// Copyright (c) 2005-2006 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // Partially supported by the IST Programme of the EU as a Shared-cost // RTD (FET Open) Project under Contract No IST-2000-26473 // (ECG - Effective Computational Geometry for Curves and Surfaces) // and a STREP (FET Open) Project under Contract No IST-006413 // (ACS -- Algorithms for Complex Shapes) // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Algebraic_kernel_for_spheres/include/CGAL/Polynomials_2_3.h $ // $Id: Polynomials_2_3.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s) : Monique Teillaud // Sylvain Pion // Pedro Machado // Julien Hazebrouck // Damien Leroy #ifndef CGAL_ALGEBRAIC_KERNEL_POLYNOMIALS_2_3_H #define CGAL_ALGEBRAIC_KERNEL_POLYNOMIALS_2_3_H #include #include namespace CGAL { // polynomials of the form (X-a)^2 + (Y-b)^2 + (Z-c)^2 - R^2 template < typename FT_ > class Polynomial_for_spheres_2_3 { FT_ rep[4]; // stores a, b, c, R^2 public: typedef FT_ FT; Polynomial_for_spheres_2_3(){} Polynomial_for_spheres_2_3(const FT & a, const FT & b, const FT & c, const FT & rsq) { rep[0]=a; rep[1]=b; rep[2]=c; rep[3]=rsq; } const FT & a() const { return rep[0]; } const FT & b() const { return rep[1]; } const FT & c() const { return rep[2]; } const FT & r_sq() const { return rep[3]; } bool empty_space() const { return is_negative(r_sq()); } bool isolated_point() const { return is_zero(r_sq()); } }; template < typename FT > inline bool operator == ( const Polynomial_for_spheres_2_3 & p1, const Polynomial_for_spheres_2_3 & p2 ) { return( (p1.a() == p2.a()) && (p1.b() == p2.b()) && (p1.c() == p2.c()) && (p1.r_sq() == p2.r_sq()) ); } } //namespace CGAL #endif //CGAL_ALGEBRAIC_KERNEL_POLYNOMIALS_2_3_H