// Copyright (c) 2001-2004 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org) // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Cartesian_kernel/include/CGAL/Cartesian_converter.h $ // $Id: Cartesian_converter.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot // SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial // // // Author(s) : Sylvain Pion // Menelaos Karavelas #ifndef CGAL_CARTESIAN_CONVERTER_H #define CGAL_CARTESIAN_CONVERTER_H // This file contains the definition of a kernel converter, based on Cartesian // representation. It should work between *Cartesian and *Cartesian, // provided you give a NT converter from A to B. // There's a Homogeneous counterpart. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace CGAL { // Guess which compiler needs this work around ? // ... VC++, again! namespace internal { template < typename K1, typename K2 > struct Default_converter { typedef typename K1::FT FT1; typedef typename K2::FT FT2; typedef ::CGAL::NT_converter Type; }; // Out will be a variant, source kernel and target kernel template struct Converting_visitor : boost::static_visitor<> { Converting_visitor(const Converter& conv, Output& out) : conv(&conv), out(&out) {} const Converter* conv; Output* out; template void operator()(const T& t) { *out = conv->operator()(t); } template void operator()(const std::vector& t) { typedef typename Type_mapper< T, typename Converter::Source_kernel, typename Converter::Target_kernel >::type value_type; std::vector< value_type > tmp; tmp.reserve(t.size()); for(typename std::vector< T >::const_iterator it = t.begin(); it != t.end(); ++it) { tmp.push_back(conv->operator()(*it)); } *out = tmp; } }; } // namespace internal template < class K1, class K2, // class Converter = NT_converter > class Converter> class Cartesian_converter : public Enum_converter { typedef Enum_converter Base; typedef Cartesian_converter Self; public: typedef K1 Source_kernel; typedef K2 Target_kernel; typedef Converter Number_type_converter; using Base::operator(); Origin operator()(const Origin& o) const { return o; } Null_vector operator()(const Null_vector& n) const { return n; } Bbox_2 operator()(const Bbox_2& b) const { return b; } Bbox_3 operator()(const Bbox_3& b) const { return b; } typename K2::FT operator()(const typename K1::FT &a) const { return c(a); } // drop the boost::detail::variant::void_ generated by the macros // from the sequence, transform with the type mapper and throw the // new list into a variant // visit to get the type, and copy construct inside the return type template typename Type_mapper< boost::optional< boost::variant< BOOST_VARIANT_ENUM_PARAMS(U) > >, K1, K2 >::type operator()(const boost::optional< boost::variant< BOOST_VARIANT_ENUM_PARAMS(U) > >& o) const { typedef typename Type_mapper< boost::optional< boost::variant< BOOST_VARIANT_ENUM_PARAMS(U) > >, K1, K2 >::type result_type; result_type res; if(!o) { // empty converts to empty return res; } internal::Converting_visitor conv_visitor = internal::Converting_visitor(*this, res); boost::apply_visitor(conv_visitor, *o); return res; } template typename Type_mapper< boost::variant< BOOST_VARIANT_ENUM_PARAMS(U) >, K1, K2 >::type operator()(const boost::variant< BOOST_VARIANT_ENUM_PARAMS(U) > & o) const { typedef typename Type_mapper< boost::variant< BOOST_VARIANT_ENUM_PARAMS(U) >, K1, K2 >::type result_type; result_type res; internal::Converting_visitor conv_visitor = internal::Converting_visitor(*this, res); boost::apply_visitor(conv_visitor, o); return res; } typename K2::Object_2 operator()(const typename K1::Object_2 &obj) const { #define CGAL_Kernel_obj(X) \ if (const typename K1::X * ptr = object_cast(&obj)) \ return make_object(operator()(*ptr)); #include #define CGAL_Kernel_obj(X) \ if (const std::vector * ptr = object_cast >(&obj)) { \ std::vector res; \ res.reserve((*ptr).size()); \ for(unsigned int i=0; i < (*ptr).size(); i++){ \ res.push_back(operator()((*ptr)[i])); \ } \ return make_object(res); \ } CGAL_Kernel_obj(Point_2) CGAL_Kernel_obj(Point_3) #undef CGAL_Kernel_obj CGAL_error_msg("Cartesian_converter is unable to determine what is wrapped in the Object"); return Object(); } std::vector operator()(const std::vector& v) const { std::vector res; res.reserve(v.size()); for(unsigned int i = 0; i < v.size(); i++) { res.push_back(operator()(v[i])); } return res; } typename K2::Point_2 operator()(const typename K1::Point_2 &a) const { typedef typename K2::Point_2 Point_2; return Point_2(c(a.x()), c(a.y())); } typename K2::Weighted_point_2 operator()(const typename K1::Weighted_point_2 &a) const { typedef typename K2::Weighted_point_2 Weighted_point_2; return Weighted_point_2(operator()(a.point()), operator()(a.weight())); } typename K2::Vector_2 operator()(const typename K1::Vector_2 &a) const { typedef typename K2::Vector_2 Vector_2; return Vector_2(c(a.x()), c(a.y())); } typename K2::Direction_2 operator()(const typename K1::Direction_2 &a) const { typedef typename K2::Direction_2 Direction_2; return Direction_2(c(a.dx()), c(a.dy())); } typename K2::Segment_2 operator()(const typename K1::Segment_2 &a) const { typedef typename K2::Segment_2 Segment_2; return Segment_2(operator()(a.source()), operator()(a.target())); } typename K2::Line_2 operator()(const typename K1::Line_2 &a) const { typedef typename K2::Line_2 Line_2; return Line_2(c(a.a()), c(a.b()), c(a.c())); } typename K2::Ray_2 operator()(const typename K1::Ray_2 &a) const { typedef typename K2::Ray_2 Ray_2; return Ray_2(operator()(a.source()), operator()(a.second_point())); } typename K2::Circle_2 operator()(const typename K1::Circle_2 &a) const { typedef typename K2::Circle_2 Circle_2; return Circle_2(operator()(a.center()), c(a.squared_radius()), K1().orientation_2_object()(a)); } typename K2::Triangle_2 operator()(const typename K1::Triangle_2 &a) const { typedef typename K2::Triangle_2 Triangle_2; return Triangle_2(operator()(a.vertex(0)), operator()(a.vertex(1)), operator()(a.vertex(2))); } typename K2::Iso_rectangle_2 operator()(const typename K1::Iso_rectangle_2 &a) const { typedef typename K2::Iso_rectangle_2 Iso_rectangle_2; return Iso_rectangle_2(operator()((a.min)()), operator()((a.max)()), 0); } typename K2::Point_3 operator()(const typename K1::Point_3 &a) const { typedef typename K2::Point_3 Point_3; return Point_3(c(a.x()), c(a.y()), c(a.z())); } typename K2::Weighted_point_3 operator()(const typename K1::Weighted_point_3 &a) const { typedef typename K2::Weighted_point_3 Weighted_point_3; return Weighted_point_3((*this)(a.point()), c(a.weight())); } typename K2::Vector_3 operator()(const typename K1::Vector_3 &a) const { typedef typename K2::Vector_3 Vector_3; return Vector_3(c(a.x()), c(a.y()), c(a.z())); } typename K2::Direction_3 operator()(const typename K1::Direction_3 &a) const { typedef typename K2::Direction_3 Direction_3; return Direction_3(c(a.dx()), c(a.dy()), c(a.dz())); } typename K2::Segment_3 operator()(const typename K1::Segment_3 &a) const { typedef typename K2::Segment_3 Segment_3; return Segment_3(operator()(a.source()), operator()(a.target())); } typename K2::Line_3 operator()(const typename K1::Line_3 &a) const { typedef typename K2::Line_3 Line_3; return Line_3(operator()(a.point()), operator()(a.to_vector())); } typename K2::Ray_3 operator()(const typename K1::Ray_3 &a) const { typedef typename K2::Ray_3 Ray_3; return Ray_3(operator()(a.source()), operator()(a.second_point())); } typename K2::Sphere_3 operator()(const typename K1::Sphere_3 &a) const { typedef typename K2::Sphere_3 Sphere_3; return Sphere_3(operator()(a.center()), c(a.squared_radius()), K1().orientation_3_object()(a)); } typename K2::Circle_3 operator()(const typename K1::Circle_3 &a) const { typedef typename K2::Circle_3 Circle_3; return Circle_3(operator()(a.diametral_sphere()), operator()(a.supporting_plane()),1); } typename K2::Triangle_3 operator()(const typename K1::Triangle_3 &a) const { typedef typename K2::Triangle_3 Triangle_3; return Triangle_3(operator()(a.vertex(0)), operator()(a.vertex(1)), operator()(a.vertex(2))); } typename K2::Tetrahedron_3 operator()(const typename K1::Tetrahedron_3 &a) const { typedef typename K2::Tetrahedron_3 Tetrahedron_3; return Tetrahedron_3(operator()(a.vertex(0)), operator()(a.vertex(1)), operator()(a.vertex(2)), operator()(a.vertex(3))); } typename K2::Plane_3 operator()(const typename K1::Plane_3 &a) const { typedef typename K2::Plane_3 Plane_3; return Plane_3(c(a.a()), c(a.b()), c(a.c()), c(a.d())); } typename K2::Iso_cuboid_3 operator()(const typename K1::Iso_cuboid_3 &a) const { typedef typename K2::Iso_cuboid_3 Iso_cuboid_3; return Iso_cuboid_3(operator()((a.min)()), operator()((a.max)()), 0); } std::pair operator() (const std::pair& pp) const { return std::make_pair(operator()(pp.first), operator()(pp.second)); } typename K2::Aff_transformation_3 operator()(const typename K1::Aff_transformation_3 &a) const { typedef typename K2::Aff_transformation_3 Aff_transformation_3; typename K2::FT t[12]; for(int i=0; i< 3; ++i) { for(int j=0; j<4; ++j) { t[i*4+j] = a.m(i,j); } } return Aff_transformation_3( t[0],t[1],t[2],t[3], t[4],t[5],t[6],t[7], t[8],t[9],t[10],t[11], a.m(3,3)); } private: Converter c; K2 k; }; // Specialization when converting to the same kernel, // to avoid making copies. template < class K, class C > class Cartesian_converter { public: typedef K Source_kernel; typedef K Target_kernel; typedef C Number_type_converter; template < typename T > const T& operator()(const T&t) const { return t; } }; } //namespace CGAL #endif // CGAL_CARTESIAN_CONVERTER_H