// Begin License: // Copyright (C) 2006-2008 Tobias Sargeant (tobias.sargeant@gmail.com). // All rights reserved. // // This file is part of the Carve CSG Library (http://carve-csg.com/) // // This file may be used under the terms of the GNU General Public // License version 2.0 as published by the Free Software Foundation // and appearing in the file LICENSE.GPL2 included in the packaging of // this file. // // This file is provided "AS IS" with NO WARRANTY OF ANY KIND, // INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE. // End: #if defined(HAVE_CONFIG_H) # include #endif #include #include #include #include #include #define M_2PI_3 2.0943951023931953 #define M_SQRT_3_4 0.8660254037844386 #define EPS std::numeric_limits::epsilon() namespace carve { namespace math { struct Root { double root; int multiplicity; Root(double r) : root(r), multiplicity(1) {} Root(double r, int m) : root(r), multiplicity(m) {} }; void cplx_sqrt(double re, double im, double &re_1, double &im_1, double &re_2, double &im_2) { if (re == 0.0 && im == 0.0) { re_1 = re_2 = re; im_1 = im_2 = im; } else { double d = sqrt(re * re + im * im); re_1 = sqrt((d + re) / 2.0); re_2 = re_1; im_1 = fabs(sqrt((d - re) / 2.0)); im_2 = -im_1; } } void cplx_cbrt(double re, double im, double &re_1, double &im_1, double &re_2, double &im_2, double &re_3, double &im_3) { if (re == 0.0 && im == 0.0) { re_1 = re_2 = re_3 = re; im_1 = im_2 = im_3 = im; } else { double r = cbrt(sqrt(re * re + im * im)); double t = atan2(im, re) / 3.0; re_1 = r * cos(t); im_1 = r * sin(t); re_2 = r * cos(t + M_TWOPI / 3.0); im_2 = r * sin(t + M_TWOPI / 3.0); re_3 = r * cos(t + M_TWOPI * 2.0 / 3.0); im_3 = r * sin(t + M_TWOPI * 2.0 / 3.0); } } void add_root(std::vector &roots, double root) { for (size_t i = 0; i < roots.size(); ++i) { if (roots[i].root == root) { roots[i].multiplicity++; return; } } roots.push_back(Root(root)); } void linear_roots(double c1, double c0, std::vector &roots) { roots.push_back(Root(c0 / c1)); } void quadratic_roots(double c2, double c1, double c0, std::vector &roots) { if (fabs(c2) < EPS) { linear_roots(c1, c0, roots); return; } double p = 0.5 * c1 / c2; double dis = p * p - c0 / c2; if (dis > 0.0) { dis = sqrt(dis); if (-p - dis != -p + dis) { roots.push_back(Root(-p - dis)); roots.push_back(Root(-p + dis)); } else { roots.push_back(Root(-p, 2)); } } } void cubic_roots(double c3, double c2, double c1, double c0, std::vector &roots) { int n_sol = 0; double _r[3]; if (fabs(c3) < EPS) { quadratic_roots(c2, c1, c0, roots); return; } if (fabs(c0) < EPS) { quadratic_roots(c3, c2, c1, roots); add_root(roots, 0.0); return; } double xN = -c2 / (3.0 * c3); double yN = c0 + xN * (c1 + xN * (c2 + c3 * xN)); double delta_sq = (c2 * c2 - 3.0 * c3 * c1) / (9.0 * c3 * c3); double h_sq = 4.0 / 9.0 * (c2 * c2 - 3.0 * c3 * c1) * (delta_sq * delta_sq); double dis = yN * yN - h_sq; if (dis > EPS) { // One real root, two complex roots. double dis_sqrt = sqrt(dis); double r_p = yN - dis_sqrt; double r_q = yN + dis_sqrt; double p = cbrt(fabs(r_p)/(2.0 * c3)); double q = cbrt(fabs(r_q)/(2.0 * c3)); if (r_p > 0.0) p = -p; if (r_q > 0.0) q = -q; _r[0] = xN + p + q; n_sol = 1; double re = xN - p * .5 - q * .5; double im = p * M_SQRT_3_4 - q * M_SQRT_3_4; // root 2: xN + p * exp(M_2PI_3.i) + q * exp(-M_2PI_3.i); // root 3: complex conjugate of root 2 if (im < EPS) { _r[1] = _r[2] = re; n_sol += 2; } } else if (dis < -EPS) { // Three distinct real roots. double theta = acos(-yN / sqrt(h_sq)) / 3.0; double delta = sqrt(c2 * c2 - 3.0 * c3 * c1) / (3.0 * c3); _r[0] = xN + (2.0 * delta) * cos(theta); _r[1] = xN + (2.0 * delta) * cos(M_2PI_3 - theta); _r[2] = xN + (2.0 * delta) * cos(M_2PI_3 + theta); n_sol = 3; } else { // Three real roots (two or three equal). double r = yN / (2.0 * c3); double delta = cbrt(r); _r[0] = xN + delta; _r[1] = xN + delta; _r[2] = xN - 2.0 * delta; n_sol = 3; } for (int i=0; i < n_sol; i++) { add_root(roots, _r[i]); } } static void U(const Matrix3 &m, double l, double u[6], double &u_max, int &u_argmax) { u[0] = (m._22 - l) * (m._33 - l) - m._23 * m._23; u[1] = m._13 * m._23 - m._12 * (m._33 - l); u[2] = m._12 * m._23 - m._13 * (m._22 - l); u[3] = (m._11 - l) * (m._33 - l) - m._13 * m._13; u[4] = m._12 * m._13 - m._23 * (m._11 - l); u[5] = (m._11 - l) * (m._22 - l) - m._12 * m._12; u_max = -1.0; u_argmax = -1; for (int i = 0; i < 6; ++i) { if (u_max < fabs(u[i])) { u_max = fabs(u[i]); u_argmax = i; } } } static void eig1(const Matrix3 &m, double l, carve::geom3d::Vector &e) { double u[6]; double u_max; int u_argmax; U(m, l, u, u_max, u_argmax); switch(u_argmax) { case 0: e.x = u[0]; e.y = u[1]; e.z = u[2]; break; case 1: case 3: e.x = u[1]; e.y = u[3]; e.z = u[4]; break; case 2: case 4: case 5: e.x = u[2]; e.y = u[4]; e.z = u[5]; break; } e.normalize(); } static void eig2(const Matrix3 &m, double l, carve::geom3d::Vector &e1, carve::geom3d::Vector &e2) { double u[6]; double u_max; int u_argmax; U(m, l, u, u_max, u_argmax); switch(u_argmax) { case 0: case 1: e1.x = -m._12; e1.y = m._11; e1.z = 0.0; e2.x = -m._13 * m._11; e2.y = -m._13 * m._12; e2.z = m._11 * m._11 + m._12 * m._12; break; case 2: e1.x = m._12; e1.y = 0.0; e1.z = -m._11; e2.x = -m._12 * m._11; e2.y = m._11 * m._11 + m._13 * m._13; e2.z = -m._12 * m._13; break; case 3: case 4: e1.x = 0.0; e1.y = -m._23; e1.z = -m._22; e2.x = m._22 * m._22 + m._23 * m._23; e2.y = -m._12 * m._22; e2.z = -m._12 * m._23; break; case 5: e1.x = 0.0; e1.y = -m._33; e1.z = m._23; e2.x = m._23 * m._23 + m._33 * m._33; e2.y = -m._13 * m._23; e2.z = -m._13 * m._33; } e1.normalize(); e2.normalize(); } static void eig3(const Matrix3 &m, double l, carve::geom3d::Vector &e1, carve::geom3d::Vector &e2, carve::geom3d::Vector &e3) { e1.x = 1.0; e1.y = 0.0; e1.z = 0.0; e2.x = 0.0; e2.y = 1.0; e2.z = 0.0; e3.x = 0.0; e3.y = 0.0; e3.z = 1.0; } void eigSolveSymmetric(const Matrix3 &m, double &l1, carve::geom3d::Vector &e1, double &l2, carve::geom3d::Vector &e2, double &l3, carve::geom3d::Vector &e3) { double c0 = m._11 * m._22 * m._33 + 2.0 * m._12 * m._13 * m._23 - m._11 * m._23 * m._23 - m._22 * m._13 * m._13 - m._33 * m._12 * m._12; double c1 = m._11 * m._22 - m._12 * m._12 + m._11 * m._33 - m._13 * m._13 + m._22 * m._33 - m._23 * m._23; double c2 = m._11 + m._22 + m._33; double a = (3.0 * c1 - c2 * c2) / 3.0; double b = (-2.0 * c2 * c2 * c2 + 9.0 * c1 * c2 - 27.0 * c0) / 27.0; double Q = b * b / 4.0 + a * a * a / 27.0; if (fabs(Q) < 1e-16) { l1 = m._11; e1.x = 1.0; e1.y = 0.0; e1.z = 0.0; l2 = m._22; e2.x = 0.0; e2.y = 1.0; e2.z = 0.0; l3 = m._33; e3.x = 0.0; e3.y = 0.0; e3.z = 1.0; } else if (Q > 0) { l1 = l2 = c2 / 3.0 + cbrt(b / 2.0); l3 = c2 / 3.0 - 2.0 * cbrt(b / 2.0); eig2(m, l1, e1, e2); eig1(m, l3, e3); } else if (Q < 0) { double t = atan2(sqrt(-Q), -b / 2.0); double cos_t3 = cos(t / 3.0); double sin_t3 = sin(t / 3.0); double r = cbrt(sqrt(b * b / 4.0 - Q)); l1 = c2 / 3.0 + 2 * r * cos_t3; l2 = c2 / 3.0 - r * (cos_t3 + M_SQRT_3 * sin_t3); l3 = c2 / 3.0 - r * (cos_t3 - M_SQRT_3 * sin_t3); eig1(m, l1, e1); eig1(m, l2, e2); eig1(m, l3, e3); } } void eigSolve(const Matrix3 &m, double &l1, double &l2, double &l3) { double c3, c2, c1, c0; std::vector roots; c3 = -1.0; c2 = m._11 + m._22 + m._33; c1 = -(m._22 * m._33 + m._11 * m._22 + m._11 * m._33) +(m._23 * m._32 + m._13 * m._31 + m._12 * m._21); c0 = +(m._11 * m._22 - m._12 * m._21) * m._33 -(m._11 * m._23 - m._13 * m._21) * m._32 +(m._12 * m._23 - m._13 * m._22) * m._31; cubic_roots(c3, c2, c1, c0, roots); for (size_t i = 0; i < roots.size(); i++) { Matrix3 M(m); M._11 -= roots[i].root; M._22 -= roots[i].root; M._33 -= roots[i].root; // solve M.v = 0 } std::cerr << "n_roots=" << roots.size() << std::endl; for (size_t i = 0; i < roots.size(); i++) { fprintf(stderr, " %.24f(%d)", roots[i].root, roots[i].multiplicity); } std::cerr << std::endl; } } }