// Copyright (c) 2005 Tel-Aviv University (Israel). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Envelope_3/include/CGAL/Env_plane_traits_3.h $ // $Id: Env_plane_traits_3.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot // SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial // // Author(s) : Baruch Zukerman #ifndef CGAL_ENV_PLANE_TRAITS_3_H #define CGAL_ENV_PLANE_TRAITS_3_H #include #include #include #include #include #include #include #include #include #include namespace CGAL { template class Env_plane_traits_3 : public Arr_linear_traits_2 { public: typedef Kernel_ Kernel; typedef typename Kernel::FT FT; typedef Arr_linear_traits_2 Base; typedef Env_plane_traits_3 Self; typedef typename Base::Multiplicity Multiplicity; typedef typename Base::Point_2 Point_2; typedef typename Base::Curve_2 Curve_2; typedef typename Base::X_monotone_curve_2 X_monotone_curve_2; typedef typename Kernel::Plane_3 Plane_3; typedef typename Kernel::Vector_2 Vector_2; typedef typename Kernel::Vector_3 Vector_3; typedef typename Kernel::Segment_2 Segment_2; typedef typename Kernel::Ray_2 Ray_2; typedef typename Kernel::Line_2 Line_2; typedef typename Kernel::Line_3 Line_3; typedef typename Kernel::Object_3 Object_3; typedef std::pair Intersection_curve; typedef typename Base::Left_side_category Left_side_category; typedef typename Base::Bottom_side_category Bottom_side_category; typedef typename Base::Top_side_category Top_side_category; typedef typename Base::Right_side_category Right_side_category; class Is_vertical_3 { public: bool operator()(const Plane_3& h) const { return CGAL::is_zero(h.c()); } }; Is_vertical_3 is_vertical_3_object() const { return Is_vertical_3(); } class _Env_plane { protected: Plane_3 m_plane; Line_2 m_line; bool m_is_all_plane; // true -> all plane, false -> halfplane bool m_is_vert; public: _Env_plane() {} _Env_plane(const Plane_3& h) : m_plane(h), m_is_all_plane(true) { Self s; m_is_vert = s.is_vertical_3_object()(h); } _Env_plane(const Plane_3& h, const Line_2& l) : m_plane(h), m_line(l), m_is_all_plane(false), m_is_vert(false) { CGAL_precondition_code(Self s); CGAL_precondition(!s.is_vertical_3_object()(h)); } bool is_vertical() const { return m_is_vert; } const Plane_3& plane() const { return m_plane; } operator Plane_3 () const { return (m_plane); } const Line_2& line() const { CGAL_assertion(!m_is_all_plane); return m_line; } bool is_all_plane() const { return m_is_all_plane; } }; typedef _Env_plane Xy_monotone_surface_3; typedef _Env_plane Surface_3; class Make_xy_monotone_3 { public: template OutputIterator operator()(const Surface_3& s, bool /* is_lower */, OutputIterator o) const { *o++ = s; return o; } }; Make_xy_monotone_3 make_xy_monotone_3_object() const { return Make_xy_monotone_3(); } class Compare_z_at_xy_3 { public: Comparison_result operator()(const Point_2& p, const Xy_monotone_surface_3& h1, const Xy_monotone_surface_3& h2) const { const Plane_3& plane1 = h1.plane(); const Plane_3& plane2 = h2.plane(); Sign sign_of_c1c2 = CGAL::sign(plane1.c() * plane2.c()); Sign sign_of_expr = CGAL::sign ((p.x()*plane1.a() + p.y()*plane1.b() + plane1.d())*plane2.c() - (p.x()*plane2.a() + p.y()*plane2.b() + plane2.d())*plane1.c()); int i = -1 * static_cast(sign_of_c1c2) * static_cast(sign_of_expr); return static_cast(i); } Comparison_result operator()(const X_monotone_curve_2& cv, const Xy_monotone_surface_3& h1, const Xy_monotone_surface_3& h2) const { Kernel k; Point_2 p; if(cv.is_segment()) p = k.construct_midpoint_2_object()(cv.left(), cv.right()); else if(cv.is_ray()) p = k.construct_point_on_2_object()(cv.ray(), 1); else { CGAL_assertion(cv.is_line()); p = k.construct_point_on_2_object()(cv.line(), 1); } return this->operator()(p, h1, h2); } Comparison_result operator()(const Xy_monotone_surface_3& h1, const Xy_monotone_surface_3& h2) const { CGAL_assertion(h1.is_all_plane() && h2.is_all_plane()); const Plane_3& p1 = h1.plane(); const Plane_3& p2 = h2.plane(); const FT& res = p2.d()*p1.c() - p1.d()*p2.c(); int i = static_cast(CGAL::sign(p1.c()*p2.c())) * static_cast(CGAL::sign (res)); return static_cast(i); } }; Compare_z_at_xy_3 compare_z_at_xy_3_object() const { return Compare_z_at_xy_3(); } class Compare_z_at_xy_above_3 { public: Comparison_result operator()(const X_monotone_curve_2& cv, const Xy_monotone_surface_3& h1, const Xy_monotone_surface_3& h2) const { const Plane_3& plane1 = h1.plane(); const Plane_3& plane2 = h2.plane(); const FT& a1 = plane1.a(), b1 = plane1.b(), c1 = plane1.c(); const FT& a2 = plane2.a(), b2 = plane2.b(), c2 = plane2.c(); // our line is a3*x + b3*y + c3 = 0 // it is assumed that the planes intersect over this line const Line_2& line = cv.supp_line(); const FT& a3 = line.a(), b3 = line.b(), c3 = line.c(); // if the line was parallel to the y-axis (i.e x = const), // then it was enough to compare dz/dx of both planes // for general line, we change coordinates to (v, w), preserving // orientation, so the line is the w-axis in the new coordinates // (i.e v = const). // // ( v ) = A ( x ) where A = ( a3 b3 ) // w y -b3 a3 // // so v = a3*x + b3*y // w = -b3*x + a3*y // preserving orientation since detA = a3^2 +b3^2 > 0 // // We compute the planes equations in the new coordinates // and compare dz/dv // // ( x ) = A^(-1) ( v ) where A^(-1) = ( a3 -b3 ) * detA^(-1) // y w b3 a3 // so x = (a3*v - b3*w)*(1/detA) // y = (b3*v + a3*w)*(1/detA) // plane1 ==> (a1a3 + b1b3)v + (b1a3 - a1b3)w + (c1z + d1)*detA = 0 // plane2 ==> (a2a3 + b2b3)v + (b2a3 - a2b3)w + (c2z + d2)*detA = 0 // // dz/dv(1) = (-a1a3 - b1b3) / c1*detA // dz/dv(2) = (-a2a3 - b2b3) / c2*detA // since detA>0 we can omit it. // Sign s1 = CGAL_NTS sign((a2*a3+b2*b3)/c2-(a1*a3+b1*b3)/c1); // We only need to make sure that w is in the correct direction // (going from down to up) // the original segment endpoints p1=(x1,y1) and p2=(x2,y2) // are transformed to (v1,w1) and (v2,w2), so we need that w2 > w1 // (otherwise the result should be multiplied by -1) Kernel k; Point_2 p1 (k.construct_point_on_2_object()(line, 0)); Point_2 p2 (k.construct_point_on_2_object()(line, 1)); if(k.compare_xy_2_object()(p1, p2) == LARGER) std::swap(p1, p2); CGAL_assertion(k.compare_xy_2_object()(p1, p2) == SMALLER); const FT& x1 = p1.x(), y1 = p1.y(), x2 = p2.x(), y2 = p2.y(); Sign s2 = CGAL_NTS sign(-b3*x1+a3*y1-(-b3*x2+a3*y2)); return s1 * s2; } }; Compare_z_at_xy_above_3 compare_z_at_xy_above_3_object() const { return Compare_z_at_xy_above_3(); } class Compare_z_at_xy_below_3 { public: Comparison_result operator()(const X_monotone_curve_2& cv, const Xy_monotone_surface_3& h1, const Xy_monotone_surface_3& h2) const { Compare_z_at_xy_above_3 cmp_above; return CGAL::opposite(cmp_above(cv, h1, h2)); } }; Compare_z_at_xy_below_3 compare_z_at_xy_below_3_object() const { return Compare_z_at_xy_below_3(); } class Construct_projected_boundary_2 { public: template OutputIterator operator()(const Xy_monotone_surface_3& s, OutputIterator o) const { if(s.is_all_plane()) { if(!s.is_vertical()) return o; const Plane_3& h = s.plane(); Line_2 proj_line(h.a(), h.b(), h.d()); *o++ = make_object(std::make_pair(X_monotone_curve_2(proj_line), ON_ORIENTED_BOUNDARY)); return o; } // s is half-plane Kernel k; const Point_2& p1 = k.construct_point_on_2_object()(s.line(), 0); const Point_2& p2 = k.construct_point_on_2_object()(s.line(), 1); Comparison_result res = k.compare_xy_2_object()(p1, p2); Oriented_side side = (res == SMALLER) ? ON_POSITIVE_SIDE : ON_NEGATIVE_SIDE; *o++ = make_object(std::make_pair(X_monotone_curve_2(s.line()), side)); return o; } }; Construct_projected_boundary_2 construct_projected_boundary_2_object() const { return Construct_projected_boundary_2(); } class Construct_projected_intersections_2 { public: template OutputIterator operator()(const Xy_monotone_surface_3& s1, const Xy_monotone_surface_3& s2, OutputIterator o) const { Kernel k; const Plane_3& h1 = s1.plane(); const Plane_3& h2 = s2.plane(); if(s1.is_vertical() && s2.is_vertical()) { Line_2 l1(h1.a(), h1.b(), h1.d()); Line_2 l2(h2.a(), h2.b(), h2.d()); Object obj = k.intersect_2_object()(l1, l2); Point_2 p; if(assign(p, obj)) *o++ = make_object(p); // otherwise, the vertical planes are parallel or overlap, so we return // nothing. return o; } if(s1.is_all_plane() && s2.is_all_plane()) { Object obj = k.intersect_3_object()(h1, h2); Line_3 l; if(assign(l, obj)) *o++ = make_object(Intersection_curve(project_xy(l, k), 1)); return o; } if(s1.is_all_plane() && !s2.is_all_plane()) { Object obj = plane_half_plane_proj_intersection(h1, h2, s2.line(), k); if(obj.is_empty()) return o; Line_2 temp_l; if(assign(temp_l, obj)) { *o++ = make_object(Intersection_curve(temp_l, 1)); return o; } Ray_2 ray; if(assign(ray, obj)) { *o++ = make_object(Intersection_curve(ray, 1)); return o; } return o; } if(!s2.is_all_plane() && s2.is_all_plane()) { Object obj = plane_half_plane_proj_intersection(h2, h1, s1.line(), k); if(obj.is_empty()) return o; Line_2 line; if(assign(line, obj)) { *o++ = make_object(Intersection_curve(line, 1)); return o; } Ray_2 ray; if(assign(ray, obj)) { *o++ = make_object(Intersection_curve(ray, 1)); return o; } return o; } CGAL_assertion(!s2.is_all_plane() && !s2.is_all_plane()); Object obj = half_plane_half_plane_proj_intersection(h1, s1.line(), h2, s2.line(), k); if(obj.is_empty()) return o; Line_2 line; if(assign(line, obj)) { *o++ = make_object(Intersection_curve(line, 1)); return o; } Ray_2 ray; if(assign(ray, obj)) { *o++ = make_object(Intersection_curve(ray, 1)); return o; } Segment_2 seg; if(assign(seg, obj)) { *o++ = make_object(Intersection_curve(seg, 1)); return o; } Point_2 p; if(assign(p, obj)) { *o++ = make_object(p); return o; } return o; } }; Construct_projected_intersections_2 construct_projected_intersections_2_object() const { return Construct_projected_intersections_2(); } }; } //namespace CGAL #endif