangulation_3(const Periodic_3_triangulation_3& tr)
: _gt(tr.geom_traits()),
_cover(tr.number_of_sheets())
{
if(is_1_cover())
tds() = tr.tds();
else
copy_multiple_covering(tr);
CGAL_triangulation_expensive_postcondition(*this == tr);
CGAL_triangulation_expensive_postcondition(is_valid());
}
virtual ~Periodic_3_triangulation_3() {}
void copy_multiple_covering(const Periodic_3_triangulation_3& tr)
{
// Write the respective offsets in the vertices to make them
// automatically copy with the tds.
for(Vertex_iterator vit = tr.vertices_begin(); vit != tr.vertices_end(); ++vit)
vit->set_offset(tr.get_offset(vit));
// copy the tds
tds() = tr.tds();
// make a list of all vertices that belong to the original
// domain and initialize the basic structure of
// virtual_vertices_reverse
std::list<Vertex_handle> vlist;
for(Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit)
{
if(vit->offset() == Offset())
{
vlist.push_back(vit);
virtual_vertices_reverse.insert(std::make_pair(vit,std::vector<Vertex_handle>(26)));
CGAL_triangulation_assertion(virtual_vertices_reverse.find(vit)->second.size() == 26);
}
}
// Iterate over all vertices that are not in the original domain
// and construct the respective entries to virtual_vertices and
// virtual_vertices_reverse
for(Vertex_iterator vit2 = vertices_begin(); vit2 != vertices_end(); ++vit2)
{
if(vit2->offset() != Offset())
{
typename std::list<Vertex_handle>::iterator vlist_it
= std::find_if(vlist.begin(), vlist.end(), Finder(this,vit2->point()));
Offset off = vit2->offset();
virtual_vertices.insert(std::make_pair(vit2, std::make_pair(*vlist_it,off)));
virtual_vertices_reverse.find(*vlist_it)->second[9*off[0]+3*off[1]+off[2]-1] = vit2;
CGAL_triangulation_assertion(get_offset(vit2) == off);
}
}
// Cleanup vertex offsets
for(Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit)
vit->clear_offset();
for(Vertex_iterator vit = tr.vertices_begin(); vit != tr.vertices_end(); ++vit)
vit->clear_offset();
}
/** @name Assignment */ //@{
Periodic_3_triangulation_3& operator=(Periodic_3_triangulation_3 tr)
{
swap(tr);
return *this;
}
void swap(Periodic_3_triangulation_3& tr)
{
std::swap(tr._gt, _gt);
_tds.swap(tr._tds);
std::swap(virtual_vertices,tr.virtual_vertices);
std::swap(virtual_vertices_reverse,tr.virtual_vertices_reverse);
std::swap(_cover, tr._cover);
}
virtual void clear_covering_data() { }
/// Clears the triangulation and initializes it again.
void clear()
{
_tds.clear();
clear_covering_data();
virtual_vertices.clear();
virtual_vertices_reverse.clear();
v_offsets.clear();
_cover = CGAL::make_array(3,3,3);
init_tds();
}
//@}
private:
/// Initializes the triangulation data structure
void init_tds()
{
_tds.set_dimension(-2);
v_offsets.reserve(48);
}
public:
/** @name Access functions */ //@{
const Geometric_traits& geom_traits() const { return _gt; }
const TDS& tds() const { return _tds; }
TDS& tds() { return _tds; }
bool is_parallel() const { return false; }
virtual void gather_cell_hidden_points(const Cell_handle /*cit*/, std::vector<Point>& /* hidden_points*/) { }
virtual void reinsert_hidden_points_after_converting_to_1_sheeted(const std::vector<Point>& /* hidden_points*/) { }
const Iso_cuboid& domain() const { return _gt.get_domain(); }
virtual void update_cover_data_after_setting_domain() {}
void set_domain(const Iso_cuboid& domain)
{
clear();
_gt.set_domain(domain);
update_cover_data_after_setting_domain();
}
const Covering_sheets& number_of_sheets() const { return _cover; }
const std::pair<Vertex_handle, Offset> original_vertex(const Vertex_handle v) const
{
return (virtual_vertices.find(v) == virtual_vertices.end()) ?
std::make_pair(v,Offset()) : virtual_vertices.find(v)->second;
}
const std::vector<Vertex_handle>& periodic_copies(const Vertex_handle v) const
{
CGAL_triangulation_precondition(number_of_sheets() != CGAL::make_array(1,1,1));
CGAL_triangulation_precondition(virtual_vertices.find(v) == virtual_vertices.end());
CGAL_triangulation_assertion(
virtual_vertices_reverse.find(v) != virtual_vertices_reverse.end());
return virtual_vertices_reverse.find(v)->second;
}
bool is_triangulation_in_1_sheet() const;
void convert_to_1_sheeted_covering();
virtual void update_cover_data_after_converting_to_27_sheeted_covering() { }
void convert_to_27_sheeted_covering();
size_type number_of_cells() const {
if(is_1_cover()) return _tds.number_of_cells();
else return _tds.number_of_cells()/27;
}
size_type number_of_facets() const {
if(is_1_cover()) return _tds.number_of_facets();
else return _tds.number_of_facets()/27;
}
size_type number_of_edges() const {
if(is_1_cover()) return _tds.number_of_edges();
else return _tds.number_of_edges()/27;
}
size_type number_of_vertices() const {
if(is_1_cover()) return _tds.number_of_vertices();
else return _tds.number_of_vertices()/27;
}
size_type number_of_stored_cells() const {
return _tds.number_of_cells();
}
size_type number_of_stored_facets() const {
return _tds.number_of_facets();
}
size_type number_of_stored_edges() const {
return _tds.number_of_edges();
}
size_type number_of_stored_vertices() const {
return _tds.number_of_vertices();
}
public:
bool is_1_cover() const
{
bool flag;
flag = ((_cover[0] == 1) && (_cover[1] == 1) && (_cover[2] == 1));
return flag;
}
void set_cover(const Covering_sheets& cover)
{
_cover = cover;
}
public:
bool is_virtual(Vertex_handle v)
{
if(is_1_cover())
return false;
return (virtual_vertices.find(v) != virtual_vertices.end());
}
public:
// Offset converters
int off_to_int(const Offset& off) const
{
CGAL_triangulation_assertion( off.x() == 0 || off.x() == 1 );
CGAL_triangulation_assertion( off.y() == 0 || off.y() == 1 );
CGAL_triangulation_assertion( off.z() == 0 || off.z() == 1 );
int i = ((off.x()&1)<<2) + ((off.y()&1)<<1) + ((off.z()&1));
return i;
}
Offset int_to_off(int i) const
{
return Offset((i>>2)&1,(i>>1)&1,i&1);
}
void set_offsets(Cell_handle c, int o0,int o1,int o2,int o3)
{
int off0[3] = {(o0>>2)&1,(o0>>1)&1,(o0&1)};
int off1[3] = {(o1>>2)&1,(o1>>1)&1,(o1&1)};
int off2[3] = {(o2>>2)&1,(o2>>1)&1,(o2&1)};
int off3[3] = {(o3>>2)&1,(o3>>1)&1,(o3&1)};
for(int i=0; i<3; i++) {
int min_off = (std::min)((std::min)(off0[i],off1[i]),
(std::min)(off2[i],off3[i]));
if(min_off != 0) {
off0[i] -= min_off; off1[i] -= min_off;
off2[i] -= min_off; off3[i] -= min_off;
}
}
o0 = ((off0[0]&1)<<2)+((off0[1]&1)<<1)+(off0[2]&1);
o1 = ((off1[0]&1)<<2)+((off1[1]&1)<<1)+(off1[2]&1);
o2 = ((off2[0]&1)<<2)+((off2[1]&1)<<1)+(off2[2]&1);
o3 = ((off3[0]&1)<<2)+((off3[1]&1)<<1)+(off3[2]&1);
c->set_offsets(o0,o1,o2,o3);
}
template <class Offset>
void set_offsets(Cell_handle c, Offset o0,Offset o1,Offset o2,Offset o3)
{
int off0[3] = {o0.x(),o0.y(),o0.z()};
int off1[3] = {o1.x(),o1.y(),o1.z()};
int off2[3] = {o2.x(),o2.y(),o2.z()};
int off3[3] = {o3.x(),o3.y(),o3.z()};
for(int i=0; i<3; i++) {
int min_off = (std::min)((std::min)(off0[i],off1[i]),
(std::min)(off2[i],off3[i]));
if(min_off != 0) {
off0[i] -= min_off; off1[i] -= min_off;
off2[i] -= min_off; off3[i] -= min_off;
}
}
CGAL_triangulation_assertion((std::min)((std::min)(off0[0],off1[0]),
(std::min)(off2[0],off3[0])) == 0);
CGAL_triangulation_assertion((std::min)((std::min)(off0[1],off1[1]),
(std::min)(off2[1],off3[1])) == 0);
CGAL_triangulation_assertion((std::min)((std::min)(off0[2],off1[2]),
(std::min)(off2[2],off3[2])) == 0);
CGAL_triangulation_assertion((0 <= off0[0]) && (off0[0] < 2));
CGAL_triangulation_assertion((0 <= off1[0]) && (off1[0] < 2));
CGAL_triangulation_assertion((0 <= off2[0]) && (off2[0] < 2));
CGAL_triangulation_assertion((0 <= off3[0]) && (off3[0] < 2));
CGAL_triangulation_assertion((0 <= off0[1]) && (off0[1] < 2));
CGAL_triangulation_assertion((0 <= off1[1]) && (off1[1] < 2));
CGAL_triangulation_assertion((0 <= off2[1]) && (off2[1] < 2));
CGAL_triangulation_assertion((0 <= off3[1]) && (off3[1] < 2));
CGAL_triangulation_assertion((0 <= off0[2]) && (off0[2] < 2));
CGAL_triangulation_assertion((0 <= off1[2]) && (off1[2] < 2));
CGAL_triangulation_assertion((0 <= off2[2]) && (off2[2] < 2));
CGAL_triangulation_assertion((0 <= off3[2]) && (off3[2] < 2));
int o0i = ((off0[0]&1)<<2)+((off0[1]&1)<<1)+(off0[2]&1);
int o1i = ((off1[0]&1)<<2)+((off1[1]&1)<<1)+(off1[2]&1);
int o2i = ((off2[0]&1)<<2)+((off2[1]&1)<<1)+(off2[2]&1);
int o3i = ((off3[0]&1)<<2)+((off3[1]&1)<<1)+(off3[2]&1);
c->set_offsets(o0i,o1i,o2i,o3i);
}
public:
/** @name Wrapping the traits */
// Note that calling functors with "construct_point(p), offset" and not
// construct_point(p, offset) is done on purpose. Indeed, construct_point(p)
// is not a real construction: it's either the identity (when `Point` is `Point_3`)
// or getting the bare point within a weighted point. However, construct_point(p, offset)
// is a real construction. When using filters, construct_point() must be done
// within the filtered predicates with the appropriate construct_point_3_object.
template<typename P> // can be Point or Point_3
Comparison_result compare_xyz(const P& p1, const P& p2) const {
return geom_traits().compare_xyz_3_object()(construct_point(p1),
construct_point(p2));
}
template<typename P> // can be Point or Point_3
Comparison_result compare_xyz(const P& p1, const P& p2,
const Offset& o1, const Offset& o2) const {
return geom_traits().compare_xyz_3_object()(
construct_point(p1), construct_point(p2), o1, o2);
}
template<typename P> // can be Point or Point_3
Comparison_result compare_xyz(const std::pair<P, Offset>& pp1,
const std::pair<P, Offset>& pp2) const {
return geom_traits().compare_xyz_3_object()(
construct_point(pp1.first), construct_point(pp2.first), pp1.second, pp2.second);
}
template<typename P> // can be Point or Point_3
Orientation orientation(const P& p1, const P& p2, const P& p3, const P& p4) const {
return geom_traits().orientation_3_object()(construct_point(p1), construct_point(p2),
construct_point(p3), construct_point(p4));
}
template<typename P> // can be Point or Point_3
Orientation orientation(const P& p1, const P& p2, const P& p3, const P& p4,
const Offset& o1, const Offset& o2,
const Offset& o3, const Offset& o4) const {
return geom_traits().orientation_3_object()(
construct_point(p1), construct_point(p2), construct_point(p3), construct_point(p4),
o1, o2, o3, o4);
}
template<typename P> // can be Point or Point_3
Orientation orientation(const std::pair<P, Offset>& pp1, const std::pair<P, Offset>& pp2,
const std::pair<P, Offset>& pp3, const std::pair<P, Offset>& pp4) const {
return geom_traits().orientation_3_object()(
construct_point(pp1.first), construct_point(pp2.first),
construct_point(pp3.first), construct_point(pp4.first),
pp1.second, pp2.second, pp3.second, pp4.second);
}
template<typename P> // can be Point or Point_3
bool equal(const P& p1, const P& p2) const {
return compare_xyz(construct_point(p1), construct_point(p2)) == EQUAL;
}
template<typename P> // can be Point or Point_3
bool equal(const P& p1, const P& p2, const Offset& o1, const Offset& o2) const {
return compare_xyz(construct_point(p1), construct_point(p2), o1, o2) == EQUAL;
}
template<typename P> // can be Point or Point_3
bool equal(const std::pair<P, Offset>& pp1, const std::pair<P, Offset>& pp2) const {
return compare_xyz(construct_point(pp1.first), construct_point(pp1.second),
pp2.first, pp2.second) == EQUAL;
}
template<typename P> // can be Point or Point_3
bool coplanar(const P& p1, const P& p2, const P& p3, const P& p4) const {
return orientation(construct_point(p1), construct_point(p2),
construct_point(p3), construct_point(p4)) == COPLANAR;
}
template<typename P> // can be Point or Point_3
bool coplanar(const P& p1, const P& p2, const P& p3, const P& p4,
const Offset& o1, const Offset& o2, const Offset& o3, const Offset& o4) const {
return orientation(construct_point(p1), construct_point(p2),
construct_point(p3), construct_point(p4),
o1, o2, o3, o4) == COPLANAR;
}
template<typename P> // can be Point or Point_3
bool coplanar(const std::pair<P, Offset>& pp1, const std::pair<P, Offset>& pp2,
const std::pair<P, Offset>& pp3, const std::pair<P, Offset>& pp4) const {
return orientation(construct_point(pp1.first), construct_point(pp2.first),
construct_point(pp3.first), construct_point(pp4.first),
pp1.second, pp2.second, pp3.second, pp4.second) == COPLANAR;
}
public:
/** @name Geometric access functions */
/// @{
// *************************************************************************
// -*-*-*-*-*-*-*-*-*-*-*-*-*-* POINT -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// *************************************************************************
// Note that construct_point()-like functions have return type Point_3,
// but point() -like functions have return type Point
template<typename P> // can be Point or Point_3
Point_3 construct_point(const P& p) const {
return geom_traits().construct_point_3_object()(p);
}
template<typename P> // can be Point or Point_3
Point_3 construct_point(const P& p, const Offset& o) const {
return geom_traits().construct_point_3_object()(p, o);
}
template<typename P> // can be Point or Point_3
Point_3 construct_point(const std::pair<P, Offset>& pp) const {
return construct_point(pp.first, pp.second);
}
Periodic_point_3 construct_periodic_point(const Point_3& p,
bool& had_to_use_exact) const
{
// The function is a different file to be able to be used where there is
// no triangulation (namely, the domains of Periodic_3_mesh_3).
return ::CGAL::P3T3::internal::construct_periodic_point(p, had_to_use_exact, geom_traits());
}
Periodic_point_3 construct_periodic_point(const Point_3& p) const
{
bool useless = false;
return construct_periodic_point(p, useless);
}
// ---------------------------------------------------------------------------
// The following functions return objects of type Point and Periodic_point,
// _not_ Point_3 and Periodic_point_3.
// They are templated by `construct_point` to distingush between Delaunay and
// regular triangulations
// ---------------------------------------------------------------------------
template <class ConstructPoint>
Point point(const Periodic_point& pp, ConstructPoint cp) const
{
return cp(pp.first, pp.second);
}
// The following functions return the "real" position in space (unconstrained
// to the fundamental domain) of the vertices v and c->vertex(idx),
// respectively
template <class ConstructPoint>
Point point(Vertex_handle v, ConstructPoint cp) const {
return point(periodic_point(v), cp);
}
template <class ConstructPoint>
Point point(Cell_handle c, int idx, ConstructPoint cp) const
{
// if(is_1_cover())
return point(periodic_point(c, idx), cp);
Offset vec_off[4];
for(int i=0; i<4; i++)
vec_off[i] = periodic_point(c,i).second;
int ox = vec_off[0].x();
int oy = vec_off[0].y();
int oz = vec_off[0].z();
for(int i=1; i<4; i++) {
ox = (std::min)(ox, vec_off[i].x());
oy = (std::min)(oy, vec_off[i].y());
oz = (std::min)(oz, vec_off[i].z());
}
Offset diff_off(-ox, -oy, -oz);
if(diff_off.is_null())
return point(periodic_point(c, idx), cp);
for(unsigned int i=0; i<4; i++)
vec_off[i] += diff_off;
Vertex_handle canonic_vh[4];
for(int i=0; i<4; i++) {
Virtual_vertex_map_it vvmit = virtual_vertices.find(c->vertex(i));
Vertex_handle orig_vh;
if(vvmit == virtual_vertices.end())
orig_vh = c->vertex(i);
else
orig_vh = vvmit->second.first;
if(vec_off[i].is_null()) {
canonic_vh[i] = orig_vh;
}
else {
CGAL_assertion(virtual_vertices_reverse.find(orig_vh)
!= virtual_vertices_reverse.end());
canonic_vh[i] = virtual_vertices_reverse.find(orig_vh)->
second[9*vec_off[i][0]+3*vec_off[i][1]+vec_off[i][2]-1];
}
}
std::vector<Cell_handle> cells;
incident_cells(canonic_vh[0], std::back_inserter(cells));
for(unsigned int i=0; i<cells.size(); i++) {
CGAL_assertion(cells[i]->has_vertex(canonic_vh[0]));
if(cells[i]->has_vertex(canonic_vh[1])
&& cells[i]->has_vertex(canonic_vh[2])
&& cells[i]->has_vertex(canonic_vh[3]) )
return point(periodic_point(cells[i], cells[i]->index(canonic_vh[idx])), cp);
}
CGAL_assertion(false);
return Point();
}
Periodic_point periodic_point(const Vertex_handle v) const
{
if(is_1_cover())
return std::make_pair(v->point(), Offset(0,0,0));
Virtual_vertex_map_it it = virtual_vertices.find(v);
if(it == virtual_vertices.end()) {
// if v is not contained in virtual_vertices, then it is in the
// original domain.
return std::make_pair(v->point(), Offset(0,0,0));
} else {
// otherwise it has to be looked up as well as its offset.
return std::make_pair(it->second.first->point(), it->second.second);
}
}
Periodic_point periodic_point(const Cell_handle c, int i) const
{
if(is_1_cover())
return std::make_pair(c->vertex(i)->point(), int_to_off(c->offset(i)));
Virtual_vertex_map_it it = virtual_vertices.find(c->vertex(i));
if(it == virtual_vertices.end()) {
// if c->vertex(i) is not contained in virtual_vertices, then it
// is in the original domain.
return std::make_pair(c->vertex(i)->point(),
combine_offsets(Offset(),int_to_off(c->offset(i))) );
} else {
// otherwise it has to be looked up as well as its offset.
return std::make_pair(it->second.first->point(),
combine_offsets(it->second.second, int_to_off(c->offset(i))) );
}
}
// *************************************************************************
// -*-*-*-*-*-*-*-*-*-*-*-*-*-* SEGMENT -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// *************************************************************************
// Note that an object of type `Segment` is constructed from two objects of type `Point_3`
// while an object of type `Periodic_segment` is constructed from two objects of type `Point`
template<typename P> // can be Point or Point_3
Segment construct_segment(const P& p1, const P& p2) const {
return geom_traits().construct_segment_3_object()(construct_point(p1),
construct_point(p2));
}
template<typename P> // can be Point or Point_3
Segment construct_segment(const P& p1, const P& p2,
const Offset& o1, const Offset& o2) const {
return geom_traits().construct_segment_3_object()(construct_point(p1, o1),
construct_point(p2, o2));
}
template<typename PS> // can be Periodic_segment or Periodic_segment_3
Segment construct_segment(const PS& ps) const {
return geom_traits().construct_segment_3_object()(
construct_point(ps[0].first, ps[0].second),
construct_point(ps[1].first, ps[1].second));
}
template<typename P> // can be Point or Point_3
Periodic_segment construct_periodic_segment(const P& p1, const P& p2,
const Offset& o1 = Offset(),
const Offset& o2 = Offset()) const {
return CGAL::make_array(std::make_pair(construct_point(p1), o1),
std::make_pair(construct_point(p2), o2));
}
Periodic_segment periodic_segment(const Cell_handle c, int i, int j) const {
CGAL_triangulation_precondition( i != j );
CGAL_triangulation_precondition( number_of_vertices() != 0 );
CGAL_triangulation_precondition( i >= 0 && i <= 3 && j >= 0 && j <= 3 );
return CGAL::make_array(std::make_pair(c->vertex(i)->point(), get_offset(c,i)),
std::make_pair(c->vertex(j)->point(), get_offset(c,j)));
}
Periodic_segment periodic_segment(const Edge& e) const {
return periodic_segment(e.first,e.second,e.third);
}
Periodic_segment periodic_segment(const Cell_handle c, Offset offset, int i, int j) const {
Periodic_segment result = periodic_segment(c,i,j);
offset.x() *= _cover[0];
offset.y() *= _cover[1];
offset.z() *= _cover[2];
result[0].second += offset;
result[1].second += offset;
return result;
}
// *************************************************************************
// -*-*-*-*-*-*-*-*-*-*-*-*-*-* TRIANGLE -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// *************************************************************************
// Note that an object of type `Triangle` is constructed from three objects of type `Point_3`
// while an object of type `Periodic_triangle` is constructed from three objects of type `Point`
template<typename P> // can be Point or Point_3
Triangle construct_triangle(const P& p1, const P& p2, const P& p3) const {
return geom_traits().construct_triangle_3_object()(construct_point(p1),
construct_point(p2),
construct_point(p3));
}
template<typename P> // can be Point or Point_3
Triangle construct_triangle(const P& p1, const P& p2, const P& p3,
const Offset& o1, const Offset& o2, const Offset& o3) const {
return geom_traits().construct_triangle_3_object()(construct_point(p1, o1),
construct_point(p2, o2),
construct_point(p3, o3));
}
template<typename PT> // can be Periodic_triangle or Periodic_triangle_3
Triangle construct_triangle(const PT& tri) const {
return geom_traits().construct_triangle_3_object()(
construct_point(tri[0].first, tri[0].second),
construct_point(tri[1].first, tri[1].second),
construct_point(tri[2].first, tri[2].second));
}
template<typename P> // can be Point or Point_3
Periodic_triangle construct_periodic_triangle(const P& p1, const P& p2,
const P& p3,
const Offset& o1 = Offset(),
const Offset& o2 = Offset(),
const Offset& o3 = Offset()) const {
return CGAL::make_array(std::make_pair(construct_point(p1), o1),
std::make_pair(construct_point(p2), o2),
std::make_pair(construct_point(p3), o3));
}
Periodic_triangle periodic_triangle(const Cell_handle c, int i) const {
CGAL_triangulation_precondition( number_of_vertices() != 0 );
CGAL_triangulation_precondition( i >= 0 && i <= 3 );
if( (i&1)==0 )
return CGAL::make_array(std::make_pair(c->vertex((i+2)&3)->point(), get_offset(c,(i+2)&3)),
std::make_pair(c->vertex((i+1)&3)->point(), get_offset(c,(i+1)&3)),
std::make_pair(c->vertex((i+3)&3)->point(), get_offset(c,(i+3)&3)) );
return CGAL::make_array(std::make_pair(c->vertex((i+1)&3)->point(), get_offset(c,(i+1)&3)),
std::make_pair(c->vertex((i+2)&3)->point(), get_offset(c,(i+2)&3)),
std::make_pair(c->vertex((i+3)&3)->point(), get_offset(c,(i+3)&3)) );
}
Periodic_triangle periodic_triangle(const Facet& f) const {
return periodic_triangle(f.first, f.second);
}
Periodic_triangle periodic_triangle(const Cell_handle c, Offset offset, int i) const {
Periodic_triangle result = periodic_triangle(c,i);
offset.x() *= _cover[0];
offset.y() *= _cover[1];
offset.z() *= _cover[2];
result[0].second += offset;
result[1].second += offset;
result[2].second += offset;
return result;
}
// *************************************************************************
// -*-*-*-*-*-*-*-*-*-*-*-*-*-* TETRAHEDRON -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
// *************************************************************************
// Note that an object of type `Tetrahedron` is constructed from four objects of type `Point_3`
// while an object of type `Periodic_tetrahedron` is constructed from four objects of type `Point`
template<typename P> // can be Point or Point_3
Tetrahedron construct_tetrahedron(const P& p1, const P& p2,
const P& p3, const P& p4) const {
return geom_traits().construct_tetrahedron_3_object()(construct_point(p1),
construct_point(p2),
construct_point(p3),
construct_point(p4));
}
template<typename P> // can be Point or Point_3
Tetrahedron construct_tetrahedron(const P& p1, const P& p2,
const P& p3, const P& p4,
const Offset& o1, const Offset& o2,
const Offset& o3, const Offset& o4) const {
return geom_traits().construct_tetrahedron_3_object()(
construct_point(p1, o1), construct_point(p2, o2),
construct_point(p3, o3), construct_point(p4, o4));
}
template<typename PT> // can be Periodic_tetrahedron or Periodic_tetrahedron_3
Tetrahedron construct_tetrahedron(const PT& tet) const {
return geom_traits().construct_tetrahedron_3_object()(
construct_point(tet[0].first, tet[0].second),
construct_point(tet[1].first, tet[1].second),
construct_point(tet[2].first, tet[2].second),
construct_point(tet[3].first, tet[3].second));
}
template<typename P> // can be Point or Point_3
Periodic_tetrahedron construct_periodic_tetrahedron(const P& p1, const P& p2,
const P& p3, const P& p4,
const Offset& o1 = Offset(),
const Offset& o2 = Offset(),
const Offset& o3 = Offset(),
const Offset& o4 = Offset()) const {
return CGAL::make_array(std::make_pair(construct_point(p1), o1),
std::make_pair(construct_point(p2), o2),
std::make_pair(construct_point(p3), o3),
std::make_pair(construct_point(p4), o4));
}
Periodic_tetrahedron periodic_tetrahedron(const Cell_handle c) const
{
CGAL_triangulation_precondition( number_of_vertices() != 0 );
return CGAL::make_array(std::make_pair(c->vertex(0)->point(), get_offset(c,0)),
std::make_pair(c->vertex(1)->point(), get_offset(c,1)),
std::make_pair(c->vertex(2)->point(), get_offset(c,2)),
std::make_pair(c->vertex(3)->point(), get_offset(c,3)) );
}
Periodic_tetrahedron periodic_tetrahedron(const Cell_handle c, Offset offset) const
{
Periodic_tetrahedron result = periodic_tetrahedron(c);
offset.x() *= _cover[0];
offset.y() *= _cover[1];
offset.z() *= _cover[2];
result[0].second += offset;
result[1].second += offset;
result[2].second += offset;
result[3].second += offset;
return result;
}
// end of geometric functions
/// @}
public:
/** @name Queries */ //@{
bool is_vertex(const Point& p, Vertex_handle& v) const;
bool is_vertex(Vertex_handle v) const {
return _tds.is_vertex(v);
}
bool is_edge(Vertex_handle u, Vertex_handle v, Cell_handle& c, int& i, int& j) const {
return _tds.is_edge(u, v, c, i, j);
}
bool is_edge(Vertex_handle u, const Offset& off_u,
Vertex_handle v, const Offset& off_v,
Cell_handle& c, int& i, int& j) const
{
if(!_tds.is_edge(u,v,c,i,j))
return false;
if((get_offset(c,i) == off_u) && (get_offset(c,j) == off_v))
return true;
// it might be that different cells containing (u,v) yield
// different offsets, which forces us to test for all possibilities.
else {
Cell_circulator ccirc = incident_cells(c,i,j,c);
while(++ccirc != c) {
i = ccirc->index(u);
j = ccirc->index(v);
if((get_offset(ccirc,i) == off_u) && (get_offset(ccirc,j) == off_v)) {
c = ccirc;
return true;
}
}
return false;
}
}
bool is_facet(Vertex_handle u, Vertex_handle v, Vertex_handle w,
Cell_handle& c, int& i, int& j, int& k) const {
return _tds.is_facet(u, v, w, c, i, j, k);
}
bool is_facet(Vertex_handle u, const Offset& off_u,
Vertex_handle v, const Offset& off_v,
Vertex_handle w, const Offset& off_w,
Cell_handle& c, int& i, int& j, int& k) const
{
if(!_tds.is_facet(u,v,w,c,i,j,k)) return false;
if((get_offset(c,i) == off_u)
&& (get_offset(c,j) == off_v)
&& (get_offset(c,k) == off_w) )
return true;
// it might be that c and c->neighbor(l) yield different offsets
// which forces us to test for both possibilities.
else {
int l = 6-i-j-k;
c = c->neighbor(l);
i = c->index(u);
j = c->index(v);
k = c->index(w);
return ((get_offset(c,i) == off_u)
&& (get_offset(c,j) == off_v)
&& (get_offset(c,k) == off_w) );
}
}
bool is_cell(Cell_handle c) const {
return _tds.is_cell(c);
}
bool is_cell(Vertex_handle u, Vertex_handle v,
Vertex_handle w, Vertex_handle t,
Cell_handle& c, int& i, int& j, int& k, int& l) const {
return _tds.is_cell(u, v, w, t, c, i, j, k, l);
}
bool is_cell(Vertex_handle u, Vertex_handle v, Vertex_handle w,
Vertex_handle t, Cell_handle& c) const
{
int i,j,k,l;
return _tds.is_cell(u, v, w, t, c, i, j, k, l);
}
bool is_cell(Vertex_handle u, const Offset& off_u,
Vertex_handle v, const Offset& off_v,
Vertex_handle w, const Offset& off_w,
Vertex_handle t, const Offset& off_t,
Cell_handle& c, int& i, int& j, int& k, int& l) const
{
if(!_tds.is_cell(u,v,w,t,c,i,j,k,l)) return false;
return ((get_offset(c,i) == off_u)
&& (get_offset(c,j) == off_v)
&& (get_offset(c,k) == off_w)
&& (get_offset(c,l) == off_t) );
return false;
}
bool is_cell(Vertex_handle u, const Offset& off_u,
Vertex_handle v, const Offset& off_v,
Vertex_handle w, const Offset& off_w,
Vertex_handle t, const Offset& off_t,
Cell_handle& c) const
{
int i, j, k, l;
return is_cell(u,off_u,v,off_v,w,off_w,t,off_t,c,i,j,k,l);
}
bool has_vertex(const Facet& f, Vertex_handle v, int& j) const {
return _tds.has_vertex(f.first, f.second, v, j);
}
bool has_vertex(Cell_handle c, int i, Vertex_handle v, int& j) const {
return _tds.has_vertex(c, i, v, j);
}
bool has_vertex(const Facet& f, Vertex_handle v) const {
return _tds.has_vertex(f.first, f.second, v);
}
bool has_vertex(Cell_handle c, int i, Vertex_handle v) const {
return _tds.has_vertex(c, i, v);
}
bool are_equal(Cell_handle c, int i, Cell_handle n, int j) const {
return _tds.are_equal(c, i, n, j);
}
bool are_equal(const Facet& f, const Facet& g) const {
return _tds.are_equal(f.first, f.second, g.first, g.second);
}
bool are_equal(const Facet& f, Cell_handle n, int j) const {
return _tds.are_equal(f.first, f.second, n, j);
}
//@}
#ifdef CGAL_NO_STRUCTURAL_FILTERING
Cell_handle
periodic_locate(const Point& p, const Offset& o_p, Offset& lo,
Locate_type& lt, int& li, int& lj,
Cell_handle start = Cell_handle()) const;
#else // no CGAL_NO_STRUCTURAL_FILTERING
# ifndef CGAL_P3T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS
# define CGAL_P3T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS 2500
# endif // no CGAL_P3T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS
public:
Cell_handle
inexact_periodic_locate(const Point& p, const Offset& o_p,
Cell_handle start = Cell_handle(),
int max_num_cells = CGAL_P3T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS) const;
protected:
Cell_handle
exact_periodic_locate(const Point& p, const Offset& o_p, Offset& lo,
Locate_type& lt,
int& li, int& lj,
Cell_handle start) const;
Cell_handle
generic_periodic_locate(const Point& p, const Offset& o_p, Offset& lo,
Locate_type& lt,
int& li, int& lj,
Cell_handle start,
internal::Periodic_structural_filtering_3_tag) const {
return exact_periodic_locate(p, o_p, lo, lt, li, lj, inexact_periodic_locate(p, o_p, start));
}
Cell_handle
generic_periodic_locate(const Point& p, const Offset& o_p, Offset& lo,
Locate_type& lt,
int& li, int& lj,
Cell_handle start,
internal::No_periodic_structural_filtering_3_tag) const {
return exact_periodic_locate(p, o_p, lo, lt, li, lj, start);
}
Orientation
inexact_orientation(const Point& p, const Point& q,
const Point& r, const Point& s,
const Offset& o_p = Offset(), const Offset& o_q = Offset(),
const Offset& o_r = Offset(), const Offset& o_s = Offset()) const
{
const Point_3 bp = construct_point(p, o_p);
const Point_3 bq = construct_point(q, o_q);
const Point_3 br = construct_point(r, o_r);
const Point_3 bs = construct_point(s, o_s);
// So that this code works well with Lazy_kernel
internal::Static_filters_predicates::Get_approx<Point_3> get_approx;
const double px = to_double(get_approx(bp).x());
const double py = to_double(get_approx(bp).y());
const double pz = to_double(get_approx(bp).z());
const double qx = to_double(get_approx(bq).x());
const double qy = to_double(get_approx(bq).y());
const double qz = to_double(get_approx(bq).z());
const double rx = to_double(get_approx(br).x());
const double ry = to_double(get_approx(br).y());
const double rz = to_double(get_approx(br).z());
const double sx = to_double(get_approx(bs).x());
const double sy = to_double(get_approx(bs).y());
const double sz = to_double(get_approx(bs).z());
const double pqx = qx - px;
const double pqy = qy - py;
const double pqz = qz - pz;
const double prx = rx - px;
const double pry = ry - py;
const double prz = rz - pz;
const double psx = sx - px;
const double psy = sy - py;
const double psz = sz - pz;
const double det = determinant(pqx, pqy, pqz,
prx, pry, prz,
psx, psy, psz);
if(det > 0) return POSITIVE;
if(det < 0) return NEGATIVE;
return ZERO;
}
public:
Cell_handle
periodic_locate(const Point& p, const Offset& o_p, Offset& lo,
Locate_type& lt, int& li, int& lj,
Cell_handle start = Cell_handle()) const
{
typedef Triangulation_structural_filtering_traits<Geometric_traits> TSFT;
typedef typename internal::Periodic_structural_filtering_selector_3<
TSFT::Use_structural_filtering_tag::value >::Tag Should_filter_tag;
return generic_periodic_locate(p, o_p, lo, lt, li, lj, start, Should_filter_tag());
}
Cell_handle
inexact_locate(const Point& p,
Cell_handle start = Cell_handle(),
int max_num_cells = CGAL_P3T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS) const
{
return inexact_periodic_locate(p, Offset(), start, max_num_cells);
}
#endif // no CGAL_NO_STRUCTURAL_FILTERING
protected:
/** @name Location helpers */ //@{
// Cell_handle periodic_locate(const Point& p, const Offset& o_p,
// Locate_type& lt, int& li, int& lj, Cell_handle start) const;
Bounded_side side_of_cell(const Point& p, const Offset& off, Cell_handle c,
Locate_type& lt, int& i, int& j) const;
//@}
public:
/** @name Point Location */ //@{
/** Wrapper function for locate if only the request point is given.
*/
Cell_handle locate(const Point& p, Cell_handle start = Cell_handle()) const
{
Locate_type lt;
int li, lj;
return locate( p, lt, li, lj, start);
}
/** Wrapper function calling locate with an empty offset if there was no
* offset given.
*/
Cell_handle locate(const Point& p,
Locate_type& lt, int& li, int& lj,
Cell_handle start = Cell_handle()) const
{
Offset lo;
return locate( p, lo, lt, li, lj, start);
}
Cell_handle locate(const Point& p, Offset& lo,
Cell_handle start = Cell_handle()) const
{
Locate_type lt;
int li, lj;
return locate( p, lo, lt, li, lj, start);
}
Cell_handle locate(const Point& p, Offset& lo,
Locate_type& lt, int& li, int& lj,
Cell_handle start = Cell_handle()) const
{
Cell_handle ch = periodic_locate(p, Offset(), lo, lt, li, lj, start);
for(unsigned i = 0; i < 3; ++i)
if(lo[i] >= 1)
lo[i] = -1;
return ch;
}
Bounded_side side_of_cell(const Point& p, Cell_handle c,
Locate_type& lt, int& i, int& j) const
{
if(number_of_vertices() == 0) {
lt = EMPTY;
return ON_UNBOUNDED_SIDE;
}
return side_of_cell(p,Offset(),c,lt,i,j);
}
//@}
private:
/** @name Insertion helpers */ //@{
template < class Conflict_tester, class Point_hider, class CoverManager >
Vertex_handle periodic_insert(const Point& p, const Offset& o, Locate_type lt,
Cell_handle c, const Conflict_tester& tester,
Point_hider& hider, CoverManager& cover_manager,
Vertex_handle vh = Vertex_handle());
template <class Point_iterator, class Offset_iterator>
void periodic_sort(Point_iterator /*p_begin*/, Point_iterator /*p_end*/,
Offset_iterator /*o_begin*/, Offset_iterator /*o_end*/) const {
std::cout << "Periodic_sort not yet implemented" << std::endl;
}
Vertex_handle create_initial_triangulation(const Point& p);
public:
std::vector<Vertex_handle> insert_dummy_points();
protected:
// this is needed for compatibility reasons
template <class Conflict_test, class OutputIteratorBoundaryFacets,
class OutputIteratorCells, class OutputIteratorInternalFacets>
Triple<OutputIteratorBoundaryFacets, OutputIteratorCells,
OutputIteratorInternalFacets>
find_conflicts(Cell_handle c,
const Conflict_test& tester,
Triple<OutputIteratorBoundaryFacets, OutputIteratorCells,
OutputIteratorInternalFacets> it) const
{
bool b = false;
Offset off = get_location_offset(tester, c, b);
if(b)
return find_conflicts(c,off,tester,it);
return it;
}
template <class Conflict_test, class OutputIteratorBoundaryFacets,
class OutputIteratorCells, class OutputIteratorInternalFacets>
Triple<OutputIteratorBoundaryFacets, OutputIteratorCells,
OutputIteratorInternalFacets>
find_conflicts(Cell_handle c, const Offset& current_off,
const Conflict_test& tester,
Triple<OutputIteratorBoundaryFacets,
OutputIteratorCells,
OutputIteratorInternalFacets> it) const;
//@}
protected:
// COMMON INSERTION for DELAUNAY and REGULAR TRIANGULATION
template < class Conflict_tester, class Point_hider, class CoverManager >
Vertex_handle insert_in_conflict(const Point& p, Cell_handle start,
const Conflict_tester& tester,
Point_hider& hider,
CoverManager& cover_manager)
{
Locate_type lt = Locate_type();
int li=0, lj=0;
Offset lo;
Cell_handle c = periodic_locate(p, Offset(), lo, lt, li, lj, start);
return insert_in_conflict(p,lt,c,li,lj,tester,hider, cover_manager);
}
template < class Conflict_tester, class Point_hider, class CoverManager >
Vertex_handle insert_in_conflict(const Point& p, Locate_type lt,
Cell_handle c, int li, int lj,
const Conflict_tester& tester,
Point_hider& hider,
CoverManager& cover_manager);
template < class InputIterator, class Conflict_tester,
class Point_hider, class CoverManager>
std::vector<Vertex_handle> insert_in_conflict(
InputIterator begin, InputIterator end, Cell_handle start,
Conflict_tester& tester, Point_hider& hider, CoverManager& cover_manager)
{
Vertex_handle new_vertex;
std::vector<Vertex_handle> double_vertices;
Locate_type lt = Locate_type();
int li=0, lj=0;
CGAL_triangulation_assertion_code( Locate_type lta = Locate_type(); )
CGAL_triangulation_assertion_code( int ia = 0; )
CGAL_triangulation_assertion_code( int ja = 0; )
Cell_handle hint;
while(begin!=end) {
tester.set_point(*begin);
Offset lo;
hint = periodic_locate(*begin, Offset(), lo, lt, li, lj, start);
CGAL_triangulation_assertion_code( if(number_of_vertices() != 0) { );
CGAL_triangulation_assertion(side_of_cell(
*begin,Offset(), hint, lta, ia, ja) != ON_UNBOUNDED_SIDE);
CGAL_triangulation_assertion(lta == lt);
CGAL_triangulation_assertion(ia == li);
CGAL_triangulation_assertion(ja == lj);
CGAL_triangulation_assertion_code( }
);
new_vertex = insert_in_conflict(*begin,lt,hint,li,lj,tester,hider, cover_manager);
if(lt == VERTEX)
double_vertices.push_back(new_vertex);
if(new_vertex != Vertex_handle())
start = new_vertex->cell();
begin++;
}
return double_vertices;
}
//@}
private:
/** @name Removal helpers */ //@{
Vertex_triple make_vertex_triple(const Facet& f) const
{
Cell_handle ch = f.first;
int i = f.second;
return Vertex_triple(ch->vertex(vertex_triple_index(i,0)),
ch->vertex(vertex_triple_index(i,1)),
ch->vertex(vertex_triple_index(i,2)));
}
void make_canonical(Vertex_triple& t) const;
void make_hole(Vertex_handle v, std::map<Vertex_triple,Facet>& outer_map,
std::vector<Cell_handle>& hole);
//@}
protected:
/** @name Removal */ //@{
template < class PointRemover, class CoverManager >
bool periodic_remove(Vertex_handle v, PointRemover& remover, CoverManager& cover_manager,
const bool abort_if_cover_change = false);
template < class PointRemover, class CT, class CoverManager >
void remove(Vertex_handle v, PointRemover& remover, CT& ct, CoverManager& cover_manager);
//@}
void delete_vertex(Vertex_handle vertex_handle)
{
tds().delete_vertex(vertex_handle);
if(!is_1_cover())
{
typename Virtual_vertex_map::iterator iter = this->virtual_vertices.find(vertex_handle);
if(iter != this->virtual_vertices.end())
{
Vertex_handle vh = iter->second.first;
this->virtual_vertices.erase(iter);
typename Virtual_vertex_reverse_map::iterator origin_it = this->virtual_vertices_reverse.find(vh);
std::vector<Vertex_handle>& copies = origin_it->second;
typename std::vector<Vertex_handle>::iterator copy_iter = std::find(copies.begin(), copies.end(), vertex_handle);
CGAL_triangulation_assertion(copy_iter != copies.end());
copies.erase(copy_iter);
if(copies.empty())
virtual_vertices_reverse.erase(origin_it);
}
return;
}
CGAL_triangulation_assertion(this->virtual_vertices.find(vertex_handle) == this->virtual_vertices.end());
CGAL_triangulation_assertion(this->virtual_vertices_reverse.find(vertex_handle) == this->virtual_vertices_reverse.end());
}
public:
/** @name Traversal */ //@{
Cell_iterator cells_begin() const {
return _tds.cells_begin();
}
Cell_iterator cells_end() const {
return _tds.cells_end();
}
Vertex_iterator vertices_begin() const {
return _tds.vertices_begin();
}
Vertex_iterator vertices_end() const {
return _tds.vertices_end();
}
Edge_iterator edges_begin() const {
return _tds.edges_begin();
}
Edge_iterator edges_end() const {
return _tds.edges_end();
}
Facet_iterator facets_begin() const {
return _tds.facets_begin();
}
Facet_iterator facets_end() const {
return _tds.facets_end();
}
Cell_iterator finite_cells_begin() const {
return _tds.cells_begin();
}
Cell_iterator finite_cells_end() const {
return _tds.cells_end();
}
Vertex_iterator finite_vertices_begin() const {
return _tds.vertices_begin();
}
Vertex_iterator finite_vertices_end() const {
return _tds.vertices_end();
}
Edge_iterator finite_edges_begin() const {
return _tds.edges_begin();
}
Edge_iterator finite_edges_end() const {
return _tds.edges_end();
}
Facet_iterator finite_facets_begin() const {
return _tds.facets_begin();
}
Facet_iterator finite_facets_end() const {
return _tds.facets_end();
}
All_cells_iterator all_cells_begin() const {
return _tds.cells_begin();
}
All_cells_iterator all_cells_end() const {
return _tds.cells_end();
}
All_vertices_iterator all_vertices_begin() const {
return _tds.vertices_begin();
}
All_vertices_iterator all_vertices_end() const {
return _tds.vertices_end();
}
All_edges_iterator all_edges_begin() const {
return _tds.edges_begin();
}
All_edges_iterator all_edges_end() const {
return _tds.edges_end();
}
All_facets_iterator all_facets_begin() const {
return _tds.facets_begin();
}
All_facets_iterator all_facets_end() const {
return _tds.facets_end();
}
Unique_vertex_iterator unique_vertices_begin() const {
return CGAL::filter_iterator(vertices_end(), Domain_tester<Self>(this),
vertices_begin());
}
Unique_vertex_iterator unique_vertices_end() const {
return CGAL::filter_iterator(vertices_end(), Domain_tester<Self>(this));
}
// Geometric iterators
Periodic_tetrahedron_iterator periodic_tetrahedra_begin(
Iterator_type it = STORED) const {
return Periodic_tetrahedron_iterator(this, it);
}
Periodic_tetrahedron_iterator periodic_tetrahedra_end(
Iterator_type it = STORED) const {
return Periodic_tetrahedron_iterator(this, 1, it);
}
Periodic_triangle_iterator periodic_triangles_begin(
Iterator_type it = STORED) const {
return Periodic_triangle_iterator(this, it);
}
Periodic_triangle_iterator periodic_triangles_end(
Iterator_type it = STORED) const {
return Periodic_triangle_iterator(this, 1, it);
}
Periodic_segment_iterator periodic_segments_begin(
Iterator_type it = STORED) const {
return Periodic_segment_iterator(this, it);
}
Periodic_segment_iterator periodic_segments_end(
Iterator_type it = STORED) const {
return Periodic_segment_iterator(this, 1, it);
}
Periodic_point_iterator periodic_points_begin(
Iterator_type it = STORED) const {
return Periodic_point_iterator(this, it);
}
Periodic_point_iterator periodic_points_end(
Iterator_type it = STORED) const {
return Periodic_point_iterator(this, 1, it);
}
// Circulators
Cell_circulator incident_cells(const Edge& e) const {
return _tds.incident_cells(e);
}
Cell_circulator incident_cells(Cell_handle c, int i, int j) const {
return _tds.incident_cells(c, i, j);
}
Cell_circulator incident_cells(const Edge& e, Cell_handle start) const {
return _tds.incident_cells(e, start);
}
Cell_circulator incident_cells(Cell_handle c, int i, int j,
Cell_handle start) const {
return _tds.incident_cells(c, i, j, start);
}
Facet_circulator incident_facets(const Edge& e) const {
return _tds.incident_facets(e);
}
Facet_circulator incident_facets(Cell_handle c, int i, int j) const {
return _tds.incident_facets(c, i, j);
}
Facet_circulator incident_facets(const Edge& e, const Facet& start) const {
return _tds.incident_facets(e, start);
}
Facet_circulator incident_facets(Cell_handle c, int i, int j,
const Facet& start) const {
return _tds.incident_facets(c, i, j, start);
}
Facet_circulator incident_facets(const Edge& e,
Cell_handle start, int f) const {
return _tds.incident_facets(e, start, f);
}
Facet_circulator incident_facets(Cell_handle c, int i, int j,
Cell_handle start, int f) const {
return _tds.incident_facets(c, i, j, start, f);
}
// around a vertex
template <class OutputIterator>
OutputIterator incident_cells(Vertex_handle v, OutputIterator cells) const {
return _tds.incident_cells(v, cells);
}
template <class OutputIterator>
OutputIterator incident_facets(Vertex_handle v, OutputIterator facets) const {
return _tds.incident_facets(v, facets);
}
template <class OutputIterator>
OutputIterator incident_edges(Vertex_handle v, OutputIterator edges) const {
return _tds.incident_edges(v, edges);
}
template <class OutputIterator>
OutputIterator adjacent_vertices(Vertex_handle v, OutputIterator vertices) const {
return _tds.adjacent_vertices(v, vertices);
}
//deprecated, don't use anymore
template <class OutputIterator>
OutputIterator incident_vertices(Vertex_handle v, OutputIterator vertices) const {
return _tds.adjacent_vertices(v, vertices);
}
size_type degree(Vertex_handle v) const {
return _tds.degree(v);
}
// Functions forwarded from TDS.
int mirror_index(Cell_handle c, int i) const {
return _tds.mirror_index(c, i);
}
Vertex_handle mirror_vertex(Cell_handle c, int i) const {
return _tds.mirror_vertex(c, i);
}
Facet mirror_facet(Facet f) const {
return _tds.mirror_facet(f);
}
//@}
private:
/** @name Checking helpers */ //@{
/// calls has_self_edges for every cell of the triangulation
bool has_self_edges() const
{
Cell_iterator it;
for( it = all_cells_begin(); it != all_cells_end(); ++it )
if(has_self_edges(it)) return true;
return false;
}
bool has_self_edges(Cell_handle c) const;
//@}
public:
/** @name Checking */ //@{
bool is_valid(bool verbose = false, int level = 0) const;
bool is_valid(Cell_handle c, bool verbose = false, int level = 0) const;
protected:
template <class ConflictTester>
bool is_valid_conflict(ConflictTester& tester, bool verbose = false,
int level = 0) const;
//@}
public:
/** @name Functors */
class Perturbation_order
{
const Self *t;
public:
Perturbation_order(const Self *tr)
: t(tr) {}
template<typename P>
bool operator()(const P* p, const P* q) const {
return t->compare_xyz(*p, *q) == SMALLER;
}
};
public:
// undocumented access functions
Offset get_offset(Cell_handle ch, int i) const
{
if(is_1_cover())
return int_to_off(ch->offset(i));
Virtual_vertex_map_it it = virtual_vertices.find(ch->vertex(i));
if(it != virtual_vertices.end())
return combine_offsets(it->second.second, int_to_off(ch->offset(i)));
else
return combine_offsets(Offset(), int_to_off(ch->offset(i)));
}
Offset get_offset(Vertex_handle vh) const
{
if(is_1_cover())
return Offset();
Virtual_vertex_map_it it = virtual_vertices.find(vh);
if(it != virtual_vertices.end())
return it->second.second;
else
return Offset();
}
Vertex_handle get_original_vertex(Vertex_handle vh) const
{
if(is_1_cover())
return vh;
Virtual_vertex_map_it it = virtual_vertices.find(vh);
if(it != virtual_vertices.end())
return it->second.first;
else
return vh;
}
Offset combine_offsets(const Offset& o_c, const Offset& o_t) const
{
Offset o_ct(_cover[0]*o_t.x(), _cover[1]*o_t.y(), _cover[2]*o_t.z());
return o_c + o_ct;
}
// These functions give the pair (vertex, offset) that corresponds to the
// i-th vertex of cell ch or vertex vh, respectively.
void get_vertex(Cell_handle ch, int i, Vertex_handle& vh, Offset& off) const;
void get_vertex(Vertex_handle vh_i, Vertex_handle& vh, Offset& off) const;
protected:
// Auxiliary functions
Cell_handle get_cell(const Vertex_handle* vh) const;
template<class Conflict_tester>
Offset get_location_offset(const Conflict_tester& tester,
Cell_handle c) const;
template<class Conflict_tester>
Offset get_location_offset(const Conflict_tester& tester,
Cell_handle c, bool& found) const;
Offset neighbor_offset(Cell_handle ch, int i, Cell_handle nb) const;
public:
Offset neighbor_offset(Cell_handle ch, int i) const
{
return neighbor_offset(ch, i, ch->neighbor(i));
}
protected:
/** @name Friends */ //@{
friend std::istream& operator>> <>
(std::istream& is, Periodic_3_triangulation_3<GT,TDS>& tr);
friend std::ostream& operator<< <>
(std::ostream& os, const Periodic_3_triangulation_3<GT,TDS>& tr);
//@}
protected:
template <class ConstructCircumcenter>
Periodic_point_3 periodic_circumcenter(Cell_handle c,
ConstructCircumcenter construct_circumcenter) const
{
CGAL_triangulation_precondition(c != Cell_handle());
Point_3 p = construct_circumcenter(c->vertex(0)->point(), c->vertex(1)->point(),
c->vertex(2)->point(), c->vertex(3)->point(),
get_offset(c, 0), get_offset(c, 1),
get_offset(c, 2), get_offset(c, 3));
return construct_periodic_point(p);
}
public:
bool is_canonical(const Facet& f) const
{
if(number_of_sheets() == CGAL::make_array(1,1,1))
return true;
Offset cell_off0 = int_to_off(f.first->offset((f.second+1)&3));
Offset cell_off1 = int_to_off(f.first->offset((f.second+2)&3));
Offset cell_off2 = int_to_off(f.first->offset((f.second+3)&3));
Offset diff_off((cell_off0.x() == 1
&& cell_off1.x() == 1
&& cell_off2.x() == 1) ? -1 : 0,
(cell_off0.y() == 1
&& cell_off1.y() == 1
&& cell_off2.y() == 1) ? -1 : 0,
(cell_off0.z() == 1
&& cell_off1.z() == 1
&& cell_off2.z() == 1) ? -1 : 0);
Offset off0 = combine_offsets(get_offset(f.first, (f.second+1)&3), diff_off);
Offset off1 = combine_offsets(get_offset(f.first, (f.second+2)&3), diff_off);
Offset off2 = combine_offsets(get_offset(f.first, (f.second+3)&3), diff_off);
// If there is one offset with entries larger than 1 then we are
// talking about a vertex that is too far away from the original
// domain to belong to a canonical triangle.
if(off0.x() > 1) return false;
if(off0.y() > 1) return false;
if(off0.z() > 1) return false;
if(off1.x() > 1) return false;
if(off1.y() > 1) return false;
if(off1.z() > 1) return false;
if(off2.x() > 1) return false;
if(off2.y() > 1) return false;
if(off2.z() > 1) return false;
// If there is one direction of space for which all offsets are
// non-zero then the edge is not canonical because we can
// take the copy closer towards the origin in that direction.
int offx = off0.x() & off1.x() & off2.x();
int offy = off0.y() & off1.y() & off2.y();
int offz = off0.z() & off1.z() & off2.z();
return (offx == 0 && offy == 0 && offz == 0);
}
protected:
template <class ConstructCircumcenter>
bool canonical_dual_segment(Cell_handle c, int i, Periodic_segment_3& ps,
ConstructCircumcenter construct_circumcenter) const
{
CGAL_triangulation_precondition(c != Cell_handle());
Offset off = neighbor_offset(c,i,c->neighbor(i));
Periodic_point_3 p1 = periodic_circumcenter(c, construct_circumcenter);
Periodic_point_3 p2 = periodic_circumcenter(c->neighbor(i), construct_circumcenter);
Offset o1 = -p1.second;
Offset o2 = combine_offsets(-p2.second,-off);
Offset cumm_off((std::min)(o1.x(),o2.x()),
(std::min)(o1.y(),o2.y()),
(std::min)(o1.z(),o2.z()));
const Periodic_point_3 pp1 = std::make_pair(construct_point(p1), o1-cumm_off);
const Periodic_point_3 pp2 = std::make_pair(construct_point(p2), o2-cumm_off);
ps = CGAL::make_array(pp1, pp2);
return (cumm_off == Offset(0,0,0));
}
template <class OutputIterator, class ConstructCircumcenter>
OutputIterator dual(Cell_handle c, int i, int j,
OutputIterator points,
ConstructCircumcenter construct_circumcenter) const
{
Cell_circulator cstart = incident_cells(c, i, j);
Offset offv = periodic_point(c,i).second;
Vertex_handle v = c->vertex(i);
Cell_circulator ccit = cstart;
do {
Point_3 dual_orig = periodic_circumcenter(ccit, construct_circumcenter).first;
int idx = ccit->index(v);
Offset off = periodic_point(ccit,idx).second;
Point_3 dual = construct_point(std::make_pair(dual_orig, -off+offv));
*points++ = dual;
++ccit;
} while(ccit != cstart);
return points;
}
template <class OutputIterator, class ConstructCircumcenter>
OutputIterator dual(Vertex_handle v, OutputIterator points,
ConstructCircumcenter construct_circumcenter) const
{
std::vector<Cell_handle> cells;
incident_cells(v,std::back_inserter(cells));
for(unsigned int i=0; i<cells.size(); i++) {
Point_3 dual_orig = periodic_circumcenter(cells[i], construct_circumcenter).first;
int idx = cells[i]->index(v);
Offset off = periodic_point(cells[i],idx).second;
Point_3 dual = construct_point(std::make_pair(dual_orig, -off));
*points++ = dual;
}
return points;
}
template <class Stream, class ConstructCircumcenter>
Stream& draw_dual(Stream& os, ConstructCircumcenter construct_circumcenter) const
{
CGAL_triangulation_assertion_code( unsigned int i = 0; )
for(Facet_iterator fit = facets_begin(), end = facets_end();
fit != end; ++fit) {
if(!is_canonical(*fit))
continue;
Periodic_segment_3 pso;
canonical_dual_segment(fit->first, fit->second, pso, construct_circumcenter);
Segment so = construct_segment(pso);
CGAL_triangulation_assertion_code ( ++i; )
os << so.source() << '\n';
os << so.target() << '\n';
}
CGAL_triangulation_assertion( i == number_of_facets() );
return os;
}
/// Volume computations
// Note: Polygon area computation requires to evaluate square roots
// and thus cannot be done without changing the Traits concept.
template <class ConstructCircumcenter>
FT dual_volume(Vertex_handle v, ConstructCircumcenter construct_circumcenter) const
{
std::list<Edge> edges;
incident_edges(v, std::back_inserter(edges));
FT vol(0);
for(typename std::list<Edge>::iterator eit = edges.begin();
eit != edges.end(); ++eit) {
// compute the dual of the edge *eit but handle the translations
// with respect to the dual of v. That is why we cannot use one
// of the existing dual functions here.
Facet_circulator fstart = incident_facets(*eit);
Facet_circulator fcit = fstart;
std::vector<Point_3> pts;
do {
// TODO: possible speed-up by caching the circumcenters
Point_3 dual_orig = periodic_circumcenter(fcit->first, construct_circumcenter).first;
int idx = fcit->first->index(v);
Offset off = periodic_point(fcit->first,idx).second;
pts.push_back(construct_point(std::make_pair(dual_orig,-off)));
++fcit;
} while(fcit != fstart);
Point_3 orig(0,0,0);
for(unsigned int i=1; i<pts.size()-1; i++)
vol += Tetrahedron(orig,pts[0],pts[i],pts[i+1]).volume();
}
return vol;
}
/// Centroid computations
// Note: Centroid computation for polygons requires to evaluate
// square roots and thus cannot be done without changing the
// Traits concept.
template <class ConstructCircumcenter>
Point_3 dual_centroid(Vertex_handle v, ConstructCircumcenter construct_circumcenter) const
{
std::list<Edge> edges;
incident_edges(v, std::back_inserter(edges));
FT vol(0);
FT x(0), y(0), z(0);
for(typename std::list<Edge>::iterator eit = edges.begin();
eit != edges.end(); ++eit) {
// compute the dual of the edge *eit but handle the translations
// with respect to the dual of v. That is why we cannot use one
// of the existing dual functions here.
Facet_circulator fstart = incident_facets(*eit);
Facet_circulator fcit = fstart;
std::vector<Point_3> pts;
do {
// TODO: possible speed-up by caching the circumcenters
Point_3 dual_orig = periodic_circumcenter(fcit->first, construct_circumcenter).first;
int idx = fcit->first->index(v);
Offset off = periodic_point(fcit->first,idx).second;
pts.push_back(construct_point(std::make_pair(dual_orig,-off)));
++fcit;
} while(fcit != fstart);
Point_3 orig(0,0,0);
FT tetvol;
for(unsigned int i=1; i<pts.size()-1; i++) {
tetvol = Tetrahedron(orig,pts[0],pts[i],pts[i+1]).volume();
x += (pts[0].x() + pts[i].x() + pts[i+1].x()) * tetvol;
y += (pts[0].y() + pts[i].y() + pts[i+1].y()) * tetvol;
z += (pts[0].z() + pts[i].z() + pts[i+1].z()) * tetvol;
vol += tetvol;
}
}
x /= ( 4 * vol );
y /= ( 4 * vol );
z /= ( 4 * vol );
Iso_cuboid d = domain();
x = (x < d.xmin() ? x+d.xmax()-d.xmin()
: (x >= d.xmax() ? x-d.xmax()+d.xmin() : x));
y = (y < d.ymin() ? y+d.ymax()-d.ymin()
: (y >= d.ymax() ? y-d.ymax()+d.ymin() : y));
z = (z < d.zmin() ? z+d.zmax()-d.zmin()
: (z >= d.zmax() ? z-d.zmax()+d.zmin() : z));
CGAL_triangulation_postcondition((d.xmin()<=x)&&(x<d.xmax()));
CGAL_triangulation_postcondition((d.ymin()<=y)&&(y<d.ymax()));
CGAL_triangulation_postcondition((d.zmin()<=z)&&(z<d.zmax()));
return Point_3(x,y,z);
}
};
template < class GT, class TDS >
inline bool
Periodic_3_triangulation_3<GT,TDS>::
is_triangulation_in_1_sheet() const
{
if(is_1_cover())
return true;
for(Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit) {
if(virtual_vertices.find(vit) == virtual_vertices.end())
continue;
std::vector<Vertex_handle> nb_v;
std::set<Vertex_handle> nb_v_odom;
Vertex_handle vh;
Offset off;
adjacent_vertices(vit, std::back_inserter(nb_v));
for(unsigned int i=0; i<nb_v.size(); i++) {
get_vertex(nb_v[i],vh,off);
nb_v_odom.insert(vh);
}
if(nb_v.size() != nb_v_odom.size())
return false;
}
return true;
}
template < class GT, class TDS >
inline bool
Periodic_3_triangulation_3<GT,TDS>::
is_vertex(const Point& p, Vertex_handle& v) const
{
Locate_type lt;
int li, lj;
Cell_handle c = locate( p, lt, li, lj );
if( lt != VERTEX )
return false;
v = c->vertex(li);
return true;
}
template < class GT, class TDS >
inline void
Periodic_3_triangulation_3<GT,TDS>::
make_canonical(Vertex_triple& t) const
{
int i = (&*(t.first) < &*(t.second))? 0 : 1;
if(i==0) {
i = (&*(t.first) < &*(t.third))? 0 : 2;
} else {
i = (&*(t.second) < &*(t.third))? 1 : 2;
}
Vertex_handle tmp;
switch(i) {
case 0: return;
case 1:
tmp = t.first;
t.first = t.second;
t.second = t.third;
t.third = tmp;
return;
default:
tmp = t.first;
t.first = t.third;
t.third = t.second;
t.second = tmp;
}
}
/** Assumes a point, an offset, and a cell to start from.
* Gives the locate type and the simplex (cell and indices) containing p.
*
* Performs a remembering stochastic walk if the triangulation is not empty.
* After the walk the type of the simplex containing p is determined.
*
* returns the cell p lies in
* starts at cell "start"
* returns a cell Cell_handel if lt == CELL
* returns a facet (Cell_handle,li) if lt == FACET
* returns an edge (Cell_handle,li,lj) if lt == EDGE
* returns a vertex (Cell_handle,li) if lt == VERTEX
*/
template < class GT, class TDS >
inline typename Periodic_3_triangulation_3<GT,TDS>::Cell_handle
Periodic_3_triangulation_3<GT,TDS>::
#ifdef CGAL_NO_STRUCTURAL_FILTERING
periodic_locate
#else
exact_periodic_locate
#endif
(const Point& p, const Offset& o_p, Offset& lo,
Locate_type& lt, int& li, int& lj, Cell_handle start) const
{
int cumm_off = 0;
Offset off_query = o_p;
if(number_of_vertices() == 0) {
lo = Offset();
lt = EMPTY;
return Cell_handle();
}
CGAL_triangulation_assertion(number_of_vertices() != 0);
if(start == Cell_handle()) {
start = cells_begin();
}
cumm_off = start->offset(0) | start->offset(1)
| start->offset(2) | start->offset(3);
if(is_1_cover() && cumm_off != 0) {
if(((cumm_off & 4) == 4) && (FT(2)*p.x()<(domain().xmax()+domain().xmin())))
off_query += Offset(1,0,0);
if(((cumm_off & 2) == 2) && (FT(2)*p.y()<(domain().ymax()+domain().ymin())))
off_query += Offset(0,1,0);
if(((cumm_off & 1) == 1) && (FT(2)*p.z()<(domain().zmax()+domain().zmin())))
off_query += Offset(0,0,1);
}
CGAL_triangulation_postcondition(start!=Cell_handle());
CGAL_triangulation_assertion(start->neighbor(0)->neighbor(
start->neighbor(0)->index(start))==start);
CGAL_triangulation_assertion(start->neighbor(1)->neighbor(
start->neighbor(1)->index(start))==start);
CGAL_triangulation_assertion(start->neighbor(2)->neighbor(
start->neighbor(2)->index(start))==start);
CGAL_triangulation_assertion(start->neighbor(3)->neighbor(
start->neighbor(3)->index(start))==start);
// We implement the remembering visibility/stochastic walk.
// Remembers the previous cell to avoid useless orientation tests.
Cell_handle previous = Cell_handle();
Cell_handle c = start;
// Stores the results of the 4 orientation tests. It will be used
// at the end to decide if p lies on a face/edge/vertex/interior.
Orientation o[4];
boost::rand48 rng;
boost::uniform_smallint<> four(0, 3);
boost::variate_generator<boost::rand48&, boost::uniform_smallint<> > die4(rng, four);
// Now treat the cell c.
try_next_cell:
// For the remembering stochastic walk,
// we need to start trying with a random index :
int i = die4();
// For the remembering visibility walk (Delaunay only), we don't :
// int i = 0;
cumm_off = c->offset(0) | c->offset(1) | c->offset(2) | c->offset(3);
bool simplicity_criterion = (cumm_off == 0) && (off_query.is_null());
// We know that the 4 vertices of c are positively oriented.
// So, in order to test if p is seen outside from one of c's facets,
// we just replace the corresponding point by p in the orientation
// test. We do this using the arrays below.
Offset off[4];
const Point* pts[4] = { &(c->vertex(0)->point()),
&(c->vertex(1)->point()),
&(c->vertex(2)->point()),
&(c->vertex(3)->point()) };
if(!simplicity_criterion && is_1_cover() ) {
for(int i=0; i<4; i++) {
off[i] = int_to_off(c->offset(i));
}
}
if(!is_1_cover()) {
// Just fetch the vertices of c as points with offsets
for(int i=0; i<4; i++) {
pts[i] = &(c->vertex(i)->point());
off[i] = get_offset(c,i);
}
}
for(int j=0; j != 4; ++j, i = (i+1)&3) {
Cell_handle next = c->neighbor(i);
if(previous == next) {
o[i] = POSITIVE;
continue;
}
CGAL_triangulation_assertion(next->neighbor(next->index(c)) == c);
// We temporarily put p at i's place in pts.
const Point* backup = pts[i];
pts[i] = &p;
if(simplicity_criterion && is_1_cover() ) {
o[i] = orientation(*pts[0], *pts[1], *pts[2], *pts[3]);
if( o[i] != NEGATIVE ) {
pts[i] = backup;
continue;
}
}
else {
Offset backup_off;
backup_off = off[i];
off[i] = off_query;
o[i] = orientation(*pts[0], *pts[1], *pts[2], *pts[3],
off[0], off[1], off[2], off[3]);
if( o[i] != NEGATIVE ) {
pts[i] = backup;
off[i] = backup_off;
continue;
}
}
// Test whether we need to adapt the offset of the query point.
// This means, if we get out of the current cover.
off_query = combine_offsets(off_query, neighbor_offset(c,i,next));
previous = c;
c = next;
goto try_next_cell;
}
// Ok, now we have found the cell. It remains to find the dimension of the
// intersected simplex.
// now p is in c or on its boundary
int sum = ( o[0] == COPLANAR )
+ ( o[1] == COPLANAR )
+ ( o[2] == COPLANAR )
+ ( o[3] == COPLANAR );
switch(sum) {
case 0:
lt = CELL;
break;
case 1:
lt = FACET;
li = ( o[0] == COPLANAR ) ? 0 :
( o[1] == COPLANAR ) ? 1 :
( o[2] == COPLANAR ) ? 2 : 3;
break;
case 2:
lt = EDGE;
li = ( o[0] != COPLANAR ) ? 0 :
( o[1] != COPLANAR ) ? 1 : 2;
lj = ( o[li+1] != COPLANAR ) ? li+1 :
( o[li+2] != COPLANAR ) ? li+2 : li+3;
break;
case 3:
lt = VERTEX;
li = ( o[0] != COPLANAR ) ? 0 :
( o[1] != COPLANAR ) ? 1 :
( o[2] != COPLANAR ) ? 2 : 3;
break;
default:
// the point cannot lie on four facets
CGAL_triangulation_assertion(false);
}
lo = off_query;
return c;
}
#ifndef CGAL_NO_STRUCTURAL_FILTERING
template < class GT, class TDS >
typename Periodic_3_triangulation_3<GT,TDS>::Cell_handle
Periodic_3_triangulation_3<GT,TDS>::
inexact_periodic_locate(const Point& p, const Offset& o_p,
Cell_handle start,
int n_of_turns) const
{
int cumm_off = 0;
Offset off_query = o_p;
if(number_of_vertices() == 0) {
return Cell_handle();
}
CGAL_triangulation_assertion(number_of_vertices() != 0);
if(start == Cell_handle()) {
start = cells_begin();
}
cumm_off = start->offset(0) | start->offset(1)
| start->offset(2) | start->offset(3);
if(is_1_cover() && cumm_off != 0) {
if(((cumm_off & 4) == 4) && (FT(2)*p.x()<(domain().xmax()+domain().xmin())))
off_query += Offset(1,0,0);
if(((cumm_off & 2) == 2) && (FT(2)*p.y()<(domain().ymax()+domain().ymin())))
off_query += Offset(0,1,0);
if(((cumm_off & 1) == 1) && (FT(2)*p.z()<(domain().zmax()+domain().zmin())))
off_query += Offset(0,0,1);
}
CGAL_triangulation_postcondition(start!=Cell_handle());
CGAL_triangulation_assertion(start->neighbor(0)->neighbor(
start->neighbor(0)->index(start))==start);
CGAL_triangulation_assertion(start->neighbor(1)->neighbor(
start->neighbor(1)->index(start))==start);
CGAL_triangulation_assertion(start->neighbor(2)->neighbor(
start->neighbor(2)->index(start))==start);
CGAL_triangulation_assertion(start->neighbor(3)->neighbor(
start->neighbor(3)->index(start))==start);
// We implement the remembering visibility/stochastic walk.
// Remembers the previous cell to avoid useless orientation tests.
Cell_handle previous = Cell_handle();
Cell_handle c = start;
// Now treat the cell c.
try_next_cell:
--n_of_turns;
cumm_off = c->offset(0) | c->offset(1) | c->offset(2) | c->offset(3);
bool simplicity_criterion = (cumm_off == 0) && (off_query.is_null());
// We know that the 4 vertices of c are positively oriented.
// So, in order to test if p is seen outside from one of c's facets,
// we just replace the corresponding point by p in the orientation
// test. We do this using the arrays below.
Offset off[4];
const Point* pts[4] = { &(c->vertex(0)->point()),
&(c->vertex(1)->point()),
&(c->vertex(2)->point()),
&(c->vertex(3)->point()) };
if(!simplicity_criterion && is_1_cover() ) {
for(int i=0; i<4; i++) {
off[i] = int_to_off(c->offset(i));
}
}
if(!is_1_cover()) {
// Just fetch the vertices of c as points with offsets
for(int i=0; i<4; i++) {
pts[i] = &(c->vertex(i)->point());
off[i] = get_offset(c,i);
}
}
for(int i=0; i != 4; ++i) {
Cell_handle next = c->neighbor(i);
if(previous == next) {
continue;
}
// We temporarily put p at i's place in pts.
const Point* backup = pts[i];
pts[i] = &p;
if(simplicity_criterion && is_1_cover() ) {
if( inexact_orientation(*pts[0], *pts[1], *pts[2], *pts[3]) != NEGATIVE ) {
pts[i] = backup;
continue;
}
}
else {
Offset backup_off;
backup_off = off[i];
off[i] = off_query;
if( inexact_orientation(*pts[0], *pts[1], *pts[2], *pts[3],
off[0], off[1], off[2], off[3]) != NEGATIVE ) {
pts[i] = backup;
off[i] = backup_off;
continue;
}
}
// Test whether we need to adapt the offset of the query point.
// This means, if we get out of the current cover.
off_query = combine_offsets(off_query, neighbor_offset(c,i,next));
previous = c;
c = next;
if(n_of_turns)
goto try_next_cell;
}
return c;
}
#endif
/**
* returns
* ON_BOUNDED_SIDE if (q, off) inside the cell
* ON_BOUNDARY if (q, off) on the boundary of the cell
* ON_UNBOUNDED_SIDE if (q, off) lies outside the cell
*
* lt has a meaning only when ON_BOUNDED_SIDE or ON_BOUNDARY
*/
template < class GT, class TDS >
inline Bounded_side Periodic_3_triangulation_3<GT,TDS>::side_of_cell(
const Point& q, const Offset& off, Cell_handle c,
Locate_type& lt, int& i, int& j) const
{
CGAL_triangulation_precondition( number_of_vertices() != 0 );
Orientation o0,o1,o2,o3;
o0 = o1 = o2 = o3 = ZERO;
int cumm_off = c->offset(0) | c->offset(1) | c->offset(2) | c->offset(3);
if((cumm_off == 0) && (is_1_cover())) {
CGAL_triangulation_assertion(off == Offset());
const Point& p0 = c->vertex(0)->point();
const Point& p1 = c->vertex(1)->point();
const Point& p2 = c->vertex(2)->point();
const Point& p3 = c->vertex(3)->point();
if(((o0 = orientation(q ,p1,p2,p3)) == NEGATIVE) ||
((o1 = orientation(p0,q ,p2,p3)) == NEGATIVE) ||
((o2 = orientation(p0,p1,q ,p3)) == NEGATIVE) ||
((o3 = orientation(p0,p1,p2,q )) == NEGATIVE) ) {
return ON_UNBOUNDED_SIDE;
}
} else { // Special case for the periodic space.
Offset off_q;
Offset offs[4];
const Point *p[4];
for(int i=0; i<4; i++) {
p[i] = &(c->vertex(i)->point());
offs[i] = get_offset(c,i);
}
CGAL_triangulation_assertion(orientation(*p[0], *p[1], *p[2], *p[3],
offs[0], offs[1], offs[2], offs[3]) == POSITIVE);
bool found=false;
for(int i=0; (i<8)&&(!found); i++) {
if((cumm_off | ((~i)&7)) == 7) {
o0 = o1 = o2 = o3 = NEGATIVE;
off_q = combine_offsets(off, int_to_off(i));
if(((o0 = orientation(q, *p[1], *p[2], *p[3],
off_q ,offs[1],offs[2],offs[3])) != NEGATIVE)&&
((o1 = orientation(*p[0], q, *p[2], *p[3],
offs[0], off_q,offs[2],offs[3])) != NEGATIVE)&&
((o2 = orientation(*p[0], *p[1], q, *p[3],
offs[0],offs[1], off_q,offs[3])) != NEGATIVE)&&
((o3 = orientation(*p[0], *p[1], *p[2], q,
offs[0],offs[1],offs[2], off_q)) != NEGATIVE)) {
found = true;
}
}
}
if(!found) return ON_UNBOUNDED_SIDE;
}
// now all the oi's are >=0
// sum gives the number of facets p lies on
int sum = ( (o0 == ZERO) ? 1 : 0 )
+ ( (o1 == ZERO) ? 1 : 0 )
+ ( (o2 == ZERO) ? 1 : 0 )
+ ( (o3 == ZERO) ? 1 : 0 );
switch(sum) {
case 0:
{
lt = CELL;
return ON_BOUNDED_SIDE;
}
case 1:
{
lt = FACET;
// i = index such that p lies on facet(i)
i = ( o0 == ZERO ) ? 0 :
( o1 == ZERO ) ? 1 :
( o2 == ZERO ) ? 2 : 3;
return ON_BOUNDARY;
}
case 2:
{
lt = EDGE;
// i = smallest index such that p does not lie on facet(i)
// i must be < 3 since p lies on 2 facets
i = ( o0 == POSITIVE ) ? 0 :
( o1 == POSITIVE ) ? 1 : 2;
// j = larger index such that p not on facet(j)
// j must be > 0 since p lies on 2 facets
j = ( o3 == POSITIVE ) ? 3 :
( o2 == POSITIVE ) ? 2 : 1;
return ON_BOUNDARY;
}
case 3:
{
lt = VERTEX;
// i = index such that p does not lie on facet(i)
i = ( o0 == POSITIVE ) ? 0 :
( o1 == POSITIVE ) ? 1 :
( o2 == POSITIVE ) ? 2 : 3;
return ON_BOUNDARY;
}
default:
{
// impossible : cannot be on 4 facets for a real tetrahedron
CGAL_triangulation_assertion(false);
return ON_BOUNDARY;
}
}
} // side_of_cell
/*! \brief Insert point.
*
* Inserts the point p into the triangulation. It assumes that
* the cell c containing p is already known.
*
* Implementation:
* - some precondition checking
* - find and mark conflicting cells --> find_conflicts
* Conflicting cells are stored in the vector cells.
* - backup hidden points
* - Delete the edges of the marked cells from too_long_edges
* - Insert the new vertex in the hole obtained by removing the
* conflicting cells (star-approach) --> _tds._insert_in_hole
* - find out about offsets
* - Insert the newly added edges that are "too long"
* to too_long_edges
* - reinsert hidden points
*/
template < class GT, class TDS >
template < class Conflict_tester, class Point_hider, class CoverManager >
inline typename Periodic_3_triangulation_3<GT,TDS>::Vertex_handle
Periodic_3_triangulation_3<GT,TDS>::periodic_insert(
const Point& p, const Offset& o,
Locate_type /*lt*/, Cell_handle c, const Conflict_tester& tester,
Point_hider& hider, CoverManager& cover_manager, Vertex_handle vh)
{
Vertex_handle v;
CGAL_triangulation_precondition(number_of_vertices() != 0);
CGAL_triangulation_assertion_code(
Locate_type lt_assert; int i_assert; int j_assert;);
CGAL_triangulation_precondition(side_of_cell(tester.point(),o, c,
lt_assert, i_assert, j_assert) != ON_UNBOUNDED_SIDE);
tester.set_offset(o);
// Choose the periodic copy of tester.point() that is in conflict with c.
bool found = false;
Offset current_off = get_location_offset(tester, c, found);
CGAL_triangulation_assertion(side_of_cell(tester.point(),
combine_offsets(o,current_off),c,lt_assert,i_assert,j_assert)
!= ON_UNBOUNDED_SIDE);
// If the new point is not in conflict with its cell, it is hidden.
if(!found || !tester.test_initial_cell(c, current_off)) {
hider.hide_point(c,p);
return Vertex_handle();
}
// Ok, we really insert the point now.
// First, find the conflict region.
std::vector<Cell_handle> cells;
cells.reserve(32);
Facet facet;
find_conflicts(c, current_off, tester,
make_triple(Oneset_iterator<Facet>(facet),
std::back_inserter(cells),
Emptyset_iterator()));
// Remember the points that are hidden by the conflicting cells,
// as they will be deleted during the insertion.
hider.set_vertices(cells.begin(), cells.end());
if(!is_1_cover())
cover_manager.delete_unsatisfying_elements(cells.begin(), cells.end());
// Insertion. Warning: facets[0].first MUST be in conflict!
// Compute the star and put it into the data structure.
// Store the new cells from the star in nbs.
v = _tds._insert_in_hole(cells.begin(), cells.end(), facet.first, facet.second);
v->set_point(p);
//TODO: this could be done within the _insert_in_hole without losing any
//time because each cell is visited in any case.
//- Do timings to argue to modify _insert_in_conflicts if need be
//- Find the modified _insert_in_hole in the branch svn history of TDS
std::vector<Cell_handle> nbs;
incident_cells(v, std::back_inserter(nbs));
// For all neighbors of the newly added vertex v: fetch their offsets from
// the tester and reset them in the triangulation data structure.
for(typename std::vector<Cell_handle>::iterator cit = nbs.begin();
cit != nbs.end(); cit++) {
Offset off[4];
for(int i=0; i<4; i++) {
off[i] = (*cit)->vertex(i)->offset();
}
set_offsets(*cit, off[0], off[1], off[2], off[3]);
}
for(typename std::vector<Vertex_handle>::iterator voit = v_offsets.begin();
voit != v_offsets.end(); ++voit) {
(*voit)->clear_offset();
}
v_offsets.clear();
if(vh != Vertex_handle()) {
// CGAL_triangulation_assertion(virtual_vertices.find(v) == virtual_vertices.end());
virtual_vertices[v] = Virtual_vertex(vh,o);
virtual_vertices_reverse[vh].push_back(v);
}
if(!is_1_cover())
cover_manager.insert_unsatisfying_elements(v, nbs.begin(), nbs.end());
// Store the hidden points in their new cells.
hider.reinsert_vertices(v);
return v;
}
/** Inserts the first point to a triangulation.
*
* With inserting the first point the 3-sheeted covering is constructed.
* So first, the 27 vertices are inserted and are added to virtual_vertices
* Then 6*27 cells are created.
* Then all links are set.
*/
template < class GT, class TDS >
inline typename Periodic_3_triangulation_3<GT,TDS>::Vertex_handle
Periodic_3_triangulation_3<GT,TDS>::create_initial_triangulation(const Point& p)
{
/// Virtual vertices, one per periodic instance
Vertex_handle vir_vertices[3][3][3];
/// Virtual cells, 6 per periodic instance
Cell_handle cells[3][3][3][6];
// Initialise vertices:
vir_vertices[0][0][0] = _tds.create_vertex();
vir_vertices[0][0][0]->set_point(p);
virtual_vertices_reverse[vir_vertices[0][0][0]] = std::vector<Vertex_handle>();
for(int i=0; i<_cover[0]; i++) {
for(int j=0; j<_cover[1]; j++) {
for(int k=0; k<_cover[2]; k++) {
if((i!=0)||(j!=0)||(k!=0)) {
// Initialise virtual vertices out of the domain for debugging
vir_vertices[i][j][k] =
_tds.create_vertex();
vir_vertices[i][j][k]->set_point(p); //+Offset(i,j,k));
virtual_vertices[vir_vertices[i][j][k]] =
Virtual_vertex(vir_vertices[0][0][0], Offset(i,j,k));
virtual_vertices_reverse[vir_vertices[0][0][0]].push_back(
vir_vertices[i][j][k]);
}
CGAL_triangulation_assertion(vir_vertices[i][j][k] != Vertex_handle());
CGAL_triangulation_assertion(vir_vertices[0][0][0]->point() == p);
}
}
}
// Create cells:
for(int i=0; i<_cover[0]; i++) {
for(int j=0; j<_cover[1]; j++) {
for(int k=0; k<_cover[2]; k++) {
for(int l=0; l<6; l++) {
// 6 cells per 'cube'
cells[i][j][k][l] = _tds.create_cell();
for(int n=0; n<4; n++)
CGAL_triangulation_assertion(cells[i][j][k][l] != Cell_handle());
}
}
}
}
// set vertex and neighbor information
// index to the right vertex: [number of cells][vertex][offset]
int vertex_ind[6][4][3] = {
{ {0, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 0, 0} },
{ {1, 1, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 1} },
{ {1, 0, 0}, {0, 1, 1}, {0, 1, 0}, {0, 0, 1} },
{ {1, 0, 0}, {0, 1, 1}, {0, 0, 1}, {1, 0, 1} },
{ {1, 0, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 0} },
{ {1, 0, 0}, {0, 1, 1}, {1, 1, 0}, {0, 1, 0} }
};
int neighb_ind[6][4][4] = {
{ { 0, 0, 0, 2}, { 0,-1, 0, 5}, { 0, 0,-1, 3}, {-1, 0, 0, 4} },
{ { 0, 0, 1, 5}, { 1, 0, 0, 2}, { 0, 1, 0, 3}, { 0, 0, 0, 4} },
{ {-1, 0, 0, 1}, { 0, 0, 0, 0}, { 0, 0, 0, 3}, { 0, 0, 0, 5} },
{ { 0, 0, 1, 0}, { 0,-1, 0, 1}, { 0, 0, 0, 4}, { 0, 0, 0, 2} },
{ { 0, 0, 0, 1}, { 1, 0, 0, 0}, { 0, 0, 0, 5}, { 0, 0, 0, 3} },
{ { 0, 1, 0, 0}, { 0, 0,-1, 1}, { 0, 0, 0, 2}, { 0, 0, 0, 4} }
};
for(int i=0; i<_cover[0]; i++) {
for(int j=0; j<_cover[1]; j++) {
for(int k=0; k<_cover[2]; k++) {
int offset = (i==_cover[0]-1 ? 4 : 0) |
(j==_cover[1]-1 ? 2 : 0) |
(k==_cover[2]-1 ? 1 : 0);
for(int l=0; l<6; l++) {
// cell 0:
cells[i][j][k][l]->set_vertices(
vir_vertices
[(i+vertex_ind[l][0][0])%_cover[0]]
[(j+vertex_ind[l][0][1])%_cover[1]]
[(k+vertex_ind[l][0][2])%_cover[2]],
vir_vertices
[(i+vertex_ind[l][1][0])%_cover[0]]
[(j+vertex_ind[l][1][1])%_cover[1]]
[(k+vertex_ind[l][1][2])%_cover[2]],
vir_vertices
[(i+vertex_ind[l][2][0])%_cover[0]]
[(j+vertex_ind[l][2][1])%_cover[1]]
[(k+vertex_ind[l][2][2])%_cover[2]],
vir_vertices
[(i+vertex_ind[l][3][0])%_cover[0]]
[(j+vertex_ind[l][3][1])%_cover[1]]
[(k+vertex_ind[l][3][2])%_cover[2]]);
set_offsets(cells[i][j][k][l],
offset & (vertex_ind[l][0][0]*4 +
vertex_ind[l][0][1]*2 +
vertex_ind[l][0][2]*1),
offset & (vertex_ind[l][1][0]*4 +
vertex_ind[l][1][1]*2 +
vertex_ind[l][1][2]*1),
offset & (vertex_ind[l][2][0]*4 +
vertex_ind[l][2][1]*2 +
vertex_ind[l][2][2]*1),
offset & (vertex_ind[l][3][0]*4 +
vertex_ind[l][3][1]*2 +
vertex_ind[l][3][2]*1));
cells[i][j][k][l]->set_neighbors(
cells [(i+_cover[0]+neighb_ind[l][0][0])%_cover[0]]
[(j+_cover[1]+neighb_ind[l][0][1])%_cover[1]]
[(k+_cover[2]+neighb_ind[l][0][2])%_cover[2]]
[ neighb_ind[l][0][3] ],
cells [(i+_cover[0]+neighb_ind[l][1][0])%_cover[0]]
[(j+_cover[1]+neighb_ind[l][1][1])%_cover[1]]
[(k+_cover[2]+neighb_ind[l][1][2])%_cover[2]]
[ neighb_ind[l][1][3] ],
cells [(i+_cover[0]+neighb_ind[l][2][0])%_cover[0]]
[(j+_cover[1]+neighb_ind[l][2][1])%_cover[1]]
[(k+_cover[2]+neighb_ind[l][2][2])%_cover[2]]
[ neighb_ind[l][2][3] ],
cells [(i+_cover[0]+neighb_ind[l][3][0])%_cover[0]]
[(j+_cover[1]+neighb_ind[l][3][1])%_cover[1]]
[(k+_cover[2]+neighb_ind[l][3][2])%_cover[2]]
[ neighb_ind[l][3][3] ]
);
}
}
}
}
// set pointers from the vertices to incident cells.
for(int i=0; i<_cover[0]; i++) {
for(int j=0; j<_cover[1]; j++) {
for(int k=0; k<_cover[2]; k++) {
vir_vertices[i][j][k]->set_cell(cells[i][j][k][0]);
}
}
}
_tds.set_dimension(3);
return vir_vertices[0][0][0];
}
#define CGAL_INCLUDE_FROM_PERIODIC_3_TRIANGULATION_3_H
#include <CGAL/internal/Periodic_3_triangulation_dummy_36.h>
#undef CGAL_INCLUDE_FROM_PERIODIC_3_TRIANGULATION_3_H
/** finds all cells that are in conflict with the currently added point
* (stored in tester).
*
* The result will be a hole of which the following data is returned:
* - boundary facets
* - cells
* - internal facets.
*
* c is the current cell, which must be in conflict.
* tester is the function object that tests if a cell is in conflict.
*/
template <class GT, class TDS>
template <class Conflict_test,
class OutputIteratorBoundaryFacets,
class OutputIteratorCells,
class OutputIteratorInternalFacets>
Triple<OutputIteratorBoundaryFacets,
OutputIteratorCells,
OutputIteratorInternalFacets>
Periodic_3_triangulation_3<GT,TDS>::
find_conflicts(Cell_handle d, const Offset& current_off,
const Conflict_test& tester,
Triple<OutputIteratorBoundaryFacets,
OutputIteratorCells,
OutputIteratorInternalFacets> it) const
{
CGAL_triangulation_precondition( number_of_vertices() != 0 );
CGAL_triangulation_precondition( tester(d, current_off) );
std::stack<std::pair<Cell_handle, Offset> > cell_stack;
cell_stack.push(std::make_pair(d,current_off));
d->tds_data().mark_in_conflict();
*it.second++ = d;
do {
Cell_handle c = cell_stack.top().first;
Offset current_off2 = cell_stack.top().second;
cell_stack.pop();
for(int i=0; i< 4; ++i) {
Cell_handle test = c->neighbor(i);
if(test->tds_data().is_in_conflict()) {
if(c < test) {
*it.third++ = Facet(c, i); // Internal facet.
}
continue; // test was already in conflict.
}
if(test->tds_data().is_clear()) {
Offset o_test = current_off2 + neighbor_offset(c, i, test);
if(tester(test,o_test)) {
if(c < test)
*it.third++ = Facet(c, i); // Internal facet.
cell_stack.push(std::make_pair(test,o_test));
test->tds_data().mark_in_conflict();
*it.second++ = test;
continue;
}
test->tds_data().mark_on_boundary(); // test is on the boundary.
}
*it.first++ = Facet(c, i);
for(int j = 0; j<4; j++) {
if(j==i) continue;
if(!c->vertex(j)->get_offset_flag()) {
c->vertex(j)->set_offset(int_to_off(c->offset(j))-current_off2);
v_offsets.push_back(c->vertex(j));
}
}
}
} while(!cell_stack.empty());
return it;
}
/*! \brief Insert point into triangulation.
*
* Inserts the point p into the triangulation. It expects
* - a cell to start the point location
* - a testing function to determine cells in conflict
* - a testing function to determine if a vertex is hidden.
*
* Implementation:
* - If the triangulation is empty call a special function
* (create_initial_triangulation) to construct the basic
* triangulation.
* - Run point location to get the cell c containing point p.
* - Call periodic_insert to insert p into the 3-cover.
* - Also insert the eight periodic copies of p.
*/
template < class GT, class TDS >
template < class Conflict_tester, class Point_hider, class CoverManager >
inline typename Periodic_3_triangulation_3<GT,TDS>::Vertex_handle
Periodic_3_triangulation_3<GT,TDS>::insert_in_conflict(const Point& p,
Locate_type lt, Cell_handle c, int li, int lj,
const Conflict_tester& tester, Point_hider& hider, CoverManager& cover_manager) {
CGAL_triangulation_assertion((domain().xmin() <= p.x())
&& (p.x() < domain().xmax()));
CGAL_triangulation_assertion((domain().ymin() <= p.y())
&& (p.y() < domain().ymax()));
CGAL_triangulation_assertion((domain().zmin() <= p.z())
&& (p.z() < domain().zmax()));
if(number_of_vertices() == 0) {
Vertex_handle vh = create_initial_triangulation(p);
cover_manager.create_initial_triangulation();
return vh;
}
if((lt == VERTEX) &&
(tester.compare_weight(c->vertex(li)->point(),p) == 0) ) {
return c->vertex(li);
}
Vertex_handle vstart;
if(!is_1_cover()) {
Virtual_vertex_map_it vvmit = virtual_vertices.find(c->vertex(0));
if(vvmit == virtual_vertices.end())
vstart = c->vertex(0);
else
vstart = vvmit->second.first;
CGAL_triangulation_assertion(virtual_vertices.find(vstart)
== virtual_vertices.end());
CGAL_triangulation_assertion(virtual_vertices_reverse.find(vstart)
!= virtual_vertices_reverse.end());
}
CGAL_triangulation_assertion( number_of_vertices() != 0 );
CGAL_triangulation_expensive_assertion(is_valid());
hider.set_original_cube(true);
Vertex_handle vh = periodic_insert(p, Offset(), lt, c, tester, hider, cover_manager);
if(is_1_cover()) {
return vh;
}
hider.set_original_cube(false);
virtual_vertices_reverse[vh] = std::vector<Vertex_handle>();
Offset lo;
// insert 26 periodic copies
for(int i=0; i<_cover[0]; i++) {
for(int j=0; j<_cover[1]; j++) {
for(int k=0; k<_cover[2]; k++) {
if((i!=0)||(j!=0)||(k!=0)) {
c = periodic_locate(p, Offset(i,j,k), lo, lt, li, lj, Cell_handle());
periodic_insert(p, Offset(i,j,k), lt, c, tester, hider,cover_manager,vh);
}
}
}
}
CGAL_triangulation_expensive_assertion(is_valid());
// Fall back to 1-cover if the criterion that the longest edge is shorter
// than sqrt(0.166) is fulfilled.
if( cover_manager.can_be_converted_to_1_sheet() ) {
CGAL_triangulation_expensive_assertion(is_valid());
convert_to_1_sheeted_covering();
CGAL_triangulation_expensive_assertion( is_valid() );
}
return vh;
}
/// tests if two vertices of one cell are just periodic copies of each other
template < class GT, class TDS >
inline bool Periodic_3_triangulation_3<GT,TDS>::has_self_edges(Cell_handle c) const {
CGAL_triangulation_assertion((c->vertex(0) != c->vertex(1)) ||
(c->offset(0) != c->offset(1)));
CGAL_triangulation_assertion((c->vertex(0) != c->vertex(2)) ||
(c->offset(0) != c->offset(2)));
CGAL_triangulation_assertion((c->vertex(0) != c->vertex(3)) ||
(c->offset(0) != c->offset(3)));
CGAL_triangulation_assertion((c->vertex(1) != c->vertex(2)) ||
(c->offset(1) != c->offset(2)));
CGAL_triangulation_assertion((c->vertex(1) != c->vertex(3)) ||
(c->offset(1) != c->offset(3)));
CGAL_triangulation_assertion((c->vertex(2) != c->vertex(3)) ||
(c->offset(2) != c->offset(3)));
return ((c->vertex(0) == c->vertex(1)) ||
(c->vertex(0) == c->vertex(2)) ||
(c->vertex(0) == c->vertex(3)) ||
(c->vertex(1) == c->vertex(2)) ||
(c->vertex(1) == c->vertex(3)) ||
(c->vertex(2) == c->vertex(3)));
}
/*! \brief Tests if the triangulation is valid.
*
* A triangulation is valid if
* - A cell is not its own neighbor.
* - A cell has no two equal neighbors
* - A cell has no two equal vertex-offset pairs
* - A cell is positively oriented.
* - The point of a neighbor of cell c that does not belong to c is not inside
* the circumcircle of c.
*/
template < class GT, class TDS >
bool
Periodic_3_triangulation_3<GT,TDS>::
is_valid(bool verbose, int level) const
{
if(!is_1_cover())
{
for(Virtual_vertex_reverse_map_it iter = virtual_vertices_reverse.begin(), end_iter = virtual_vertices_reverse.end();
iter != end_iter;
++iter)
{
for(typename Virtual_vertex_reverse_map::mapped_type::const_iterator iter_2 = iter->second.begin(),
end_iter_2 = iter->second.end();
iter_2 != end_iter_2;
++iter_2)
{
CGAL_triangulation_assertion(virtual_vertices.find(*iter_2) != virtual_vertices.end());
CGAL_triangulation_assertion(virtual_vertices.at(*iter_2).first == iter->first);
}
}
}
bool error = false;
for(Cell_iterator cit = cells_begin();
cit != cells_end(); ++cit) {
for(int i=0; i<4; i++) {
CGAL_triangulation_assertion(cit != cit->neighbor(i));
for(int j=i+1; j<4; j++) {
CGAL_triangulation_assertion(cit->neighbor(i) != cit->neighbor(j));
CGAL_triangulation_assertion(cit->vertex(i) != cit->vertex(j));
}
}
// Check positive orientation:
const Point *p[4]; Offset off[4];
for(int i=0; i<4; i++) {
p[i] = &cit->vertex(i)->point();
off[i] = get_offset(cit,i);
}
if(orientation(*p[0], *p[1], *p[2], *p[3],
off[0], off[1], off[2], off[3]) != POSITIVE) {
if(verbose) {
std::cerr<<"Periodic_3_triangulation_3: wrong orientation:"<<std::endl;
std::cerr<<off[0]<<'\t'<<*p[0]<<'\n'
<<off[1]<<'\t'<<*p[1]<<'\n'
<<off[2]<<'\t'<<*p[2]<<'\n'
<<off[3]<<'\t'<<*p[3]<<std::endl;
}
error = true;
}
}
if(!has_self_edges()) {
if(! _tds.is_valid(verbose, level) ) {
return false;
}
}
return !error;
}
template < class GT, class TDS >
bool Periodic_3_triangulation_3<GT,TDS>::is_valid(Cell_handle ch,
bool verbose, int level) const
{
if( ! _tds.is_valid(ch,verbose,level) )
return false;
bool error = false;
const Point *p[4]; Offset off[4];
for(int i=0; i<4; i++) {
p[i] = &ch->vertex(i)->point();
off[i] = get_offset(ch,i);
}
if(orientation(*p[0], *p[1], *p[2], *p[3],
off[0], off[1], off[2], off[3]) != POSITIVE) {
error = true;
}
return !error;
}
template < class GT, class TDS >
template < class ConflictTester >
bool Periodic_3_triangulation_3<GT,TDS>::
is_valid_conflict(ConflictTester& tester, bool verbose, int level) const
{
Cell_iterator it;
for( it = cells_begin(); it != cells_end(); ++it ) {
is_valid(it, verbose, level);
for(int i=0; i<4; i++ ) {
Offset o_nb = neighbor_offset(it, i, it->neighbor(i));
Offset o_vt = get_offset(it->neighbor(i), it->neighbor(i)->index(it));
if(tester(it,
it->neighbor(i)->vertex(it->neighbor(i)->index(it))->point(),
o_vt - o_nb)) {
if(verbose) {
std::cerr << "non-empty sphere:\n"
<< "Point[0]: " << it->vertex(0)->point()
<< " Off: " << int_to_off(it->offset(0)) << "\n"
<< "Point[1]: " << it->vertex(1)->point()
<< " Off: " << int_to_off(it->offset(1)) << "\n"
<< "Point[2]: " << it->vertex(2)->point()
<< " Off: " << int_to_off(it->offset(2)) << "\n"
<< "Point[3]: " << it->vertex(3)->point()
<< " Off: " << int_to_off(it->offset(3)) << "\n"
<< "Foreign point: "
<< it->neighbor(i)->vertex(it->neighbor(i)->index(it))->point()
<< "\t Off: " << o_vt - o_nb << std::endl;
}
return false;
}
}
}
return true;
}
template < class GT, class TDS >
inline void Periodic_3_triangulation_3<GT,TDS>::make_hole(Vertex_handle v,
std::map<Vertex_triple,Facet>& outer_map,
std::vector<Cell_handle>& hole)
{
incident_cells(v, std::back_inserter(hole));
for(typename std::vector<Cell_handle>::iterator cit = hole.begin();
cit != hole.end(); ++cit) {
int indv = (*cit)->index(v);
Cell_handle opp_cit = (*cit)->neighbor( indv );
Facet f(opp_cit, opp_cit->index(*cit));
Vertex_triple vt = make_vertex_triple(f);
make_canonical(vt);
outer_map[vt] = f;
for(int i=0; i<4; i++)
if( i != indv )
(*cit)->vertex(i)->set_cell(opp_cit);
}
}
/*! \brief Remove a vertex from the triangulation.
*
* Removes vertex v from the triangulation.
*/
template < class GT, class TDS >
template < class PointRemover, class Conflict_tester, class CoverManager>
inline void
Periodic_3_triangulation_3<GT,TDS>::
remove(Vertex_handle v, PointRemover& r, Conflict_tester& t, CoverManager& cover_manager)
{
CGAL_expensive_precondition(is_vertex(v));
if(!is_1_cover())
{
std::vector<Vertex_handle> vhrem;
if(number_of_vertices() == 1) {
clear();
return;
}
Virtual_vertex_map_it vvmit = virtual_vertices.find(v);
if(vvmit != virtual_vertices.end()) v = vvmit->second.first;
CGAL_triangulation_assertion(virtual_vertices_reverse.find(v)
!= virtual_vertices_reverse.end());
vhrem = virtual_vertices_reverse.find(v)->second;
virtual_vertices_reverse.erase(v);
CGAL_triangulation_assertion(vhrem.size()==26);
for(int i=0; i<26; i++) {
periodic_remove(vhrem[i],r, cover_manager);
virtual_vertices.erase(vhrem[i]);
CGAL_triangulation_expensive_assertion(is_valid());
}
periodic_remove(v,r, cover_manager);
}
else
{
periodic_remove(v, r, cover_manager);
if(!is_1_cover())
remove(v, r, t, cover_manager);
}
}
/*! \brief Remove a vertex from the triangulation.
*
* Removes vertex v from the triangulation.
* It expects a reference to an instance of a PointRemover.
*
* Implementation:
* - Compute the hole, that is, all cells incident to v. Cells outside of
* this hole are not affected by the deletion of v.
* - Triangulate the hole. This is done computing the triangulation
* in Euclidean space for the points on the border of the hole.
* - Sew this triangulation into the hole.
* - Test for all newly added edges, whether they are shorter than the
* edge_length_threshold. If not, convert to 3-cover.
*/
template < class GT, class TDS >
template < class PointRemover, class CoverManager >
inline bool
Periodic_3_triangulation_3<GT,TDS>::
periodic_remove(Vertex_handle v, PointRemover& remover, CoverManager& cover_manager,
const bool abort_if_cover_change)
{
// Construct the set of vertex triples on the boundary
// with the facet just behind
typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
typedef PointRemover Point_remover;
typedef typename Point_remover::CellE_handle CellE_handle;
typedef typename Point_remover::VertexE_handle VertexE_handle;
typedef typename Point_remover::FacetE FacetE;
typedef typename Point_remover::VertexE_triple VertexE_triple;
typedef typename Point_remover::Finite_cellsE_iterator
Finite_cellsE_iterator;
typedef typename Point_remover::Vertex_triple_FacetE_map
Vertex_triple_FacetE_map;
// First compute the hole and its boundary vertices.
std::vector<Cell_handle> hole;
hole.reserve(64);
Vertex_triple_Facet_map outer_map;
Vertex_triple_FacetE_map inner_map;
make_hole(v, outer_map, hole);
CGAL_triangulation_assertion(outer_map.size()==hole.size());
if(!is_1_cover()) {
cover_manager.delete_unsatisfying_elements(hole.begin(), hole.end());
}
// Build up the map between Vertices on the boundary and offsets
// collect all vertices on the boundary
std::vector<Vertex_handle> vertices;
vertices.reserve(64);
// The set is needed to ensure that each vertex is inserted only once.
std::set<Vertex_handle> tmp_vertices;
// The map connects vertices to offsets in the hole
std::map<Vertex_handle, Offset> vh_off_map;
for(typename std::vector<Cell_handle>::iterator cit = hole.begin();
cit != hole.end(); ++cit)
{
// Put all incident vertices in tmp_vertices.
for(int j=0; j<4; ++j) {
if((*cit)->vertex(j) != v) {
tmp_vertices.insert((*cit)->vertex(j));
vh_off_map[(*cit)->vertex(j)] = int_to_off((*cit)->offset(j))
- int_to_off((*cit)->offset((*cit)->index(v)));
}
}
}
// Now output the vertices.
std::copy(tmp_vertices.begin(), tmp_vertices.end(), std::back_inserter(vertices));
// create a Delaunay/regular triangulation of the points on the boundary
// in Euclidean space and make a map from the vertices in remover.tmp
// towards the vertices in *this
Unique_hash_map<VertexE_handle,Vertex_handle> vmap;
CellE_handle ch;
remover.tmp.clear();
for(unsigned int i=0; i < vertices.size(); i++) {
typedef typename Point_remover::Triangulation_R3::Point TRPoint;
CGAL_triangulation_assertion(
get_offset(vertices[i]) + combine_offsets(Offset(), vh_off_map[vertices[i]])
== combine_offsets(get_offset(vertices[i]),vh_off_map[vertices[i]]));
TRPoint trp = std::make_pair(vertices[i]->point(),
combine_offsets( get_offset(vertices[i]), vh_off_map[vertices[i]]) );
VertexE_handle vh = remover.tmp.insert(trp, ch);
vmap[vh] = vertices[i];
CGAL_triangulation_assertion(vmap.is_defined(vh));
}
CGAL_triangulation_assertion(remover.tmp.number_of_vertices() != 0);
// Construct the set of vertex triples of tmp
// We reorient the vertex triple so that it matches those from outer_map
// Also note that we use the vertices of *this, not of tmp
for(Finite_cellsE_iterator it = remover.tmp.finite_cells_begin();
it != remover.tmp.finite_cells_end();
++it) {
VertexE_triple vt_aux;
for(int i=0; i < 4; i++) {
FacetE f = std::pair<CellE_handle,int>(it,i);
vt_aux = VertexE_triple(
f.first->vertex(vertex_triple_index(f.second,0)),
f.first->vertex(vertex_triple_index(f.second,1)),
f.first->vertex(vertex_triple_index(f.second,2)));
if(vmap.is_defined(vt_aux.first)
&& vmap.is_defined(vt_aux.second)
&& vmap.is_defined(vt_aux.third) ) {
Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],
vmap[vt_aux.second]);
make_canonical(vt);
inner_map[vt]= f;
}
}
}
// A structure for storing the new neighboring relations
typedef boost::tuple<Cell_handle, int, Cell_handle> Neighbor_relation;
std::vector<Neighbor_relation> nr_vec;
std::vector<Cell_handle> new_cells;
// Grow inside the hole, by extending the surface
while(! outer_map.empty()) {
typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
Cell_handle o_ch = o_vt_f_pair.second.first;
unsigned int o_i = o_vt_f_pair.second.second;
typename Vertex_triple_FacetE_map::iterator iit =
inner_map.find(o_vt_f_pair.first);
CGAL_triangulation_assertion(iit != inner_map.end());
typename Vertex_triple_FacetE_map::value_type i_vt_f_pair = *iit;
CellE_handle i_ch = i_vt_f_pair.second.first;
unsigned int i_i = i_vt_f_pair.second.second;
// create a new cell to glue to the outer surface
Cell_handle new_ch = _tds.create_cell();
new_cells.push_back(new_ch);
new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);
set_offsets(new_ch, vh_off_map[vmap[i_ch->vertex(0)]],
vh_off_map[vmap[i_ch->vertex(1)]],
vh_off_map[vmap[i_ch->vertex(2)]],
vh_off_map[vmap[i_ch->vertex(3)]]);
// Update the edge length management
if(cover_manager.update_cover_data_during_management(new_ch, new_cells,
abort_if_cover_change))
{
CGAL_triangulation_expensive_postcondition(_tds.is_valid());
return false; // removing would cause / has caused a cover change
}
// The neighboring relation needs to be stored temporarily in
// nr_vec. It cannot be applied directly because then we could not
// easily cancel the removing process if a cell is encountered
// that does not obey the edge-length criterion.
nr_vec.push_back(boost::make_tuple(o_ch,o_i,new_ch));
nr_vec.push_back(boost::make_tuple(new_ch,i_i,o_ch));
// for the other faces check, if they can also be glued
for(unsigned int i = 0; i < 4; i++) {
if(i != i_i) {
Facet f = std::pair<Cell_handle,int>(new_ch,i);
Vertex_triple vt = make_vertex_triple(f);
make_canonical(vt);
std::swap(vt.second,vt.third);
typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
if(oit2 == outer_map.end()) {
std::swap(vt.second,vt.third);
outer_map[vt]= f;
} else {
// glue the faces
typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
Cell_handle o_ch2 = o_vt_f_pair2.second.first;
int o_i2 = o_vt_f_pair2.second.second;
nr_vec.push_back(boost::make_tuple(o_ch2,o_i2,new_ch));
nr_vec.push_back(boost::make_tuple(new_ch,i,o_ch2));
outer_map.erase(oit2);
}
}
}
outer_map.erase(oit);
}
// finally set the neighboring relations
for(unsigned int i=0; i<nr_vec.size(); i++) {
nr_vec[i].template get<0>()->set_neighbor(nr_vec[i].template get<1>(),nr_vec[i].template get<2>());
}
// Output the hidden points.
for(typename std::vector<Cell_handle>::iterator
hi = hole.begin(), hend = hole.end(); hi != hend; ++hi)
{
remover.add_hidden_points(*hi);
}
_tds.delete_vertex(v);
_tds.delete_cells(hole.begin(), hole.end());
CGAL_triangulation_expensive_assertion(is_valid());
return true; // sucessfully removed the vertex
}
// ############################################################################
// ############################################################################
// ############################################################################
/** \brief Delete each redundant cell and the not anymore needed data
* structures.
*
* This function consists of four iterations over all cells and one
* iteration over all vertices:
* 1. cell iteration: mark all cells that are to delete
* 2. cell iteration: redirect neighbors of remaining cells
* 3. cell iteration: redirect vertices of remaining cells
* 4. cell iteration: delete all cells marked in the 1. iteration
* Vertex iteration: delete all vertices outside the original domain.
*/
template < class GT, class TDS >
inline void
Periodic_3_triangulation_3<GT,TDS>::convert_to_1_sheeted_covering()
{
// ###################################################################
// ### First cell iteration ##########################################
// ###################################################################
{
if(is_1_cover())
return;
bool to_delete, has_simplifiable_offset;
Virtual_vertex_map_it vvmit;
// First iteration over all cells: Mark the cells that are to be deleted.
// Cells will be deleted if they cannot be translated anymore in the
// direction of one of the axes without yielding negative offsets.
for( Cell_iterator it = all_cells_begin();
it != all_cells_end(); ++it ) {
to_delete = false;
// for all directions in 3D Space
for( int j=0; j<3; j++ ) {
has_simplifiable_offset = true;
// for all vertices of cell it
for( int i=0; i<4; i++ ) {
vvmit = virtual_vertices.find(it->vertex(i));
// if it->vertex(i) lies inside the original domain:
if(vvmit == virtual_vertices.end()) {
// the cell cannot be moved any more because if we did, then
// it->vertex(i) will get at least one negative offset.
has_simplifiable_offset = false;
// if it->vertex(i) lies outside the original domain:
} else {
// The cell can certainly be deleted if the offset contains a 2
to_delete = to_delete || (vvmit->second.second[j] == 2);
// The cell can be moved into one direction only if the offset of
// all for vertices is >=1 for this direction. Since we already
// tested for 2 it is sufficient to test here for 1.
has_simplifiable_offset = has_simplifiable_offset
&& (vvmit->second.second[j] == 1);
}
}
// if the offset can be simplified, i.e. the cell can be moved, then
// it can be deleted.
if(has_simplifiable_offset)
to_delete = true;
}
// Mark all cells that are to delete. They cannot be deleted yet,
// because neighboring information still needs to be extracted.
if(to_delete) {
it->set_additional_flag(1);
}
}
}
// ###################################################################
// ### Second cell iteration #########################################
// ###################################################################
{
Vertex_handle vert[4], nbv[4];
Offset off[4];
Cell_handle nb, new_neighbor;
std::vector<Triple<Cell_handle, int, Cell_handle> > new_neighbor_relations;
// Second iteration over all cells: redirect neighbors where necessary
for(Cell_iterator it = all_cells_begin();
it != all_cells_end(); ++it) {
// Skip all cells that are to delete.
if(it->get_additional_flag() == 1)
continue;
// Redirect neighbors: Only neighbors that are marked by the
// additional_flag have to be substituted by one of their periodic
// copies. The unmarked neighbors stay the same.
for( int i = 0; i < 4; i++ ) {
if( it->neighbor(i)->get_additional_flag() != 1 )
continue;
nb = it->neighbor(i);
for( int j = 0; j < 4; j++ ) {
off[j] = Offset();
get_vertex( nb, j, vert[j], off[j]);
}
int x,y,z;
x = (std::min) ( (std::min) ( off[0][0], off[1][0] ),
(std::min) ( off[2][0], off[3][0] ) );
y = (std::min) ( (std::min) ( off[0][1], off[1][1] ),
(std::min) ( off[2][1], off[3][1] ) );
z = (std::min) ( (std::min) ( off[0][2], off[1][2] ),
(std::min) ( off[2][2], off[3][2] ) );
// The vector from nb to the "original" periodic copy of nb, that is
// the copy that will not be deleted.
Offset difference_offset(x,y,z);
CGAL_triangulation_assertion( !difference_offset.is_null() );
// We now have to find the "original" periodic copy of nb from
// its vertices. Therefore, we first have to find the vertices.
for( int j = 0; j < 4; j++ ) {
CGAL_triangulation_assertion( (off[j]-difference_offset)[0] >= 0);
CGAL_triangulation_assertion( (off[j]-difference_offset)[1] >= 0);
CGAL_triangulation_assertion( (off[j]-difference_offset)[2] >= 0);
CGAL_triangulation_assertion( (off[j]-difference_offset)[0] < 3);
CGAL_triangulation_assertion( (off[j]-difference_offset)[1] < 3);
CGAL_triangulation_assertion( (off[j]-difference_offset)[2] < 3);
// find the Vertex_handles of the vertices of the "original"
// periodic copy of nb. If the vertex is inside the original
// domain, there is nothing to do
if( (off[j]-difference_offset).is_null() ) {
nbv[j] = vert[j];
// If the vertex is outside the original domain, we have to search
// in virtual_vertices in the "wrong" direction. That means, we
// cannot use virtual_vertices.find but have to use
// virtual_vertices_reverse.
} else {
Offset nbo = off[j]-difference_offset;
nbv[j] = virtual_vertices_reverse.find(vert[j])
->second[nbo[0]*9+nbo[1]*3+nbo[2]-1];
}
}
// Find the new neighbor by its 4 vertices
new_neighbor = get_cell( nbv );
// Store the new neighbor relation. This cannot be applied yet because
// it would disturb the functioning of get_cell( ... )
new_neighbor_relations.push_back(make_triple(it, i, new_neighbor));
}
}
// Apply the new neighbor relations now.
for(unsigned int i=0; i<new_neighbor_relations.size(); i++) {
new_neighbor_relations[i].first->set_neighbor(
new_neighbor_relations[i].second,
new_neighbor_relations[i].third);
}
}
// ###################################################################
// ### Third cell iteration ##########################################
// ###################################################################
{
Vertex_handle vert[4];
Offset off[4];
// Third iteration over all cells: redirect vertices where necessary
for(Cell_iterator it = all_cells_begin();
it != all_cells_end(); ++it) {
// Skip all cells that are marked to delete
if(it->get_additional_flag() == 1)
continue;
// Find the corresponding vertices of it in the original domain
// and set them as new vertices of it.
for( int i = 0; i < 4; i++ ) {
off[i] = Offset();
get_vertex( it, i, vert[i], off[i]);
it->set_vertex( i, vert[i]);
CGAL_triangulation_assertion(vert[i]->point()[0] < domain().xmax());
CGAL_triangulation_assertion(vert[i]->point()[1] < domain().ymax());
CGAL_triangulation_assertion(vert[i]->point()[2] < domain().zmax());
CGAL_triangulation_assertion(vert[i]->point()[0] >= domain().xmin());
CGAL_triangulation_assertion(vert[i]->point()[1] >= domain().ymin());
CGAL_triangulation_assertion(vert[i]->point()[2] >= domain().zmin());
// redirect also the cell pointer of the vertex.
it->vertex(i)->set_cell(it);
}
// Set the offsets.
set_offsets(it, off[0], off[1], off[2], off[3] );
CGAL_triangulation_assertion( int_to_off(it->offset(0)) == off[0] );
CGAL_triangulation_assertion( int_to_off(it->offset(1)) == off[1] );
CGAL_triangulation_assertion( int_to_off(it->offset(2)) == off[2] );
CGAL_triangulation_assertion( int_to_off(it->offset(3)) == off[3] );
}
}
// ###################################################################
// ### Fourth cell iteration #########################################
// ###################################################################
std::vector<Point> hidden_points;
{
// Delete the marked cells.
std::vector<Cell_handle> cells_to_delete;
for( Cell_iterator cit = all_cells_begin();
cit != all_cells_end(); ++cit ) {
if( cit->get_additional_flag() == 1 )
{
gather_cell_hidden_points(cit, hidden_points);
cells_to_delete.push_back( cit );
}
}
_tds.delete_cells(cells_to_delete.begin(), cells_to_delete.end());
}
// ###################################################################
// ### Vertex iteration ##############################################
// ###################################################################
{
// Delete all the vertices in virtual_vertices, that is all vertices
// outside the original domain.
std::vector<Vertex_handle> vertices_to_delete;
for( Vertex_iterator vit = all_vertices_begin();
vit != all_vertices_end(); ++vit ) {
if( virtual_vertices.count( vit ) != 0 ) {
CGAL_triangulation_assertion( virtual_vertices.count( vit ) == 1 );
vertices_to_delete.push_back( vit );
}
}
_tds.delete_vertices(vertices_to_delete.begin(), vertices_to_delete.end());
}
_cover = CGAL::make_array(1,1,1);
virtual_vertices.clear();
virtual_vertices_reverse.clear();
reinsert_hidden_points_after_converting_to_1_sheeted(hidden_points);
}
template < class GT, class TDS >
inline void
Periodic_3_triangulation_3<GT,TDS>::convert_to_27_sheeted_covering()
{
if(_cover == CGAL::make_array(3,3,3))
return;
CGAL_triangulation_precondition(is_1_cover());
// Create 27 copies of each vertex and write virtual_vertices and
// virtual_vertices_reverse
std::list<Vertex_handle> original_vertices;
// try to use std::copy instead of the following loop.
for(Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit)
original_vertices.push_back(vit);
for(typename std::list<Vertex_handle>::iterator vit
= original_vertices.begin(); vit != original_vertices.end(); ++vit) {
Vertex_handle v_cp;
std::vector<Vertex_handle> copies;
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
for(int k=0; k<3; k++) {
if(i==0 && j==0 && k==0)
continue;
v_cp = _tds.create_vertex(*vit);
copies.push_back(v_cp);
virtual_vertices.insert(std::make_pair(v_cp,
std::make_pair(*vit,Offset(i,j,k))));
}
virtual_vertices_reverse.insert(std::make_pair(*vit,copies));
}
// Create 27 copies of each cell from the respective copies of the
// vertices and write virtual_cells and virtual_cells_reverse.
typedef std::map<Cell_handle, std::vector<Cell_handle > >
Virtual_cell_reverse_map;
typedef typename Virtual_cell_reverse_map::const_iterator VCRMIT;
Virtual_cell_reverse_map virtual_cells_reverse;
std::list<Cell_handle> original_cells;
for(Cell_iterator cit = cells_begin(); cit != cells_end(); ++cit)
original_cells.push_back(cit);
// Store vertex offsets in a separate data structure
std::list< Offset > off_v;
for(typename std::list<Vertex_handle>::iterator vit
= original_vertices.begin(); vit != original_vertices.end(); ++vit) {
Cell_handle ccc = (*vit)->cell();
int v_index = ccc->index(*vit);
off_v.push_back(int_to_off(ccc->offset(v_index)));
}
// Store neighboring offsets in a separate data structure
std::list<CGAL::cpp11::array<Offset,4> > off_nb;
for(typename std::list<Cell_handle>::iterator cit = original_cells.begin();
cit != original_cells.end(); ++cit) {
CGAL::cpp11::array<Offset,4> off_nb_c;
for(int i=0; i<4; i++) {
Cell_handle ccc = *cit;
Cell_handle nnn = ccc->neighbor(i);
off_nb_c[i] = neighbor_offset(ccc,i,nnn);
}
off_nb.push_back(off_nb_c);
}
// Create copies of cells
for(typename std::list<Cell_handle>::iterator cit = original_cells.begin();
cit != original_cells.end(); ++cit) {
Cell_handle c_cp;
std::vector<Cell_handle> copies;
Virtual_vertex_reverse_map_it vvrmit[4];
Offset vvoff[4];
for(int i=0; i<4; i++) {
vvrmit[i] = virtual_vertices_reverse.find((*cit)->vertex(i));
CGAL_triangulation_assertion(
vvrmit[i] != virtual_vertices_reverse.end());
vvoff[i] = int_to_off((*cit)->offset(i));
}
Vertex_handle vvh[4];
for(int n=0; n<26; n++) {
for(int i=0; i<4; i++) {
// Decomposition of n into an offset (nx,ny,nz):
// nx = (n+1)/9, ny = ((n+1)/3)%3, nz = (n+1)%3
int o_i = ((n+1)/9+vvoff[i].x()+3)%3;
int o_j = ((n+1)/3+vvoff[i].y()+3)%3;
int o_k = ((n+1)+vvoff[i].z()+3)%3;
int n_c = 9*o_i+3*o_j+o_k-1;
CGAL_triangulation_assertion(n_c >= -1);
if(n_c == -1) vvh[i] = (*cit)->vertex(i);
else vvh[i] = vvrmit[i]->second[n_c];
}
c_cp = _tds.create_cell(vvh[0], vvh[1], vvh[2], vvh[3]);
copies.push_back(c_cp);
}
virtual_cells_reverse.insert(std::make_pair(*cit,copies));
}
// Set new vertices of boundary cells of the original domain.
for(typename std::list<Cell_handle>::iterator cit = original_cells.begin();
cit != original_cells.end(); ++cit) {
for(int i=0; i<4; i++) {
Virtual_vertex_reverse_map_it vvrmit
= virtual_vertices_reverse.find((*cit)->vertex(i));
CGAL_triangulation_assertion(vvrmit != virtual_vertices_reverse.end());
Offset vvoff = int_to_off((*cit)->offset(i));
if(!vvoff.is_null()) {
int n_c = 9*vvoff.x()+3*vvoff.y()+vvoff.z()-1;
CGAL_triangulation_assertion(n_c >= 0);
CGAL_triangulation_assertion(static_cast<unsigned int>(n_c)
< vvrmit->second.size());
(*cit)->set_vertex(i,vvrmit->second[n_c]);
}
}
}
// Set neighboring relations of cell copies
typename std::list<CGAL::cpp11::array<Offset,4> >::iterator oit = off_nb.begin();
for(typename std::list<Cell_handle>::iterator cit = original_cells.begin();
cit != original_cells.end(); ++cit, ++oit) {
CGAL_triangulation_assertion( oit != off_nb.end() );
VCRMIT c_cp = virtual_cells_reverse.find(*cit);
CGAL_triangulation_assertion(c_cp != virtual_cells_reverse.end());
for(int i=0; i<4; i++) {
Cell_handle cit_nb = (*cit)->neighbor(i);
VCRMIT c_cp_nb = virtual_cells_reverse.find(cit_nb);
CGAL_triangulation_assertion(c_cp_nb != virtual_cells_reverse.end());
Offset nboff = (*oit)[i];
for(int n=0; n<26; n++) {
int n_nb;
if(nboff.is_null()) n_nb = n;
else {
int o_i = ((n+1)/9-nboff.x()+3)%3;
int o_j = ((n+1)/3-nboff.y()+3)%3;
int o_k = (n+1-nboff.z()+3)%3;
n_nb = 9*o_i+3*o_j+o_k-1;
}
if(n_nb == -1) {
CGAL_triangulation_assertion(cit_nb->has_vertex(
c_cp->second[n]->vertex((i+1)%4)) );
CGAL_triangulation_assertion(cit_nb->has_vertex(
c_cp->second[n]->vertex((i+2)%4)) );
CGAL_triangulation_assertion(cit_nb->has_vertex(
c_cp->second[n]->vertex((i+3)%4)) );
c_cp->second[n]->set_neighbor(i,cit_nb);
}
else {
CGAL_triangulation_assertion(n_nb >= 0);
CGAL_triangulation_assertion(static_cast<unsigned int>(n_nb)
<= c_cp_nb->second.size());
CGAL_triangulation_assertion(c_cp_nb->second[n_nb]
->has_vertex(c_cp->second[n]->vertex((i+1)%4)) );
CGAL_triangulation_assertion(c_cp_nb->second[n_nb]
->has_vertex(c_cp->second[n]->vertex((i+2)%4)) );
CGAL_triangulation_assertion(c_cp_nb->second[n_nb]
->has_vertex(c_cp->second[n]->vertex((i+3)%4)) );
c_cp->second[n]->set_neighbor(i,c_cp_nb->second[n_nb]);
}
}
}
}
// Set neighboring relations of original cells
oit = off_nb.begin();
for(typename std::list<Cell_handle>::iterator cit = original_cells.begin();
cit != original_cells.end(); ++cit, ++oit) {
CGAL_triangulation_assertion( oit != off_nb.end() );
for(int i=0; i<4; i++) {
Offset nboff = (*oit)[i];
if(!nboff.is_null()) {
Cell_handle cit_nb = (*cit)->neighbor(i);
VCRMIT c_cp_nb = virtual_cells_reverse.find(cit_nb);
CGAL_triangulation_assertion(c_cp_nb != virtual_cells_reverse.end());
int o_i = (3-nboff.x())%3;
int o_j = (3-nboff.y())%3;
int o_k = (3-nboff.z())%3;
int n_nb = 9*o_i+3*o_j+o_k-1;
CGAL_triangulation_assertion(n_nb >= 0);
CGAL_triangulation_assertion(static_cast<unsigned int>(n_nb)
<= c_cp_nb->second.size());
CGAL_triangulation_assertion(c_cp_nb->second[n_nb]
->has_vertex((*cit)->vertex((i+1)%4)) );
CGAL_triangulation_assertion(c_cp_nb->second[n_nb]
->has_vertex((*cit)->vertex((i+2)%4)) );
CGAL_triangulation_assertion(c_cp_nb->second[n_nb]
->has_vertex((*cit)->vertex((i+3)%4)) );
(*cit)->set_neighbor(i,c_cp_nb->second[n_nb]);
}
}
}
// Set incident cells
for(Cell_iterator cit = cells_begin(); cit != cells_end(); ++cit) {
for(int i=0; i<4; i++) {
cit->vertex(i)->set_cell(cit);
}
}
// Set offsets where necessary
for(typename std::list<Cell_handle>::iterator cit = original_cells.begin();
cit != original_cells.end(); ++cit) {
VCRMIT c_cp = virtual_cells_reverse.find(*cit);
CGAL_triangulation_assertion( c_cp != virtual_cells_reverse.end());
Offset off[4];
for(int i=0; i<4; i++)
off[i] = int_to_off((*cit)->offset(i));
if(off[0].is_null() && off[1].is_null() &&
off[2].is_null() && off[3].is_null())
continue;
for(int n=0; n<26; n++) {
Offset off_cp[4];
int o_i = (n+1)/9;
int o_j = ((n+1)/3)%3;
int o_k = (n+1)%3;
if(o_i!=2 && o_j!=2 && o_k !=2)
continue;
for(int i=0; i<4; i++) {
off_cp[i] = Offset((o_i==2)?off[i].x():0,
(o_j==2)?off[i].y():0,
(o_k==2)?off[i].z():0);
CGAL_triangulation_assertion(off_cp[i].x() == 0 || off_cp[i].x() == 1);
CGAL_triangulation_assertion(off_cp[i].y() == 0 || off_cp[i].y() == 1);
CGAL_triangulation_assertion(off_cp[i].z() == 0 || off_cp[i].z() == 1);
}
set_offsets(c_cp->second[n],off_cp[0],off_cp[1],off_cp[2],off_cp[3]);
}
}
// Iterate over all original cells and reset offsets.
for(typename std::list<Cell_handle>::iterator cit = original_cells.begin();
cit != original_cells.end(); ++cit) {
//This statement does not seem to have any effect
set_offsets(*cit, 0,0,0,0);
CGAL_triangulation_assertion((*cit)->offset(0) == 0);
CGAL_triangulation_assertion((*cit)->offset(1) == 0);
CGAL_triangulation_assertion((*cit)->offset(2) == 0);
CGAL_triangulation_assertion((*cit)->offset(3) == 0);
}
_cover = CGAL::make_array(3,3,3);
CGAL_triangulation_expensive_assertion(is_valid());
update_cover_data_after_converting_to_27_sheeted_covering();
}
template < class GT, class TDS >
class Periodic_3_triangulation_3<GT,TDS>::Finder
{
const Self* _t;
const Point& _p;
public:
Finder(const Self* t, const Point &p) : _t(t), _p(p) {}
bool operator()(const Vertex_handle v) {
return _t->equal(v->point(), _p);
}
};
/** Find the cell that consists of the four given vertices
*
* Iterates over all cells and compare the four vertices of each cell
* with the four vertices in vh.
*/
template < class GT, class TDS >
inline typename Periodic_3_triangulation_3<GT,TDS>::Cell_handle
Periodic_3_triangulation_3<GT,TDS>::get_cell(const Vertex_handle* vh) const
{
bool contains_v[4];
std::vector<Cell_handle> cells;
incident_cells(vh[3],std::back_inserter(cells));
for( typename std::vector<Cell_handle>::iterator it = cells.begin();
it != cells.end(); it++ ) {
CGAL_triangulation_assertion(
(*it)->vertex(0) == vh[3] || (*it)->vertex(1) == vh[3]
||(*it)->vertex(2) == vh[3] || (*it)->vertex(3) == vh[3]);
for( int j=0; j<3; j++ ) {
contains_v[j] = false;
contains_v[j] = ( (*it)->vertex(0) == vh[j] )
|| ( (*it)->vertex(1) == vh[j] )
|| ( (*it)->vertex(2) == vh[j] )
|| ( (*it)->vertex(3) == vh[j] );
}
if(contains_v[0] && contains_v[1] && contains_v[2]) {
return (*it);
}
}
CGAL_triangulation_assertion(false);
return Cell_handle();
}
/*! \brief Get the offset of tester.point() such that
* this point is in conflict with c w.r.t tester.get_offset().
*
* Implementation: Just try all eight possibilities.
*/
template < class GT, class TDS >
template < class Conflict_tester >
inline typename Periodic_3_triangulation_3<GT,TDS>::Offset
Periodic_3_triangulation_3<GT,TDS>::get_location_offset(
const Conflict_tester& tester, Cell_handle c) const
{
CGAL_triangulation_precondition( number_of_vertices() != 0 );
int cumm_off = c->offset(0) | c->offset(1) | c->offset(2) | c->offset(3);
if(cumm_off == 0) {
// default case:
CGAL_triangulation_assertion(tester(c, Offset()));
return Offset();
} else {
// Main idea seems to just test all possibilities.
for(int i=0; i<8; i++) {
if(((cumm_off | (~i))&7) == 7) {
if(tester(c,int_to_off(i))) {
return int_to_off(i);
}
}
}
}
CGAL_triangulation_assertion(false);
return Offset();
}
template < class GT, class TDS >
template < class Conflict_tester >
inline typename Periodic_3_triangulation_3<GT,TDS>::Offset
Periodic_3_triangulation_3<GT,TDS>::get_location_offset(
const Conflict_tester& tester, Cell_handle c, bool& found) const
{
CGAL_triangulation_precondition( number_of_vertices() != 0 );
found = false;
int cumm_off = c->offset(0) | c->offset(1) | c->offset(2) | c->offset(3);
if(cumm_off == 0 && tester(c, Offset())) {
// default case:
found = true;
return Offset();
} else {
// Main idea seems to just test all possibilities.
for(int i=0; i<8; i++) {
if(((cumm_off | (~i))&7) == 7) {
if(tester(c,int_to_off(i))) {
found = true;
return int_to_off(i);
}
}
}
}
return Offset();
}
/** Get the offset between the origins of the internal offset coordinate
* systems of two neighboring cells with respect from ch to nb.
*
* - Find two corresponding vertices from each cell
* - Return the difference of their offsets.
*/
template < class GT, class TDS >
inline typename Periodic_3_triangulation_3<GT,TDS>::Offset
Periodic_3_triangulation_3<GT,TDS>::neighbor_offset(
Cell_handle ch, int i, Cell_handle nb) const
{
// Redundance in the signature!
CGAL_triangulation_precondition(ch->neighbor(i) == nb);
CGAL_triangulation_precondition(nb->neighbor(nb->index(ch)) == ch);
Vertex_handle vertex_ch;
int index_ch, index_nb;
// ensure that vertex_ch \in nb and vertex_nb \in ch
index_ch = (i==0? 1 : 0);
vertex_ch = ch->vertex(index_ch);
index_nb = nb->index(vertex_ch);
return int_to_off(nb->offset(index_nb)) - int_to_off(ch->offset(index_ch));
}
/**
* - ch->offset(i) is an bit triple encapsulated in an integer. Each bit
* represents the offset in one direction --> 2-cover!
* - it_to_off(int) decodes this again.
* - Finally the offset vector is multiplied by cover.
* So if we are working in 3-cover we translate it to the neighboring
* 3-cover and not only to the neighboring domain.
*/
template < class GT, class TDS >
inline void Periodic_3_triangulation_3<GT, TDS>::get_vertex(
Cell_handle ch, int i, Vertex_handle& vh, Offset& off) const
{
off = combine_offsets(Offset(),int_to_off(ch->offset(i)));
vh = ch->vertex(i);
if(is_1_cover())
return;
Vertex_handle vh_i = vh;
get_vertex(vh_i, vh, off);
return;
}
template < class GT, class TDS >
inline void Periodic_3_triangulation_3<GT, TDS>::get_vertex(
Vertex_handle vh_i, Vertex_handle& vh, Offset& off) const
{
Virtual_vertex_map_it it = virtual_vertices.find(vh_i);
if(it == virtual_vertices.end()) {
// if 'vh_i' is not contained in virtual_vertices, then it is in
// the original domain.
vh = vh_i;
CGAL_triangulation_assertion(vh != Vertex_handle());
} else {
// otherwise it has to be looked up as well as its offset.
vh = it->second.first;
off += it->second.second;
CGAL_triangulation_assertion(vh->point().x() < domain().xmax());
CGAL_triangulation_assertion(vh->point().y() < domain().ymax());
CGAL_triangulation_assertion(vh->point().z() < domain().zmax());
CGAL_triangulation_assertion(vh->point().x() >= domain().xmin());
CGAL_triangulation_assertion(vh->point().y() >= domain().ymin());
CGAL_triangulation_assertion(vh->point().z() >= domain().zmin());
}
}
template < class GT, class TDS >
std::istream&
operator>> (std::istream& is, Periodic_3_triangulation_3<GT,TDS>& tr)
// reads
// the current covering that guarantees the triangulation to be a
// simplicial complex
// the number of vertices
// the non combinatorial information on vertices (points in case of 1-sheeted
// covering, point-offset pairs otherwise)
// ALL PERIODIC COPIES OF ONE VERTEX MUST BE STORED CONSECUTIVELY
// the number of cells
// the cells by the indices of their vertices in the preceding list
// of vertices, plus the non combinatorial information on each cell
// the neighbors of each cell by their index in the preceding list of cells
{
CGAL_triangulation_precondition(is.good());
typedef Periodic_3_triangulation_3<GT,TDS> Triangulation;
typedef typename Triangulation::size_type size_type;
typedef typename Triangulation::Vertex_handle Vertex_handle;
typedef typename Triangulation::Cell_handle Cell_handle;
typedef typename Triangulation::Offset Offset;
typedef typename Triangulation::Iso_cuboid Iso_cuboid;
tr.clear();
Iso_cuboid domain(0,0,0,1,1,1);
int cx=0, cy=0, cz=0;
size_type n=0;
if(is_ascii(is)) {
is >> domain;
is >> cx >> cy >> cz;
is >> n;
}
else {
is >> domain;
read(is,cx);
read(is,cy);
read(is,cz);
read(is,n);
}
CGAL_triangulation_assertion((n/(cx*cy*cz))*cx*cy*cz == n);
tr.tds().set_dimension((n==0?-2:3));
tr._gt.set_domain(domain);
tr._cover = CGAL::make_array(cx,cy,cz);
if( n==0 ) return is;
std::vector< Vertex_handle > V(n);
if(cx==1 && cy==1 && cz==1) {
for(std::size_t i=0; i < n; i++) {
V[i] = tr.tds().create_vertex();
is >> *V[i];
}
} else {
Vertex_handle v,w;
std::vector<Vertex_handle> vv;
Offset off;
for(std::size_t i=0; i < n; i++) {
v = tr.tds().create_vertex();
V[i] = v;
is >> *V[i] >> off;
vv.clear();
for(int j=1; j<cx*cy*cz; j++) {
i++;
w = tr.tds().create_vertex();
V[i] = w;
is >> *V[i] >> off;
vv.push_back(w);
tr.virtual_vertices[w]=std::make_pair(v,off);
}
tr.virtual_vertices_reverse[v]=vv;
}
}
std::vector< Cell_handle > C;
std::size_t m;
tr.tds().read_cells(is, V, m, C);
// read offsets
int off[4] = {0,0,0,0};
for(std::size_t j=0; j < m; j++) {
if(is_ascii(is))
is >> off[0] >> off[1] >> off[2] >> off[3];
else {
read(is,off[0]);
read(is,off[1]);
read(is,off[2]);
read(is,off[3]);
}
tr.set_offsets(C[j],off[0],off[1],off[2],off[3]);
}
// read potential other information
for(std::size_t j=0; j < m; j++)
is >> *(C[j]);
CGAL_triangulation_expensive_assertion( tr.is_valid() );
return is;
}
template < class GT, class TDS >
std::ostream&
operator<< (std::ostream& os,const Periodic_3_triangulation_3<GT,TDS>& tr)
// writes :
// the number of vertices
// the domain as six coordinates: xmin ymin zmin xmax ymax zmax
// the current covering that guarantees the triangulation to be a
// simplicial complex
// the non combinatorial information on vertices (points in case of 1-sheeted
// covering, point-offset pairs otherwise)
// ALL PERIODIC COPIES OF ONE VERTEX MUST BE STORED CONSECUTIVELY
// the number of cells
// the cells by the indices of their vertices in the preceding list
// of vertices, plus the non combinatorial information on each cell
// the neighbors of each cell by their index in the preceding list of cells
{
typedef Periodic_3_triangulation_3<GT,TDS> Triangulation;
typedef typename Triangulation::size_type size_type;
typedef typename Triangulation::Vertex_handle Vertex_handle;
typedef typename Triangulation::Vertex_iterator Vertex_iterator;
typedef typename Triangulation::Cell_handle Cell_handle;
typedef typename Triangulation::Cell_iterator Cell_iterator;
typedef typename Triangulation::Covering_sheets Covering_sheets;
typedef typename Triangulation::Offset Offset;
typedef typename Triangulation::Virtual_vertex_map_it Virtual_vertex_map_it;
typedef typename Triangulation::Iso_cuboid Iso_cuboid;
// outputs dimension, domain and number of vertices
Iso_cuboid domain = tr.domain();
Covering_sheets cover = tr.number_of_sheets();
size_type n = tr.number_of_vertices();
if(is_ascii(os))
os << domain << std::endl
<< cover[0] << " " << cover[1] << " " << cover[2] << std::endl
<< n*cover[0]*cover[1]*cover[2] << std::endl;
else {
os << domain;
write(os,cover[0]);
write(os,cover[1]);
write(os,cover[2]);
write(os,n*cover[0]*cover[1]*cover[2]);
}
if(n == 0)
return os;
// write the vertices
Unique_hash_map<Vertex_handle, std::size_t > V;
std::size_t i=0;
if(tr.is_1_cover()) {
for(Vertex_iterator it=tr.vertices_begin(); it!=tr.vertices_end(); ++it) {
V[it] = i++;
os << it->point();
if(is_ascii(os))
os << std::endl;
}
} else {
Virtual_vertex_map_it vit, vvit;
std::vector<Vertex_handle> vv;
for(Vertex_iterator it=tr.vertices_begin(); it!=tr.vertices_end(); ++it) {
vit = tr.virtual_vertices.find(it);
if(vit != tr.virtual_vertices.end())
continue;
V[it]=i++;
if(is_ascii(os))
os << it->point() << std::endl
<< Offset(0,0,0) << std::endl;
else os << it->point() << Offset(0,0,0);
CGAL_triangulation_assertion(tr.virtual_vertices_reverse.find(it)
!= tr.virtual_vertices_reverse.end());
vv = tr.virtual_vertices_reverse.find(it)->second;
CGAL_triangulation_assertion(vv.size() == 26);
for(std::size_t j=0; j<vv.size(); j++) {
vvit = tr.virtual_vertices.find(vv[j]);
CGAL_triangulation_assertion(vvit != tr.virtual_vertices.end());
V[vv[j]] = i++;
if(is_ascii(os))
os << vv[j]->point() << std::endl
<< vvit->second.second << std::endl;
else os << vv[j]->point() << vvit->second.second;
}
}
}
CGAL_triangulation_postcondition(i == tr.number_of_sheets()[0] *
tr.number_of_sheets()[1] *
tr.number_of_sheets()[2] * n);
// asks the tds for the combinatorial information
tr.tds().print_cells(os, V);
// write offsets
//for(unsigned int i=0; i<tr.number_of_cells(); i++) {
for(Cell_iterator it=tr.cells_begin(); it!=tr.cells_end(); ++it) {
//Cell_handle ch = std::find(tr.cells_begin(), tr.cells_end(), i);
Cell_handle ch(it);
for(int j=0; j<4; j++) {
if(is_ascii(os)) {
os << ch->offset(j);
if( j==3 )
os << std::endl;
else
os << ' ';
}
else write(os,ch->offset(j));
}
}
// write the non combinatorial information on the cells
// using the << operator of Cell
// works because the iterator of the tds traverses the cells in the
// same order as the iterator of the triangulation
if(tr.number_of_vertices() != 0) {
for(Cell_iterator it=tr.cells_begin(); it != tr.cells_end(); ++it) {
os << *it; // other information
if(is_ascii(os))
os << std::endl;
}
}
return os;
}
namespace internal {
/// Internal function used by operator==.
// This function tests and registers the 4 neighbors of c1/c2,
// and performs a bfs traversal
// Returns false if an inequality has been found.
//TODO: introduce offsets
template <class GT, class TDS1, class TDS2>
bool
test_next(const Periodic_3_triangulation_3<GT, TDS1>& t1,
const Periodic_3_triangulation_3<GT, TDS2>& t2,
typename Periodic_3_triangulation_3<GT, TDS1>::Cell_handle c1,
typename Periodic_3_triangulation_3<GT, TDS2>::Cell_handle c2,
std::map<typename Periodic_3_triangulation_3<GT, TDS1>::Cell_handle,
typename Periodic_3_triangulation_3<GT, TDS2>::Cell_handle>& Cmap,
std::map<typename Periodic_3_triangulation_3<GT, TDS1>::Vertex_handle,
typename Periodic_3_triangulation_3<GT, TDS2>::Vertex_handle>& Vmap)
{
typedef Periodic_3_triangulation_3<GT, TDS1> Tr1;
typedef Periodic_3_triangulation_3<GT, TDS2> Tr2;
typedef typename Tr1::Vertex_handle Vertex_handle1;
typedef typename Tr1::Cell_handle Cell_handle1;
typedef typename Tr2::Vertex_handle Vertex_handle2;
typedef typename Tr2::Cell_handle Cell_handle2;
typedef typename std::map<Cell_handle1, Cell_handle2>::const_iterator Cit;
typedef typename std::map<Vertex_handle1, Vertex_handle2>::const_iterator Vit;
std::vector<std::pair<Cell_handle1, Cell_handle2> > queue;
queue.push_back(std::make_pair(c1,c2));
while(! queue.empty()) {
boost::tie(c1,c2) = queue.back();
queue.pop_back();
// Precondition: c1, c2 have been registered as well as their 4 vertices.
CGAL_triangulation_precondition(t1.number_of_vertices() != 0);
CGAL_triangulation_precondition(Cmap[c1] == c2);
CGAL_triangulation_precondition(Vmap.find(c1->vertex(0)) != Vmap.end());
CGAL_triangulation_precondition(Vmap.find(c1->vertex(1)) != Vmap.end());
CGAL_triangulation_precondition(Vmap.find(c1->vertex(2)) != Vmap.end());
CGAL_triangulation_precondition(Vmap.find(c1->vertex(3)) != Vmap.end());
for(int i=0; i <= 3; ++i) {
Cell_handle1 n1 = c1->neighbor(i);
Cit cit = Cmap.find(n1);
Vertex_handle1 v1 = c1->vertex(i);
Vertex_handle2 v2 = Vmap[v1];
Cell_handle2 n2 = c2->neighbor(c2->index(v2));
if(cit != Cmap.end()) {
// n1 was already registered.
if(cit->second != n2)
return false;
continue;
}
// n1 has not yet been registered.
// We check that the new vertices match geometrically.
// And we register them.
Vertex_handle1 vn1 = n1->vertex(n1->index(c1));
Vertex_handle2 vn2 = n2->vertex(n2->index(c2));
Vit vit = Vmap.find(vn1);
if(vit != Vmap.end()) {
// vn1 already registered
if(vit->second != vn2)
return false;
}
else {
if(t1.geom_traits().compare_xyz_3_object()(t1.construct_point(vn1->point()),
t2.construct_point(vn2->point())) != 0)
return false;
// We register vn1/vn2.
Vmap.insert(std::make_pair(vn1, vn2));
}
// We register n1/n2.
Cmap.insert(std::make_pair(n1, n2));
queue.push_back(std::make_pair(n1, n2));
}
}
return true;
}
} // namespace internal
template < class GT, class TDS1, class TDS2 >
bool
operator==(const Periodic_3_triangulation_3<GT,TDS1>& t1,
const Periodic_3_triangulation_3<GT,TDS2>& t2)
{
typedef typename Periodic_3_triangulation_3<GT,TDS1>::Vertex_handle
Vertex_handle1;
typedef typename Periodic_3_triangulation_3<GT,TDS1>::Cell_handle
Cell_handle1;
typedef typename Periodic_3_triangulation_3<GT,TDS2>::Vertex_handle
Vertex_handle2;
typedef typename Periodic_3_triangulation_3<GT,TDS2>::Vertex_handle
Vertex_iterator2;
typedef typename Periodic_3_triangulation_3<GT,TDS2>::Cell_handle
Cell_handle2;
typedef typename Periodic_3_triangulation_3<GT,TDS1>::Point Point;
typedef typename Periodic_3_triangulation_3<GT,TDS1>::Offset Offset;
// typedef typename Periodic_3_triangulation_3<GT,TDS1>
// ::Geometric_traits::Compare_xyz_3 Compare_xyz_3;
// Compare_xyz_3 cmp1 = t1.geom_traits().compare_xyz_3_object();
// Compare_xyz_3 cmp2 = t2.geom_traits().compare_xyz_3_object();
// Some quick checks.
if( t1.domain() != t2.domain()
|| t1.number_of_sheets() != t2.number_of_sheets())
return false;
if( t1.number_of_vertices() != t2.number_of_vertices()
|| t1.number_of_cells() != t2.number_of_cells())
return false;
// Special case for empty triangulations
if(t1.number_of_vertices() == 0)
return true;
// We will store the mapping between the 2 triangulations vertices and
// cells in 2 maps.
std::map<Vertex_handle1, Vertex_handle2> Vmap;
std::map<Cell_handle1, Cell_handle2> Cmap;
// find a common point
Vertex_handle1 v1 = static_cast<Vertex_handle1>(t1.vertices_begin());
Vertex_handle2 iv2;
for(Vertex_iterator2 vit2 = t2.vertices_begin();
vit2 != t2.vertices_end(); ++vit2) {
if(!t1.equal(vit2->point(), v1->point(),
t2.get_offset(vit2), t1.get_offset(v1)))
continue;
iv2 = static_cast<Vertex_handle2>(vit2);
break;
}
if(iv2 == Vertex_handle2())
return false;
Vmap.insert(std::make_pair(v1, iv2));
// We pick one cell of t1, and try to match it against the
// cells of t2.
Cell_handle1 c = v1->cell();
Vertex_handle1 v2 = c->vertex((c->index(v1)+1)%4);
Vertex_handle1 v3 = c->vertex((c->index(v1)+2)%4);
Vertex_handle1 v4 = c->vertex((c->index(v1)+3)%4);
Point p2 = v2->point();
Point p3 = v3->point();
Point p4 = v4->point();
Offset o2 = t1.get_offset(v2);
Offset o3 = t1.get_offset(v3);
Offset o4 = t1.get_offset(v4);
std::vector<Cell_handle2> ics;
t2.incident_cells(iv2, std::back_inserter(ics));
for(typename std::vector<Cell_handle2>::const_iterator cit = ics.begin();
cit != ics.end(); ++cit) {
int inf = (*cit)->index(iv2);
if(t1.equal(p2, (*cit)->vertex((inf+1)%4)->point(),
o2, t2.get_offset((*cit)->vertex((inf+1)%4))))
Vmap.insert(std::make_pair(v2, (*cit)->vertex((inf+1)%4)));
else if(t1.equal(p2, (*cit)->vertex((inf+2)%4)->point(),
o2, t2.get_offset((*cit)->vertex((inf+2)%4))))
Vmap.insert(std::make_pair(v2, (*cit)->vertex((inf+2)%4)));
else if(t1.equal(p2, (*cit)->vertex((inf+3)%4)->point(),
o2, t2.get_offset((*cit)->vertex((inf+3)%4))))
Vmap.insert(std::make_pair(v2, (*cit)->vertex((inf+3)%4)));
else
continue; // None matched v2.
if(t1.equal(p3, (*cit)->vertex((inf+1)%4)->point(),
o3, t2.get_offset((*cit)->vertex((inf+1)%4))))
Vmap.insert(std::make_pair(v3, (*cit)->vertex((inf+1)%4)));
else if(t1.equal(p3, (*cit)->vertex((inf+2)%4)->point(),
o3, t2.get_offset((*cit)->vertex((inf+2)%4))))
Vmap.insert(std::make_pair(v3, (*cit)->vertex((inf+2)%4)));
else if(t1.equal(p3, (*cit)->vertex((inf+3)%4)->point(),
o3, t2.get_offset((*cit)->vertex((inf+3)%4))))
Vmap.insert(std::make_pair(v3, (*cit)->vertex((inf+3)%4)));
else
continue; // None matched v3.
if(t1.equal(p4, (*cit)->vertex((inf+1)%4)->point(),
o4, t2.get_offset((*cit)->vertex((inf+1)%4))))
Vmap.insert(std::make_pair(v4,(*cit)->vertex((inf+1)%4)));
else if(t1.equal(p4, (*cit)->vertex((inf+2)%4)->point(),
o4, t2.get_offset((*cit)->vertex((inf+2)%4))))
Vmap.insert(std::make_pair(v4,(*cit)->vertex((inf+2)%4)));
else if(t1.equal(p4, (*cit)->vertex((inf+3)%4)->point(),
o4, t2.get_offset((*cit)->vertex((inf+3)%4))))
Vmap.insert(std::make_pair(v4,(*cit)->vertex((inf+3)%4)));
else
continue; // None matched v4.
// Found it !
Cmap.insert(std::make_pair(c, *cit));
break;
}
if(Cmap.size() == 0)
return false;
// We now have one cell, we need to compare in a bfs graph traversal
return internal::test_next(t1, t2, Cmap.begin()->first, Cmap.begin()->second, Cmap, Vmap);
}
template < class GT, class TDS1, class TDS2 >
inline
bool
operator!=(const Periodic_3_triangulation_3<GT,TDS1>& t1,
const Periodic_3_triangulation_3<GT,TDS2>& t2)
{
return ! (t1 == t2);
}
} // namespace CGAL
#endif // CGAL_PERIODIC_3_TRIANGULATION_3_H