// Copyright (c) 2012 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Point_set_processing_3/include/CGAL/hierarchy_simplify_point_set.h $ // $Id: hierarchy_simplify_point_set.h 93f1cd9 2020-07-16T09:53:31+02:00 Mael Rouxel-Labbé // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s) : Simon Giraudot, Pierre Alliez #ifndef HIERARCHY_SIMPLIFY_POINT_SET_H #define HIERARCHY_SIMPLIFY_POINT_SET_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace CGAL { /// \cond SKIP_IN_MANUAL namespace internal { template < typename InputIterator, typename PointMap, typename K > typename K::Point_3 hsps_centroid(InputIterator begin, InputIterator end, PointMap& point_map, const K&) { typedef typename K::Point_3 Point; typedef typename K::FT FT; CGAL_precondition(begin != end); FT x = (FT)0., y = (FT)0., z = (FT)0.; unsigned int nb_pts = 0; while(begin != end) { typename boost::property_traits::reference point = get(point_map, *begin); x += point.x (); y += point.y (); z += point.z (); ++ nb_pts; ++ begin; } return Point (x/nb_pts, y/nb_pts, z/nb_pts); } template < typename Input_type, typename PointMap, typename K > void hsc_terminate_cluster (std::list& cluster, std::list& points_to_keep, std::list& points_to_remove, PointMap& point_map, const typename K::Point_3& centroid, const K&) { typedef typename std::list::iterator Iterator; typedef typename K::FT FT; FT dist_min = (std::numeric_limits::max)(); typename std::list::iterator point_min; for (Iterator it = cluster.begin (); it != cluster.end (); ++ it) { FT dist = CGAL::squared_distance (get(point_map, *it), centroid); if (dist < dist_min) { dist_min = dist; point_min = it; } } points_to_keep.splice (points_to_keep.end (), cluster, point_min); points_to_remove.splice (points_to_remove.end (), cluster, cluster.begin (), cluster.end ()); } } // namespace internal /// \endcond /** \ingroup PkgPointSetProcessing3Algorithms Recursively split the point set in smaller clusters until the clusters have less than `size` elements and until their variation factor is below `var_max`. This method modifies the order of input points so as to pack all remaining points first, and returns an iterator over the first point to remove (see erase-remove idiom). For this reason it should not be called on sorted containers. \pre `0 < maximum_variation < 1/3` \pre `size > 0` \tparam PointRange is a model of `Range`. The value type of its iterator is the key type of the named parameter `point_map`. \param points input point range. \param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below \cgalNamedParamsBegin \cgalParamNBegin{point_map} \cgalParamDescription{a property map associating points to the elements of the point set `points`} \cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`} \cgalParamDefault{`CGAL::Identity_property_map`} \cgalParamNEnd \cgalParamNBegin{callback} \cgalParamDescription{a mechanism to get feedback on the advancement of the algorithm while it's running and to interrupt it if needed} \cgalParamType{an instance of `std::function`.} \cgalParamDefault{unused} \cgalParamExtra{It is called regularly when the algorithm is running: the current advancement (between 0. and 1.) is passed as parameter. If it returns `true`, then the algorithm continues its execution normally; if it returns `false`, the algorithm is stopped and simplification stops with no guarantee on the output.} \cgalParamExtra{The callback will be copied and therefore needs to be lightweight.} \cgalParamNEnd \cgalParamNBegin{size} \cgalParamDescription{a value for cluster size} \cgalParamType{unsigned int} \cgalParamDefault{`10`} \cgalParamNEnd \cgalParamNBegin{maximum_variation} \cgalParamDescription{a value for maximum cluster variation} \cgalParamType{floating scalar value} \cgalParamDefault{`1/3`} \cgalParamNEnd \cgalParamNBegin{diagonalize_traits} \cgalParamDescription{the solver used for diagonalizing covariance matrices} \cgalParamType{a model of `DiagonalizeTraits`} \cgalParamDefault{If Eigen 3 (or greater) is available and `CGAL_EIGEN3_ENABLED` is defined then an overload using `Eigen_diagonalize_traits` is provided. Otherwise, the internal implementation `CGAL::Diagonalize_traits` is used.} \cgalParamNEnd \cgalParamNBegin{geom_traits} \cgalParamDescription{an instance of a geometric traits class} \cgalParamType{a model of `Kernel`} \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`} \cgalParamNEnd \cgalNamedParamsEnd \return iterator over the first point to remove. */ template typename PointRange::iterator hierarchy_simplify_point_set (PointRange& points, const NamedParameters& np) { using parameters::choose_parameter; using parameters::get_parameter; // basic geometric types typedef typename CGAL::GetPointMap::type PointMap; typedef typename Point_set_processing_3::GetK::Kernel Kernel; typedef typename GetDiagonalizeTraits::type DiagonalizeTraits; typedef typename Kernel::Point_3 Point; typedef typename Kernel::Vector_3 Vector; typedef typename Kernel::FT FT; PointMap point_map = choose_parameter(get_parameter(np, internal_np::point_map)); unsigned int size = choose_parameter(get_parameter(np, internal_np::size), 10); double var_max = choose_parameter(get_parameter(np, internal_np::maximum_variation), 1./3.); const std::function& callback = choose_parameter(get_parameter(np, internal_np::callback), std::function()); typedef typename std::iterator_traits::value_type Input_type; // We define a cluster as a point set + its centroid (useful for // faster computations of centroids - to be implemented) typedef std::pair< std::list, Point > cluster; std::list clusters_stack; typedef typename std::list::iterator cluster_iterator; CGAL_precondition (points.begin() != points.end()); CGAL_point_set_processing_precondition (size > 0); CGAL_point_set_processing_precondition (var_max > 0.0); // The first cluster is the whole input point set clusters_stack.push_front (cluster (std::list(), Point (0., 0., 0.))); std::copy (points.begin(), points.end(), std::back_inserter (clusters_stack.front ().first)); clusters_stack.front ().second = internal::hsps_centroid (clusters_stack.front ().first.begin (), clusters_stack.front ().first.end (), point_map, Kernel()); std::list points_to_keep; std::list points_to_remove; std::size_t nb_done = 0; while (!(clusters_stack.empty ())) { cluster_iterator current_cluster = clusters_stack.begin (); // If the cluster only has 1 element, we add it to the list of // output points if (current_cluster->first.size () == 1) { points_to_keep.splice (points_to_keep.end (), current_cluster->first, current_cluster->first.begin ()); clusters_stack.pop_front (); ++ nb_done; continue; } // Compute the covariance matrix of the set std::array covariance = {{ 0., 0., 0., 0., 0., 0. }}; for (typename std::list::iterator it = current_cluster->first.begin (); it != current_cluster->first.end (); ++ it) { const Point& point = get(point_map, *it); Vector d = point - current_cluster->second; covariance[0] += d.x () * d.x (); covariance[1] += d.x () * d.y (); covariance[2] += d.x () * d.z (); covariance[3] += d.y () * d.y (); covariance[4] += d.y () * d.z (); covariance[5] += d.z () * d.z (); } std::array eigenvalues = {{ 0., 0., 0. }}; std::array eigenvectors = {{ 0., 0., 0., 0., 0., 0., 0., 0., 0. }}; // Linear algebra = get eigenvalues and eigenvectors for // PCA-like analysis DiagonalizeTraits::diagonalize_selfadjoint_covariance_matrix (covariance, eigenvalues, eigenvectors); // Variation of the set defined as lambda_min / (lambda_0 + lambda_1 + lambda_2) double var = eigenvalues[0] / (eigenvalues[0] + eigenvalues[1] + eigenvalues[2]); // Split the set if size OR variance of the cluster is too large if (current_cluster->first.size () > size || var > var_max) { clusters_stack.push_front (cluster (std::list(), Point (0., 0., 0.))); cluster_iterator negative_side = clusters_stack.begin (); // positive_side is built directly from current_cluster // The plane which splits the point set into 2 point sets: // * Normal to the eigenvector with highest eigenvalue // * Passes through the centroid of the set Vector v (eigenvectors[6], eigenvectors[7], eigenvectors[8]); std::size_t current_cluster_size = 0; typename std::list::iterator it = current_cluster->first.begin (); while (it != current_cluster->first.end ()) { typename std::list::iterator current = it ++; const Point& point = get(point_map, *current); // Test if point is on negative side of plane and // transfer it to the negative_side cluster if it is if (Vector (current_cluster->second, point) * v < 0) negative_side->first.splice (negative_side->first.end (), current_cluster->first, current); ++ current_cluster_size; } // If one of the clusters is empty, stop to avoid infinite // loop and keep the non-empty one if (current_cluster->first.empty () || negative_side->first.empty ()) { cluster_iterator nonempty = (current_cluster->first.empty () ? negative_side : current_cluster); nb_done += nonempty->first.size(); // Compute the centroid nonempty->second = internal::hsps_centroid (nonempty->first.begin (), nonempty->first.end (), point_map, Kernel()); internal::hsc_terminate_cluster (nonempty->first, points_to_keep, points_to_remove, point_map, nonempty->second, Kernel ()); clusters_stack.pop_front (); clusters_stack.pop_front (); } else { // Save old centroid for faster computation Point old_centroid = current_cluster->second; // Compute the first centroid current_cluster->second = internal::hsps_centroid (current_cluster->first.begin (), current_cluster->first.end (), point_map, Kernel()); // The second centroid can be computed with the first and // the old ones : // centroid_neg = (n_total * old_centroid - n_pos * first_centroid) // / n_neg; negative_side->second = Point ((current_cluster_size * old_centroid.x () - current_cluster->first.size () * current_cluster->second.x ()) / negative_side->first.size (), (current_cluster_size * old_centroid.y () - current_cluster->first.size () * current_cluster->second.y ()) / negative_side->first.size (), (current_cluster_size * old_centroid.z () - current_cluster->first.size () * current_cluster->second.z ()) / negative_side->first.size ()); } } // If the size/variance are small enough, add the centroid as // and output point else { nb_done += current_cluster->first.size(); internal::hsc_terminate_cluster (current_cluster->first, points_to_keep, points_to_remove, point_map, current_cluster->second, Kernel ()); clusters_stack.pop_front (); } if (callback && !callback (nb_done / double (points.size()))) break; } if (callback) callback (1.); typename PointRange::iterator first_point_to_remove = std::copy (points_to_keep.begin(), points_to_keep.end(), points.begin()); std::copy (points_to_remove.begin(), points_to_remove.end(), first_point_to_remove); return first_point_to_remove; } /// \cond SKIP_IN_MANUAL // variant with default NP template typename PointRange::iterator hierarchy_simplify_point_set (PointRange& points) { return hierarchy_simplify_point_set (points, CGAL::Point_set_processing_3::parameters::all_default(points)); } /// \endcond } // namespace CGAL #include #endif // HIERARCHY_SIMPLIFY_POINT_SET_H