Update progress.

master
Jeremy Hu 2017-01-02 12:03:54 +09:30
parent 32057f4e4d
commit 68cb7d499f
8 changed files with 79 additions and 52 deletions

View File

@ -36,7 +36,8 @@ Two caps and many strips composites a cylinder.
Almost all 3D editor have a infinite grid ground, I just made a finite one, in the future, I should expand the grid outside of the screen to make it infinite. Almost all 3D editor have a infinite grid ground, I just made a finite one, in the future, I should expand the grid outside of the screen to make it infinite.
Now, for just beginning, I think it's a not bad start. Now, for just beginning, I think it's a not bad start.
<img src="screenshot/dust3d_sphere_cylinder.png"> <img src="screenshot/dust3d_sphere_cylinder.png">
- [ ] Implement B-Mesh algorithm (Dec 18, 2016 ~ Dec 31, 2016) - [ ] Implement B-Mesh algorithm (Dec 18, 2016 ~ Jan 02, 2017)
There is a implementation of [B-Mesh algorithm in C++](https://github.com/evanw/cs224final) language, but I want the pure C version, so I start to implement my own version. I read both paper and this implementation, it gave me very helpful understanding of this algorithm.
*Drawing Skeletal Shape Balls* *Drawing Skeletal Shape Balls*
Draw shape ball is easy, no need to rotate, I just need scale it along the ball's radius. Draw shape ball is easy, no need to rotate, I just need scale it along the ball's radius.
Draw the cylinder which connects two shape balls is more difficult, I need do some math to rotate it. [Here](http://www.thjsmith.com/40/cylinder-between-two-points-opengl-c) described it. Draw the cylinder which connects two shape balls is more difficult, I need do some math to rotate it. [Here](http://www.thjsmith.com/40/cylinder-between-two-points-opengl-c) described it.
@ -55,10 +56,14 @@ I created the test nodes's geometry information from Blender. Here is the render
When I am implementing the B-Mesh algorithm, I am also think in the future, how to create a library of bunch of initial base models. There is a paper [the Skeleton of a Closed 3D Shape](http://www1.idc.ac.il/icgf/GraphicsSeminar2006/DCGskeleton06.pdf) described how to generate skeleton from mesh, this is the reverse progress of what I am doing, I think it can resolve the problem of insufficient initial base models, I can generate from tons of existed models. When I am implementing the B-Mesh algorithm, I am also think in the future, how to create a library of bunch of initial base models. There is a paper [the Skeleton of a Closed 3D Shape](http://www1.idc.ac.il/icgf/GraphicsSeminar2006/DCGskeleton06.pdf) described how to generate skeleton from mesh, this is the reverse progress of what I am doing, I think it can resolve the problem of insufficient initial base models, I can generate from tons of existed models.
*Convex Hull* *Convex Hull*
After finish the rotation at the two connected bones, I need implement 3D Convex Hull algorithm at the joint ball, there are so many methods to get the convex hull, I found the [Gift wrapping](http://dccg.upc.edu/people/vera/wp-content/uploads/2014/11/GA2014-ConvexHulls3D-Roger-Hernando.pdf) is the most strait-forward one, though is not the most efficient one. After finish the rotation at the two connected bones, I need implement 3D Convex Hull algorithm at the joint ball, there are so many methods to get the convex hull, I found the [Gift wrapping](http://dccg.upc.edu/people/vera/wp-content/uploads/2014/11/GA2014-ConvexHulls3D-Roger-Hernando.pdf) is the most strait-forward one, though is not the most efficient one.
There is a good implementation of [Gift Wrapping algorithm written in lua](https://github.com/danielhst/3d-Hull-gift-wrap/blob/master/giftWrap.lua) language. When I was implementing, I first translated this version to C language, but maybe there are some bugs on my own translation, there are lots of repeated faces, so changed a little, the code now is not just the translation of the original lua version.
<img src="screenshot/dust3d_convex_hull.png" width="124" height="128"> <img src="screenshot/dust3d_convex_hull.png" width="124" height="128">
*Stitching* *Stitching*
I follow the B-Mesh paper, made another test module inside Blender, and created a correspond `data/bmesh_test_2.h` manually. I follow the B-Mesh paper, made another test module inside Blender, and created a correspond `data/bmesh_test_2.h` manually.
<img src="screenshot/dust3d_bmesh_test_2.png" width="124" height="128"> <img src="screenshot/dust3d_bmesh_joint_1.png" width="124" height="128"> <img src="screenshot/dust3d_bmesh_joint_2.png" width="124" height="128"> <img src="screenshot/dust3d_bmesh_test_2.png" width="124" height="128"> <img src="screenshot/dust3d_bmesh_joint_1.png" width="124" height="128"> <img src="screenshot/dust3d_bmesh_joint_2.png" width="124" height="128">
*Catmull-Clark Subdivision*
<img src="screenshot/dust3d_subdivide_catmull_clark.png" width="124" height="128">
There is a implementation of Catmull-Clark Subdivision algorithm on [rosettacode](https://rosettacode.org/wiki/Catmull%E2%80%93Clark_subdivision_surface/C), the code is very simple and beautiful, just lack of some memory alloc fail check. I translated the algorithm to use my own array implementation.
- [ ] Export Wavefront .obj - [ ] Export Wavefront .obj
- [ ] Render B-Mesh result - [ ] Render B-Mesh result
- [ ] Design UI for monster parts configuration - [ ] Design UI for monster parts configuration

View File

@ -17,7 +17,8 @@ SOURCES += main.cpp \
matrix.c \ matrix.c \
convexhull.c \ convexhull.c \
hashtable.c \ hashtable.c \
osutil.cpp osutil.cpp \
subdivide.c
HEADERS += mainwindow.h \ HEADERS += mainwindow.h \
render.h \ render.h \
@ -29,4 +30,5 @@ HEADERS += mainwindow.h \
convexhull.h \ convexhull.h \
hashtable.h \ hashtable.h \
3dstruct.h \ 3dstruct.h \
osutil.h osutil.h \
subdivide.h

View File

@ -1,6 +1,7 @@
#ifndef _3DSTRUCT_H #ifndef _3DSTRUCT_H
#define _3DSTRUCT_H #define _3DSTRUCT_H
#include "vector3d.h" #include "vector3d.h"
#include "array.h"
typedef struct { typedef struct {
vec3 pt[3]; vec3 pt[3];

View File

@ -539,9 +539,8 @@ int convexHullMergeTriangles(convexHull *hull) {
e->score = (int)angle; e->score = (int)angle;
//if (edgeIndex >= 12 && edgeIndex <= 12) { //if (edgeIndex >= 12 && edgeIndex <= 12) {
// angle = (int)vec3Angle(&f1normal, &f2normal); // angle = (int)vec3Angle(&f1normal, &f2normal);
// drawDebugPrintf("edgeIndex:%d angle:%f normal1:<%f,%f,%f> normal2:<%f,%f,%f>", drawDebugPrintf("edgeIndex:%d angle:%f",
// edgeIndex, angle, f1normal.x, f1normal.y, f1normal.z, edgeIndex, angle);
// f2normal.x, f2normal.y, f2normal.z);
//} //}
} }
} }
@ -564,7 +563,7 @@ int convexHullMergeTriangles(convexHull *hull) {
convexHullFace *f2 = (convexHullFace *)arrayGetItem(hull->faceArray, convexHullFace *f2 = (convexHullFace *)arrayGetItem(hull->faceArray,
e->face2); e->face2);
if (3 == f1->vertexNum && 3 == f2->vertexNum) { if (3 == f1->vertexNum && 3 == f2->vertexNum) {
if (e->score <= 0) { if (e->score <= 40) {
while (e->p1 == f1->u.t.indices[0] || e->p2 == f1->u.t.indices[0]) { while (e->p1 == f1->u.t.indices[0] || e->p2 == f1->u.t.indices[0]) {
rollTriangleIndices((face3 *)f1); rollTriangleIndices((face3 *)f1);
} }

View File

@ -31,18 +31,18 @@ hashtable *hashtableCreate(int bucketSize,
void *userData) { void *userData) {
hashtable *ht = (hashtable *)calloc(1, sizeof(hashtable)); hashtable *ht = (hashtable *)calloc(1, sizeof(hashtable));
if (!ht) { if (!ht) {
fprintf(stderr, "%s:Insufficient memory.", __FUNCTION__); fprintf(stderr, "%s:Insufficient memory.\n", __FUNCTION__);
return 0; return 0;
} }
ht->keyArray = arrayCreate(sizeof(hashtableKey)); ht->keyArray = arrayCreate(sizeof(hashtableKey));
if (!ht->keyArray) { if (!ht->keyArray) {
fprintf(stderr, "%s:arrayCreate failed.", __FUNCTION__); fprintf(stderr, "%s:arrayCreate failed.\n", __FUNCTION__);
hashtableDestroy(ht); hashtableDestroy(ht);
return 0; return 0;
} }
ht->entryArray = arrayCreate(sizeof(hashtableEntry)); ht->entryArray = arrayCreate(sizeof(hashtableEntry));
if (!ht->entryArray) { if (!ht->entryArray) {
fprintf(stderr, "%s:arrayCreate failed.", __FUNCTION__); fprintf(stderr, "%s:arrayCreate failed.\n", __FUNCTION__);
hashtableDestroy(ht); hashtableDestroy(ht);
return 0; return 0;
} }
@ -51,7 +51,7 @@ hashtable *hashtableCreate(int bucketSize,
ht->compareCallback = compareCallback; ht->compareCallback = compareCallback;
ht->userData = userData; ht->userData = userData;
if (0 != arraySetLength(ht->keyArray, bucketSize)) { if (0 != arraySetLength(ht->keyArray, bucketSize)) {
fprintf(stderr, "%s:arraySetLength failed(bucketSize:%d).", __FUNCTION__, fprintf(stderr, "%s:arraySetLength failed(bucketSize:%d).\n", __FUNCTION__,
bucketSize); bucketSize);
hashtableDestroy(ht); hashtableDestroy(ht);
return 0; return 0;
@ -98,7 +98,7 @@ int hashtableInsert(hashtable *ht, const void *node) {
} }
newEntryIndex = arrayGetLength(ht->entryArray); newEntryIndex = arrayGetLength(ht->entryArray);
if (0 != arraySetLength(ht->entryArray, newEntryIndex + 1)) { if (0 != arraySetLength(ht->entryArray, newEntryIndex + 1)) {
fprintf(stderr, "%s:arraySetLength failed(newEntryIndex:%d).", fprintf(stderr, "%s:arraySetLength failed(newEntryIndex:%d).\n",
__FUNCTION__, newEntryIndex); __FUNCTION__, newEntryIndex);
return -1; return -1;
} }

View File

@ -7,6 +7,7 @@
#include "bmesh.h" #include "bmesh.h"
#include "matrix.h" #include "matrix.h"
#include "vector3d.h" #include "vector3d.h"
#include "subdivide.h"
static const float bmeshBallColors[][4] { static const float bmeshBallColors[][4] {
{0.00, 0.78, 1.00, 0.5}, {0.00, 0.78, 1.00, 0.5},
@ -212,7 +213,7 @@ void Render::initializeGL() {
drawInit(); drawInit();
} }
#include "../data/bmesh_test_2.h" #include "../data/bmesh_test_1.h"
void Render::paintGL() { void Render::paintGL() {
bmesh *bm = 0; bmesh *bm = 0;
@ -235,8 +236,17 @@ void Render::paintGL() {
drawGrid(10, 1); drawGrid(10, 1);
glEnable(GL_LIGHTING); glEnable(GL_LIGHTING);
{
subdivModel *input = subdivCreateModel();
subdivModel *output;
subdivAddCube(input);
output = subdivCatmullClarkWithLoops(input, 2);
subdivDestroyModel(input);
subdivDestroyModel(output);
}
if (0 == bm) { if (0 && 0 == bm) {
bmeshBall ball; bmeshBall ball;
bmeshBone bone; bmeshBone bone;
int i; int i;
@ -264,50 +274,53 @@ void Render::paintGL() {
bmeshStitch(bm); bmeshStitch(bm);
bmeshGenerateInbetweenMesh(bm); bmeshGenerateInbetweenMesh(bm);
} }
if (bm) {
drawBmeshBallRecursively(bm, bmeshGetRootBall(bm)); drawBmeshBallRecursively(bm, bmeshGetRootBall(bm));
//glBegin(GL_QUADS); //glBegin(GL_QUADS);
drawBmeshBallQuadRecursively(bm, bmeshGetRootBall(bm)); drawBmeshBallQuadRecursively(bm, bmeshGetRootBall(bm));
//glEnd(); //glEnd();
{ {
int index; int index;
/* /*
for (index = 0; index < bmeshGetBallNum(bm); ++index) { for (index = 0; index < bmeshGetBallNum(bm); ++index) {
bmeshBall *ball = bmeshGetBall(bm, index); bmeshBall *ball = bmeshGetBall(bm, index);
drawBmeshBall(bm, ball); drawBmeshBall(bm, ball);
}*/ }*/
for (index = 0; index < bmeshGetBoneNum(bm); ++index) { for (index = 0; index < bmeshGetBoneNum(bm); ++index) {
bmeshBone *bone = bmeshGetBone(bm, index); bmeshBone *bone = bmeshGetBone(bm, index);
drawBmeshBone(bm, bone); drawBmeshBone(bm, bone);
}
/*
glColor4f(1.0f, 1.0f, 1.0f, 0.5);
glBegin(GL_QUADS);
for (index = 0; index < bmeshGetQuadNum(bm); ++index) {
quad *q = bmeshGetQuad(bm, index);
vec3 normal;
int j;
vec3Normal(&q->pt[0], &q->pt[1], &q->pt[2], &normal);
for (j = 0; j < 4; ++j) {
glNormal3f(normal.x, normal.y, normal.z);
glVertex3f(q->pt[j].x, q->pt[j].y, q->pt[j].z);
} }
} /*
glEnd(); glColor4f(1.0f, 1.0f, 1.0f, 0.5);
glColor3f(0.0f, 0.0f, 0.0f); glBegin(GL_QUADS);
for (index = 0; index < bmeshGetQuadNum(bm); ++index) { for (index = 0; index < bmeshGetQuadNum(bm); ++index) {
quad *q = bmeshGetQuad(bm, index); quad *q = bmeshGetQuad(bm, index);
int j; vec3 normal;
glBegin(GL_LINE_STRIP); int j;
for (j = 0; j < 4; ++j) { vec3Normal(&q->pt[0], &q->pt[1], &q->pt[2], &normal);
glVertex3f(q->pt[j].x, q->pt[j].y, q->pt[j].z); for (j = 0; j < 4; ++j) {
glNormal3f(normal.x, normal.y, normal.z);
glVertex3f(q->pt[j].x, q->pt[j].y, q->pt[j].z);
}
} }
glVertex3f(q->pt[0].x, q->pt[0].y, q->pt[0].z);
glEnd(); glEnd();
}*/ glColor3f(0.0f, 0.0f, 0.0f);
for (index = 0; index < bmeshGetQuadNum(bm); ++index) {
quad *q = bmeshGetQuad(bm, index);
int j;
glBegin(GL_LINE_STRIP);
for (j = 0; j < 4; ++j) {
glVertex3f(q->pt[j].x, q->pt[j].y, q->pt[j].z);
}
glVertex3f(q->pt[0].x, q->pt[0].y, q->pt[0].z);
glEnd();
}*/
}
} }
glPopMatrix(); glPopMatrix();

View File

@ -137,3 +137,9 @@ float vec3TriangleArea(vec3 *a, vec3 *b, vec3 *c) {
vec3CrossProduct(&ab, &ac, &cross); vec3CrossProduct(&ab, &ac, &cross);
return vec3Length(&cross) * 0.5; return vec3Length(&cross) * 0.5;
} }
void vec3Negative(vec3 *a, vec3 *result) {
result->x = -a->x;
result->y = -a->y;
result->z = -a->z;
}

View File

@ -26,6 +26,7 @@ void vec3RotateAlong(vec3 *a, float angle, vec3 *axis, vec3 *result);
float vec3Angle(vec3 *a, vec3 *b); float vec3Angle(vec3 *a, vec3 *b);
void vec3ProjectOver(vec3 *a, vec3 *over, vec3 *result); void vec3ProjectOver(vec3 *a, vec3 *over, vec3 *result);
float vec3TriangleArea(vec3 *a, vec3 *b, vec3 *c); float vec3TriangleArea(vec3 *a, vec3 *b, vec3 *c);
void vec3Negative(vec3 *a, vec3 *result);
#ifdef __cplusplus #ifdef __cplusplus
} }