// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany). // All rights reserved. // // This file is part of CGAL (www.cgal.org) // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Polynomial/include/CGAL/Polynomial_traits_d.h $ // $Id: Polynomial_traits_d.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot // SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial // // // Author(s) : Michael Hemmer // Sebastian Limbach // // ============================================================================ #ifndef CGAL_POLYNOMIAL_TRAITS_D_H #define CGAL_POLYNOMIAL_TRAITS_D_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS \ private: \ typedef Polynomial_traits_d< Polynomial< Coefficient_type_ > > PT; \ typedef Polynomial_traits_d< Coefficient_type_ > PTC; \ \ typedef Polynomial Polynomial_d; \ typedef Coefficient_type_ Coefficient_type; \ \ typedef typename Innermost_coefficient_type::Type \ Innermost_coefficient_type; \ static const int d = Dimension::value; \ \ \ typedef std::pair< Exponent_vector, Innermost_coefficient_type > \ Exponents_coeff_pair; \ typedef std::vector< Exponents_coeff_pair > Monom_rep; \ \ typedef CGAL::Recursive_const_flattening< d-1, \ typename CGAL::Polynomial::const_iterator > \ Coefficient_const_flattening; \ \ typedef typename \ Coefficient_const_flattening::Recursive_flattening_iterator \ Innermost_coefficient_const_iterator; \ \ typedef typename Polynomial_d::const_iterator \ Coefficient_const_iterator; \ \ typedef std::pair \ Innermost_coefficient_const_iterator_range; \ \ typedef std::pair \ Coefficient_const_iterator_range; \ namespace CGAL { namespace internal { // Base class for functors depending on the algebraic category of the // innermost coefficient template< class Coefficient_type_, class ICoeffAlgebraicCategory > class Polynomial_traits_d_base_icoeff_algebraic_category { public: typedef Null_functor Multivariate_content; }; // Specializations template< class Coefficient_type_ > class Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Integral_domain_without_division_tag > : public Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Null_tag > {}; template< class Coefficient_type_ > class Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Integral_domain_tag > : public Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Integral_domain_without_division_tag > {}; template< class Coefficient_type_ > class Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Unique_factorization_domain_tag > : public Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Integral_domain_tag > { CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS public: struct Multivariate_content : public CGAL::cpp98::unary_function< Polynomial_d , Innermost_coefficient_type >{ Innermost_coefficient_type operator()(const Polynomial_d& p) const { typedef Innermost_coefficient_const_iterator IT; Innermost_coefficient_type content(0); typename PT::Construct_innermost_coefficient_const_iterator_range range; for (IT it = range(p).first; it != range(p).second; it++){ content = CGAL::gcd(content, *it); if(CGAL::is_one(content)) break; } return content; } }; }; template< class Coefficient_type_ > class Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Euclidean_ring_tag > : public Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Unique_factorization_domain_tag > {}; template< class Coefficient_type_ > class Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Field_tag > : public Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Integral_domain_tag > { CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS public: // Multivariate_content; struct Multivariate_content : public CGAL::cpp98::unary_function< Polynomial_d , Innermost_coefficient_type >{ Innermost_coefficient_type operator()(const Polynomial_d& p) const { if( CGAL::is_zero(p) ) return Innermost_coefficient_type(0); else return Innermost_coefficient_type(1); } }; }; template< class Coefficient_type_ > class Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Field_with_sqrt_tag > : public Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Field_tag > {}; template< class Coefficient_type_ > class Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Field_with_kth_root_tag > : public Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Field_with_sqrt_tag > {}; template< class Coefficient_type_ > class Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Field_with_root_of_tag > : public Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, Field_with_kth_root_tag > {}; // Base class for functors depending on the algebraic category of the // Polynomial type template< class Coefficient_type_, class PolynomialAlgebraicCategory > class Polynomial_traits_d_base_polynomial_algebraic_category { public: typedef Null_functor Univariate_content; typedef Null_functor Square_free_factorize; }; // Specializations template< class Coefficient_type_ > class Polynomial_traits_d_base_polynomial_algebraic_category< Polynomial< Coefficient_type_ >, Integral_domain_without_division_tag > : public Polynomial_traits_d_base_polynomial_algebraic_category< Polynomial< Coefficient_type_ >, Null_tag > {}; template< class Coefficient_type_ > class Polynomial_traits_d_base_polynomial_algebraic_category< Polynomial< Coefficient_type_ >, Integral_domain_tag > : public Polynomial_traits_d_base_polynomial_algebraic_category< Polynomial< Coefficient_type_ >, Integral_domain_without_division_tag > {}; template< class Coefficient_type_ > class Polynomial_traits_d_base_polynomial_algebraic_category< Polynomial< Coefficient_type_ >, Unique_factorization_domain_tag > : public Polynomial_traits_d_base_polynomial_algebraic_category< Polynomial< Coefficient_type_ >, Integral_domain_tag > { CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS public: // Univariate_content struct Univariate_content : public CGAL::cpp98::unary_function< Polynomial_d , Coefficient_type>{ Coefficient_type operator()(const Polynomial_d& p) const { return p.content(); } }; // Square_free_factorize; struct Square_free_factorize{ template < class OutputIterator > OutputIterator operator()( const Polynomial_d& p, OutputIterator oi) const { std::vector factors; std::vector mults; square_free_factorize ( p, std::back_inserter(factors), std::back_inserter(mults) ); CGAL_postcondition( factors.size() == mults.size() ); for(unsigned int i = 0; i < factors.size(); i++){ *oi++=std::make_pair(factors[i],mults[i]); } return oi; } template< class OutputIterator > OutputIterator operator()( const Polynomial_d& p , OutputIterator oi, Innermost_coefficient_type& a ) const { if( CGAL::is_zero(p) ) { a = Innermost_coefficient_type(0); return oi; } typedef Polynomial_traits_d< Polynomial_d > PT; typename PT::Innermost_leading_coefficient ilcoeff; typename PT::Multivariate_content mcontent; a = CGAL::unit_part( ilcoeff( p ) ) * mcontent( p ); return (*this)( p/Polynomial_d(a), oi); } }; }; template< class Coefficient_type_ > class Polynomial_traits_d_base_polynomial_algebraic_category< Polynomial< Coefficient_type_ >, Euclidean_ring_tag > : public Polynomial_traits_d_base_polynomial_algebraic_category< Polynomial< Coefficient_type_ >, Unique_factorization_domain_tag > {}; // Polynomial_traits_d_base class connecting the two base classes which depend // on the algebraic category of the innermost coefficient type and the poly- // nomial type. // First the general base class for the innermost coefficient template< class InnermostCoefficient_type, class ICoeffAlgebraicCategory, class PolynomialAlgebraicCategory > class Polynomial_traits_d_base { typedef InnermostCoefficient_type ICoeff; public: static const int d = 0; typedef ICoeff Polynomial_d; typedef ICoeff Coefficient_type; typedef ICoeff Innermost_coefficient_type; struct Degree : public CGAL::cpp98::unary_function< ICoeff , int > { int operator()(const ICoeff&) const { return 0; } }; struct Total_degree : public CGAL::cpp98::unary_function< ICoeff , int > { int operator()(const ICoeff&) const { return 0; } }; typedef Null_functor Construct_polynomial; typedef Null_functor Get_coefficient; typedef Null_functor Leading_coefficient; typedef Null_functor Univariate_content; typedef Null_functor Multivariate_content; typedef Null_functor Shift; typedef Null_functor Negate; typedef Null_functor Invert; typedef Null_functor Translate; typedef Null_functor Translate_homogeneous; typedef Null_functor Scale_homogeneous; typedef Null_functor Differentiate; struct Is_square_free : public CGAL::cpp98::unary_function< ICoeff, bool > { bool operator()( const ICoeff& ) const { return true; } }; struct Make_square_free : public CGAL::cpp98::unary_function< ICoeff, ICoeff>{ ICoeff operator()( const ICoeff& x ) const { if (CGAL::is_zero(x)) return x ; else return ICoeff(1); } }; typedef Null_functor Square_free_factorize; typedef Null_functor Pseudo_division; typedef Null_functor Pseudo_division_remainder; typedef Null_functor Pseudo_division_quotient; struct Gcd_up_to_constant_factor : public CGAL::cpp98::binary_function< ICoeff, ICoeff, ICoeff >{ ICoeff operator()(const ICoeff& x, const ICoeff& y) const { if (CGAL::is_zero(x) && CGAL::is_zero(y)) return ICoeff(0); else return ICoeff(1); } }; typedef Null_functor Integral_division_up_to_constant_factor; struct Univariate_content_up_to_constant_factor : public CGAL::cpp98::unary_function< ICoeff, ICoeff >{ ICoeff operator()(const ICoeff& ) const { // TODO: Why not return 0 if argument is 0 ? return ICoeff(1); } }; typedef Null_functor Square_free_factorize_up_to_constant_factor; typedef Null_functor Resultant; typedef Null_functor Canonicalize; typedef Null_functor Evaluate_homogeneous; struct Innermost_leading_coefficient :public CGAL::cpp98::unary_function { const ICoeff& operator()(const ICoeff& x){return x;} }; struct Degree_vector{ typedef Exponent_vector result_type; typedef Coefficient_type argument_type; // returns the exponent vector of inner_most_lcoeff. result_type operator()(const Coefficient_type&) const{ return Exponent_vector(); } }; struct Get_innermost_coefficient : public CGAL::cpp98::binary_function< ICoeff, Polynomial_d, Exponent_vector > { const ICoeff& operator()( const Polynomial_d& p, Exponent_vector ) { return p; } }; typedef Null_functor Evaluate ; struct Substitute{ public: template typename CGAL::Coercion_traits< typename std::iterator_traits::value_type, Innermost_coefficient_type>::Type operator()( const Innermost_coefficient_type& p, Input_iterator CGAL_precondition_code(begin), Input_iterator CGAL_precondition_code(end) ) const { CGAL_precondition(end == begin); typedef typename std::iterator_traits::value_type value_type; typedef CGAL::Coercion_traits CT; return typename CT::Cast()(p); } }; struct Substitute_homogeneous{ public: // this is the end of the recursion // begin contains the homogeneous variabel // hdegree is the remaining degree template typename CGAL::Coercion_traits< typename std::iterator_traits::value_type, Innermost_coefficient_type>::Type operator()( const Innermost_coefficient_type& p, Input_iterator begin, Input_iterator CGAL_precondition_code(end), int hdegree) const { typedef typename std::iterator_traits::value_type value_type; typedef CGAL::Coercion_traits CT; typename CT::Type result = typename CT::Cast()(CGAL::ipower(*begin++,hdegree)) * typename CT::Cast()(p); CGAL_precondition(end == begin); CGAL_precondition(hdegree >= 0); return result; } }; }; // Now the version for the polynomials with all functors provided by all // polynomials template< class Coefficient_type_, class ICoeffAlgebraicCategory, class PolynomialAlgebraicCategory > class Polynomial_traits_d_base< Polynomial< Coefficient_type_ >, ICoeffAlgebraicCategory, PolynomialAlgebraicCategory > : public Polynomial_traits_d_base_icoeff_algebraic_category< Polynomial< Coefficient_type_ >, ICoeffAlgebraicCategory >, public Polynomial_traits_d_base_polynomial_algebraic_category< Polynomial< Coefficient_type_ >, PolynomialAlgebraicCategory > { typedef Polynomial_traits_d< Polynomial< Coefficient_type_ > > PT; typedef Polynomial_traits_d< Coefficient_type_ > PTC; public: typedef Polynomial Polynomial_d; typedef Coefficient_type_ Coefficient_type; typedef typename internal::Innermost_coefficient_type::Type Innermost_coefficient_type; static const int d = Dimension::value; private: typedef std::pair< Exponent_vector, Innermost_coefficient_type > Exponents_coeff_pair; typedef std::vector< Exponents_coeff_pair > Monom_rep; typedef CGAL::Recursive_const_flattening< d-1, typename CGAL::Polynomial::const_iterator > Coefficient_const_flattening; public: typedef typename Coefficient_const_flattening::Recursive_flattening_iterator Innermost_coefficient_const_iterator; typedef typename Polynomial_d::const_iterator Coefficient_const_iterator; typedef std::pair Innermost_coefficient_const_iterator_range; typedef std::pair Coefficient_const_iterator_range; // We use our own Strict Weak Ordering predicate in order to avoid // problems when calling sort for a Exponents_coeff_pair where the // coeff type has no comparison operators available. private: struct Compare_exponents_coeff_pair : public CGAL::cpp98::binary_function< std::pair< Exponent_vector, Innermost_coefficient_type >, std::pair< Exponent_vector, Innermost_coefficient_type >, bool > { bool operator()( const std::pair< Exponent_vector, Innermost_coefficient_type >& p1, const std::pair< Exponent_vector, Innermost_coefficient_type >& p2 ) const { // TODO: Precondition leads to an error within test_translate in // Polynomial_traits_d test // CGAL_precondition( p1.first != p2.first ); return p1.first < p2.first; } }; public: // // Functors as defined in the reference manual // (with sometimes slightly extended functionality) // Construct_polynomial; struct Construct_polynomial { typedef Polynomial_d result_type; Polynomial_d operator()() const { return Polynomial_d(0); } template Polynomial_d operator()( T a ) const { return Polynomial_d(a); } //! construct the constant polynomial a0 Polynomial_d operator() (const Coefficient_type& a0) const {return Polynomial_d(a0);} //! construct the polynomial a0 + a1*x Polynomial_d operator() ( const Coefficient_type& a0, const Coefficient_type& a1) const {return Polynomial_d(a0,a1);} //! construct the polynomial a0 + a1*x + a2*x^2 Polynomial_d operator() ( const Coefficient_type& a0, const Coefficient_type& a1, const Coefficient_type& a2) const {return Polynomial_d(a0,a1,a2);} //! construct the polynomial a0 + a1*x + ... + a3*x^3 Polynomial_d operator() ( const Coefficient_type& a0, const Coefficient_type& a1, const Coefficient_type& a2, const Coefficient_type& a3) const {return Polynomial_d(a0,a1,a2,a3);} //! construct the polynomial a0 + a1*x + ... + a4*x^4 Polynomial_d operator() ( const Coefficient_type& a0, const Coefficient_type& a1, const Coefficient_type& a2, const Coefficient_type& a3, const Coefficient_type& a4) const {return Polynomial_d(a0,a1,a2,a3,a4);} //! construct the polynomial a0 + a1*x + ... + a5*x^5 Polynomial_d operator() ( const Coefficient_type& a0, const Coefficient_type& a1, const Coefficient_type& a2, const Coefficient_type& a3, const Coefficient_type& a4, const Coefficient_type& a5) const {return Polynomial_d(a0,a1,a2,a3,a4,a5);} //! construct the polynomial a0 + a1*x + ... + a6*x^6 Polynomial_d operator() ( const Coefficient_type& a0, const Coefficient_type& a1, const Coefficient_type& a2, const Coefficient_type& a3, const Coefficient_type& a4, const Coefficient_type& a5, const Coefficient_type& a6) const {return Polynomial_d(a0,a1,a2,a3,a4,a5,a6);} //! construct the polynomial a0 + a1*x + ... + a7*x^7 Polynomial_d operator() ( const Coefficient_type& a0, const Coefficient_type& a1, const Coefficient_type& a2, const Coefficient_type& a3, const Coefficient_type& a4, const Coefficient_type& a5, const Coefficient_type& a6, const Coefficient_type& a7) const {return Polynomial_d(a0,a1,a2,a3,a4,a5,a6,a7);} //! construct the polynomial a0 + a1*x + ... + a8*x^8 Polynomial_d operator() ( const Coefficient_type& a0, const Coefficient_type& a1, const Coefficient_type& a2, const Coefficient_type& a3, const Coefficient_type& a4, const Coefficient_type& a5, const Coefficient_type& a6, const Coefficient_type& a7, const Coefficient_type& a8) const {return Polynomial_d(a0,a1,a2,a3,a4,a5,a6,a7,a8);} #if 1 private: template Polynomial_d construct_value_type(Input_iterator begin, Input_iterator end, NT) const { typedef CGAL::Coercion_traits CT; CGAL_static_assertion((boost::is_same::value)); typename CT::Cast cast; return Polynomial_d( boost::make_transform_iterator(begin,cast), boost::make_transform_iterator(end,cast)); } template Polynomial_d construct_value_type(Input_iterator begin, Input_iterator end, std::pair) const { return (*this)(begin,end,false);// construct from non sorted monom rep } public: template< class Input_iterator > Polynomial_d operator()( Input_iterator begin, Input_iterator end) const { if(begin == end ) return Polynomial_d(0); typedef typename std::iterator_traits::value_type value_type; return construct_value_type(begin,end,value_type()); } template< class Input_iterator > Polynomial_d operator()( Input_iterator begin, Input_iterator end, bool is_sorted) const { // Avoid compiler warning (void)is_sorted; if(begin == end ) return Polynomial_d(0); Monom_rep monom_rep(begin,end); // if(!is_sorted) std::sort(monom_rep.begin(),monom_rep.end(),Compare_exponents_coeff_pair()); return Create_polynomial_from_monom_rep()(monom_rep.begin(),monom_rep.end()); } #else // Construct from Coefficient type template< class Input_iterator > inline Polynomial_d construct( Input_iterator begin, Input_iterator end, Tag_true) const { if(begin == end ) return Polynomial_d(0); return Polynomial_d(begin,end); } // Construct from momom rep template< class Input_iterator > inline Polynomial_d construct( Input_iterator begin, Input_iterator end, Tag_false) const { // construct from non sorted monom rep return (*this)(begin,end,false); } template< class Input_iterator > Polynomial_d operator()( Input_iterator begin, Input_iterator end ) const { if(begin == end ) return Polynomial_d(0); typedef typename std::iterator_traits::value_type value_type; typedef Boolean_tag::value> Is_coeff; std::vector vec(begin,end); return construct(vec.begin(),vec.end(),Is_coeff()); } template< class Input_iterator > Polynomial_d operator()(Input_iterator begin, Input_iterator end , bool is_sorted) const{ if(!is_sorted) std::sort(begin,end,Compare_exponents_coeff_pair()); return Create_polynomial_from_monom_rep< Coefficient_type >()(begin,end); } #endif public: template< class T > class Create_polynomial_from_monom_rep { public: template Polynomial_d operator()( Monom_rep_iterator begin, Monom_rep_iterator end) const { Innermost_coefficient_type zero(0); std::vector< Innermost_coefficient_type > coefficients; for(Monom_rep_iterator it = begin; it != end; it++){ int current_exp = it->first[0]; if((int) coefficients.size() < current_exp) coefficients.resize(current_exp,zero); coefficients.push_back(it->second); } return Polynomial_d(coefficients.begin(),coefficients.end()); } }; template< class T > class Create_polynomial_from_monom_rep< Polynomial < T > > { public: template Polynomial_d operator()( Monom_rep_iterator begin, Monom_rep_iterator end) const { typedef Polynomial_traits_d PT; typename PT::Construct_polynomial construct; CGAL_static_assertion(PT::d != 0); // Coefficient_type is a Polynomial std::vector coefficients; Coefficient_type zero(0); while(begin != end){ int current_exp = begin->first[PT::d]; // fill up with zeros until current exp is reached if((int) coefficients.size() < current_exp) coefficients.resize(current_exp,zero); // select range for coefficient of current exponent Monom_rep_iterator coeff_end = begin; while( coeff_end != end && coeff_end->first[PT::d] == current_exp ){ ++coeff_end; } coefficients.push_back(construct(begin, coeff_end)); begin = coeff_end; } return Polynomial_d(coefficients.begin(),coefficients.end()); } }; }; // Get_coefficient; struct Get_coefficient : public CGAL::cpp98::binary_function { const Coefficient_type& operator()( const Polynomial_d& p, int i) const { CGAL_STATIC_THREAD_LOCAL_VARIABLE(Coefficient_type, zero, 0); CGAL_precondition( i >= 0 ); typename PT::Degree degree; if( i > degree(p) ) return zero; return p[i]; } }; // Get_innermost_coefficient; struct Get_innermost_coefficient : public CGAL::cpp98::binary_function< Polynomial_d, Exponent_vector, Innermost_coefficient_type > { const Innermost_coefficient_type& operator()( const Polynomial_d& p, Exponent_vector ev ) const { CGAL_precondition( !ev.empty() ); typename PTC::Get_innermost_coefficient gic; typename PT::Get_coefficient gc; int exponent = ev.back(); ev.pop_back(); return gic( gc( p, exponent ), ev ); }; }; typedef CGAL::internal::Monomial_representation Monomial_representation; // Swap variable x_i with x_j struct Swap { typedef Polynomial_d result_type; typedef Polynomial_d first_argument_type; typedef int second_argument_type; typedef int third_argument_type; public: Polynomial_d operator()(const Polynomial_d& p, int i, int j ) const { CGAL_precondition(0 <= i && i < d); CGAL_precondition(0 <= j && j < d); typedef std::pair< Exponent_vector, Innermost_coefficient_type > Exponents_coeff_pair; Monomial_representation gmr; Construct_polynomial construct; typedef std::vector< Exponents_coeff_pair > Monom_vector; typedef typename Monom_vector::iterator MVIterator; Monom_vector monoms; gmr( p, std::back_inserter( monoms ) ); for( MVIterator it = monoms.begin(); it != monoms.end(); ++it ) { std::swap(it->first[i],it->first[j]); } // sort only once ! std::sort(monoms.begin(), monoms.end(),Compare_exponents_coeff_pair()); return construct(monoms.begin(), monoms.end(),true); } }; // Move; // move variable x_i to position of x_j // order of other variables remains // default j = d makes x_i the othermost variable struct Move { typedef Polynomial_d result_type; typedef Polynomial_d first_argument_type; typedef int second_argument_type; typedef int third_argument_type; Polynomial_d operator()(const Polynomial_d& p, int i, int j = (d-1) ) const { CGAL_precondition(0 <= i && i < d); CGAL_precondition(0 <= j && j < d); typedef std::pair< Exponent_vector, Innermost_coefficient_type > Exponents_coeff_pair; typedef std::vector< Exponents_coeff_pair > Monom_rep; Monomial_representation gmr; Construct_polynomial construct; Monom_rep mon_rep; gmr( p, std::back_inserter( mon_rep ) ); for( typename Monom_rep::iterator it = mon_rep.begin(); it != mon_rep.end(); ++it ) { // this is as good as std::rotate since it uses swap also if (i < j) for( int k = i; k < j; k++ ) std::swap(it->first[k],it->first[k+1]); else for( int k = i; k > j; k-- ) std::swap(it->first[k],it->first[k-1]); } return construct( mon_rep.begin(), mon_rep.end() ); } }; struct Permute { typedef Polynomial_d result_type; template Polynomial_d operator() (const Polynomial_d& p, Input_iterator first, Input_iterator last) const { Construct_polynomial construct; Monomial_representation gmr; Monom_rep mon_rep; gmr( p, std::back_inserter( mon_rep )); std::vector on_place, number_is; int i= 0; for (Input_iterator iter = first ; iter != last ; ++iter) number_is.push_back (i++); on_place = number_is; int rem_place = 0, rem_number = i= 0; for(Input_iterator iter = first ; iter != last ; ++iter){ for( typename Monom_rep::iterator it = mon_rep.begin(); it != mon_rep.end(); ++it ) std::swap(it->first[number_is[i]],it->first[(*iter)]); rem_place= number_is[i]; rem_number= on_place[(*iter)]; on_place[(*iter)] = i; on_place[rem_place]=rem_number; number_is[rem_number]=rem_place; number_is[i++]= (*iter); } return construct( mon_rep.begin(), mon_rep.end() ); } }; //Degree; typedef CGAL::internal::Degree Degree; // Total_degree; struct Total_degree : public CGAL::cpp98::unary_function< Polynomial_d , int >{ int operator()(const Polynomial_d& p) const { typedef Polynomial_traits_d COEFF_POLY_TRAITS; typename COEFF_POLY_TRAITS::Total_degree total_degree; Degree degree; CGAL_precondition( degree(p) >= 0); int result = 0; for(int i = 0; i <= degree(p) ; i++){ if( ! CGAL::is_zero( p[i]) ) result = (std::max)(result , total_degree(p[i]) + i ); } return result; } }; // Leading_coefficient; struct Leading_coefficient : public CGAL::cpp98::unary_function< Polynomial_d , Coefficient_type>{ const Coefficient_type& operator()(const Polynomial_d& p) const { return p.lcoeff(); } }; // Innermost_leading_coefficient; struct Innermost_leading_coefficient : public CGAL::cpp98::unary_function< Polynomial_d , Innermost_coefficient_type>{ const Innermost_coefficient_type& operator()(const Polynomial_d& p) const { typename PTC::Innermost_leading_coefficient ilcoeff; typename PT::Leading_coefficient lcoeff; return ilcoeff(lcoeff(p)); } }; //return a canonical representative of all constant multiples. struct Canonicalize : public CGAL::cpp98::unary_function{ private: inline Polynomial_d canonicalize_(Polynomial_d p, CGAL::Tag_true) const { typedef typename Polynomial_traits_d::Innermost_coefficient_type IC; typename Polynomial_traits_d::Innermost_leading_coefficient ilcoeff; typename Algebraic_extension_traits::Normalization_factor nfac; IC tmp = nfac(ilcoeff(p)); if(tmp != IC(1)){ p *= Polynomial_d(tmp); } remove_scalar_factor(p); p /= p.unit_part(); p.simplify_coefficients(); CGAL_postcondition(nfac(ilcoeff(p)) == IC(1)); return p; }; inline Polynomial_d canonicalize_(Polynomial_d p, CGAL::Tag_false) const { remove_scalar_factor(p); p /= p.unit_part(); p.simplify_coefficients(); return p; }; public: Polynomial_d operator()( const Polynomial_d& p ) const { if (CGAL::is_zero(p)) return p; typedef Innermost_coefficient_type IC; typedef typename Algebraic_extension_traits::Is_extended Is_extended; return canonicalize_(p, Is_extended()); } }; // Differentiate; struct Differentiate : public CGAL::cpp98::unary_function{ Polynomial_d operator()(Polynomial_d p, int i = (d-1)) const { if (i == (d-1) ){ p.diff(); }else{ Swap swap; p = swap(p,i,d-1); p.diff(); p = swap(p,i,d-1); } return p; } }; // Evaluate; struct Evaluate :public CGAL::cpp98::binary_function{ // Evaluate with respect to one variable Coefficient_type operator()(const Polynomial_d& p, const Coefficient_type& x) const { return p.evaluate(x); } #define ICOEFF typename First_if_different::Type Coefficient_type operator() ( const Polynomial_d& p, const ICOEFF& x) const { return p.evaluate(x); } #undef ICOEFF }; // Evaluate_homogeneous; struct Evaluate_homogeneous{ typedef Coefficient_type result_type; typedef Polynomial_d first_argument_type; typedef Coefficient_type second_argument_type; typedef Coefficient_type third_argument_type; Coefficient_type operator()( const Polynomial_d& p, const Coefficient_type& a, const Coefficient_type& b) const { return p.evaluate_homogeneous(a,b); } #define ICOEFF typename First_if_different::Type Coefficient_type operator() ( const Polynomial_d& p, const ICOEFF& a, const ICOEFF& b) const { return p.evaluate_homogeneous(a,b); } #undef ICOEFF }; // Is_zero_at; struct Is_zero_at { private: typedef Algebraic_structure_traits AST; typedef typename AST::Is_zero::result_type BOOL; public: typedef BOOL result_type; template< class Input_iterator > BOOL operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end ) const { typename PT::Substitute substitute; return( CGAL::is_zero( substitute( p, begin, end ) ) ); } }; // Is_zero_at_homogeneous; struct Is_zero_at_homogeneous { private: typedef Algebraic_structure_traits AST; typedef typename AST::Is_zero::result_type BOOL; public: typedef BOOL result_type; template< class Input_iterator > BOOL operator() ( const Polynomial_d& p, Input_iterator begin, Input_iterator end ) const { typename PT::Substitute_homogeneous substitute_homogeneous; return( CGAL::is_zero( substitute_homogeneous( p, begin, end ) ) ); } }; // Sign_at, Sign_at_homogeneous, Compare // define XXX_ even though ICoeff may not be Real_embeddable // select propoer XXX among XXX_ or Null_functor using ::boost::mpl::if_ private: struct Sign_at_ { private: typedef Real_embeddable_traits RT; public: typedef typename RT::Sign result_type; template< class Input_iterator > result_type operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end ) const { typename PT::Substitute substitute; return CGAL::sign( substitute( p, begin, end ) ); } }; struct Sign_at_homogeneous_ { typedef Real_embeddable_traits RT; public: typedef typename RT::Sign result_type; template< class Input_iterator > result_type operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end) const { typename PT::Substitute_homogeneous substitute_homogeneous; return CGAL::sign( substitute_homogeneous( p, begin, end ) ); } }; typedef Real_embeddable_traits RET_IC; typedef typename RET_IC::Is_real_embeddable IC_is_real_embeddable; public: typedef typename ::boost::mpl::if_::type Sign_at; typedef typename ::boost::mpl::if_::type Sign_at_homogeneous; typedef typename Real_embeddable_traits::Compare Compare; struct Construct_coefficient_const_iterator_range : public CGAL::cpp98::unary_function< Polynomial_d, Coefficient_const_iterator_range> { Coefficient_const_iterator_range operator () (const Polynomial_d& p) const { return std::make_pair( p.begin(), p.end() ); } }; struct Construct_innermost_coefficient_const_iterator_range : public CGAL::cpp98::unary_function< Polynomial_d, Innermost_coefficient_const_iterator_range> { Innermost_coefficient_const_iterator_range operator () (const Polynomial_d& p) const { return std::make_pair( typename Coefficient_const_flattening::Flatten()(p.end(),p.begin()), typename Coefficient_const_flattening::Flatten()(p.end(),p.end())); } }; struct Is_square_free : public CGAL::cpp98::unary_function< Polynomial_d, bool >{ bool operator()( const Polynomial_d& p ) const { if( !internal::may_have_multiple_factor( p ) ) return true; Gcd_up_to_constant_factor gcd_utcf; Univariate_content_up_to_constant_factor ucontent_utcf; Integral_division_up_to_constant_factor idiv_utcf; Differentiate diff; Coefficient_type content = ucontent_utcf( p ); typename PTC::Is_square_free isf; if( !isf( content ) ) return false; Polynomial_d regular_part = idiv_utcf( p, Polynomial_d( content ) ); Polynomial_d g = gcd_utcf(regular_part,diff(regular_part)); return ( g.degree() == 0 ); } }; struct Make_square_free : public CGAL::cpp98::unary_function< Polynomial_d, Polynomial_d >{ Polynomial_d operator()(const Polynomial_d& p) const { if (CGAL::is_zero(p)) return p; Gcd_up_to_constant_factor gcd_utcf; Univariate_content_up_to_constant_factor ucontent_utcf; Integral_division_up_to_constant_factor idiv_utcf; Differentiate diff; typename PTC::Make_square_free msf; Coefficient_type content = ucontent_utcf(p); Polynomial_d result = Polynomial_d(msf(content)); Polynomial_d regular_part = idiv_utcf(p,Polynomial_d(content)); Polynomial_d g = gcd_utcf(regular_part,diff(regular_part)); result *= idiv_utcf(regular_part,g); return Canonicalize()(result); } }; // Pseudo_division; struct Pseudo_division { typedef Polynomial_d result_type; void operator()( const Polynomial_d& f, const Polynomial_d& g, Polynomial_d& q, Polynomial_d& r, Coefficient_type& D) const { Polynomial_d::pseudo_division(f,g,q,r,D); } }; struct Pseudo_division_quotient :public CGAL::cpp98::binary_function { Polynomial_d operator()(const Polynomial_d& f, const Polynomial_d& g) const { Polynomial_d q,r; Coefficient_type D; Polynomial_d::pseudo_division(f,g,q,r,D); return q; } }; struct Pseudo_division_remainder :public CGAL::cpp98::binary_function { Polynomial_d operator()(const Polynomial_d& f, const Polynomial_d& g) const { Polynomial_d q,r; Coefficient_type D; Polynomial_d::pseudo_division(f,g,q,r,D); return r; } }; struct Gcd_up_to_constant_factor :public CGAL::cpp98::binary_function { Polynomial_d operator()(const Polynomial_d& p, const Polynomial_d& q) const { if(p==q) return CGAL::canonicalize(p); if (CGAL::is_zero(p) && CGAL::is_zero(q)){ return Polynomial_d(0); } // apply modular filter first if (internal::may_have_common_factor(p,q)){ return internal::gcd_utcf_(p,q); }else{ return Polynomial_d(1); } } }; struct Integral_division_up_to_constant_factor :public CGAL::cpp98::binary_function { Polynomial_d operator()(const Polynomial_d& p, const Polynomial_d& q) const { typedef Innermost_coefficient_type IC; typename PT::Construct_polynomial construct; typename PT::Innermost_leading_coefficient ilcoeff; typename PT::Construct_innermost_coefficient_const_iterator_range range; typedef Algebraic_extension_traits AET; typename AET::Denominator_for_algebraic_integers dfai; typename AET::Normalization_factor nfac; IC ilcoeff_q = ilcoeff(q); // this factor is needed in case IC is an Algebraic extension IC dfai_q = dfai(range(q).first, range(q).second); // make dfai_q a 'scalar' ilcoeff_q *= dfai_q * nfac(dfai_q); Polynomial_d result = (p * construct(ilcoeff_q)) / q; return Canonicalize()(result); } }; struct Univariate_content_up_to_constant_factor :public CGAL::cpp98::unary_function { Coefficient_type operator()(const Polynomial_d& p) const { typename PTC::Gcd_up_to_constant_factor gcd_utcf; if(CGAL::is_zero(p)) return Coefficient_type(0); if(PT::d == 1) return Coefficient_type(1); Coefficient_type result(0); for(typename Polynomial_d::const_iterator it = p.begin(); it != p.end(); it++){ result = gcd_utcf(*it,result); } return result; } }; struct Square_free_factorize_up_to_constant_factor { private: typedef Coefficient_type Coeff; typedef Innermost_coefficient_type ICoeff; // rsqff_utcf computes the sqff recursively for Coeff // end of recursion: ICoeff template < class OutputIterator > OutputIterator rsqff_utcf ( ICoeff , OutputIterator oi) const{ return oi; } template < class OutputIterator > OutputIterator rsqff_utcf ( typename First_if_different::Type c, OutputIterator oi) const { typename PTC::Square_free_factorize_up_to_constant_factor sqff; std::vector > fac_mul_pairs; sqff(c,std::back_inserter(fac_mul_pairs)); for(unsigned int i = 0; i < fac_mul_pairs.size(); i++){ Polynomial_d factor(fac_mul_pairs[i].first); int mult = fac_mul_pairs[i].second; *oi++=std::make_pair(factor,mult); } return oi; } public: template < class OutputIterator> OutputIterator operator()(Polynomial_d p, OutputIterator oi) const { if (CGAL::is_zero(p)) return oi; Univariate_content_up_to_constant_factor ucontent_utcf; Integral_division_up_to_constant_factor idiv_utcf; Coefficient_type c = ucontent_utcf(p); p = idiv_utcf( p , Polynomial_d(c)); std::vector factors; std::vector mults; square_free_factorize_utcf( p, std::back_inserter(factors), std::back_inserter(mults)); for(unsigned int i = 0; i < factors.size() ; i++){ *oi++=std::make_pair(factors[i],mults[i]); } if (CGAL::total_degree(c) == 0) return oi; else return rsqff_utcf(c,oi); } }; struct Shift : public CGAL::cpp98::binary_function< Polynomial_d,int,Polynomial_d >{ Polynomial_d operator()(const Polynomial_d& p, int e, int i = (d-1)) const { Construct_polynomial construct; Monomial_representation gmr; Monom_rep monom_rep; gmr(p,std::back_inserter(monom_rep)); for(typename Monom_rep::iterator it = monom_rep.begin(); it != monom_rep.end(); it++){ it->first[i]+=e; } return construct(monom_rep.begin(), monom_rep.end()); } }; struct Negate : public CGAL::cpp98::unary_function< Polynomial_d, Polynomial_d >{ Polynomial_d operator()(const Polynomial_d& p, int i = (d-1)) const { Construct_polynomial construct; Monomial_representation gmr; Monom_rep monom_rep; gmr(p,std::back_inserter(monom_rep)); for(typename Monom_rep::iterator it = monom_rep.begin(); it != monom_rep.end(); it++){ if (it->first[i] % 2 != 0) it->second = - it->second; } return construct(monom_rep.begin(), monom_rep.end()); } }; struct Invert : public CGAL::cpp98::unary_function< Polynomial_d , Polynomial_d >{ Polynomial_d operator()(Polynomial_d p, int i = (PT::d-1)) const { if (i == (d-1)){ p.reversal(); }else{ p = Swap()(p,i,PT::d-1); p.reversal(); p = Swap()(p,i,PT::d-1); } return p ; } }; struct Translate : public CGAL::cpp98::binary_function< Polynomial_d , Innermost_coefficient_type, Polynomial_d >{ Polynomial_d operator()( Polynomial_d p, const Innermost_coefficient_type& c, int i = (d-1)) const { if (i == (d-1) ){ p.translate(Coefficient_type(c)); }else{ Swap swap; p = swap(p,i,d-1); p.translate(Coefficient_type(c)); p = swap(p,i,d-1); } return p; } }; struct Translate_homogeneous{ typedef Polynomial_d result_type; typedef Polynomial_d first_argument_type; typedef Innermost_coefficient_type second_argument_type; typedef Innermost_coefficient_type third_argument_type; Polynomial_d operator()(Polynomial_d p, const Innermost_coefficient_type& a, const Innermost_coefficient_type& b, int i = (d-1) ) const { if (i == (d-1) ){ p.translate(Coefficient_type(a),Coefficient_type(b)); }else{ Swap swap; p = swap(p,i,d-1); p.translate(Coefficient_type(a),Coefficient_type(b)); p = swap(p,i,d-1); } return p; } }; struct Scale : public CGAL::cpp98::binary_function< Polynomial_d, Innermost_coefficient_type, Polynomial_d > { Polynomial_d operator()( Polynomial_d p, const Innermost_coefficient_type& c, int i = (PT::d-1) ) const { CGAL_precondition( i <= d-1 ); CGAL_precondition( i >= 0 ); typename PT::Scale_homogeneous scale_homogeneous; return scale_homogeneous( p, c, Innermost_coefficient_type(1), i ); } }; struct Scale_homogeneous{ typedef Polynomial_d result_type; typedef Polynomial_d first_argument_type; typedef Innermost_coefficient_type second_argument_type; typedef Innermost_coefficient_type third_argument_type; Polynomial_d operator()( Polynomial_d p, const Innermost_coefficient_type& a, const Innermost_coefficient_type& b, int i = (d-1) ) const { CGAL_precondition( ! CGAL::is_zero(b) ); CGAL_precondition( i <= d-1 ); CGAL_precondition( i >= 0 ); if (i != (d-1) ) p = Swap()(p,i,d-1); if(CGAL::is_one(b)) p.scale_up(Coefficient_type(a)); else if(CGAL::is_one(a)) p.scale_down(Coefficient_type(b)); else p.scale(Coefficient_type(a),Coefficient_type(b)); if (i != (d-1) ) p = Swap()(p,i,d-1); return p; } }; struct Resultant : public CGAL::cpp98::binary_function{ Coefficient_type operator()( const Polynomial_d& p, const Polynomial_d& q) const { return internal::resultant(p,q); } }; // Polynomial subresultants (aka subresultant polynomials) struct Polynomial_subresultants { template OutputIterator operator()( const Polynomial_d& p, const Polynomial_d& q, OutputIterator out, int i = (d-1) ) const { if(i == (d-1) ) return CGAL::internal::polynomial_subresultants(p,q,out); else return CGAL::internal::polynomial_subresultants(Move()(p,i), Move()(q,i), out); } }; // principal subresultants (aka scalar subresultants) struct Principal_subresultants { template OutputIterator operator()( const Polynomial_d& p, const Polynomial_d& q, OutputIterator out, int i = (d-1) ) const { if(i == (d-1) ) return CGAL::internal::principal_subresultants(p,q,out); else return CGAL::internal::principal_subresultants(Move()(p,i), Move()(q,i), out); } }; // Subresultants with cofactors struct Polynomial_subresultants_with_cofactors { template OutputIterator1 operator()( const Polynomial_d& p, const Polynomial_d& q, OutputIterator1 out_sres, OutputIterator2 out_co_p, OutputIterator3 out_co_q, int i = (d-1) ) const { if(i == (d-1) ) return CGAL::internal::polynomial_subresultants_with_cofactors (p,q,out_sres,out_co_p,out_co_q); else return CGAL::internal::polynomial_subresultants_with_cofactors (Move()(p,i),Move()(q,i),out_sres,out_co_p,out_co_q); } }; // Sturm-Habicht sequence (aka signed subresultant sequence) struct Sturm_habicht_sequence { template OutputIterator operator()( const Polynomial_d& p, OutputIterator out, int i = (d-1) ) const { if(i == (d-1) ) return CGAL::internal::sturm_habicht_sequence(p,out); else return CGAL::internal::sturm_habicht_sequence(Move()(p,i), out); } }; // Sturm-Habicht sequence with cofactors struct Sturm_habicht_sequence_with_cofactors { template OutputIterator1 operator()( const Polynomial_d& p, OutputIterator1 out_stha, OutputIterator2 out_f, OutputIterator3 out_fx, int i = (d-1) ) const { if(i == (d-1) ) return CGAL::internal::sturm_habicht_sequence_with_cofactors (p,out_stha,out_f,out_fx); else return CGAL::internal::sturm_habicht_sequence_with_cofactors (Move()(p,i),out_stha,out_f,out_fx); } }; // Principal Sturm-Habicht sequence (formal leading coefficients // of Sturm-Habicht sequence) struct Principal_sturm_habicht_sequence { template OutputIterator operator()( const Polynomial_d& p, OutputIterator out, int i = (d-1) ) const { if(i == (d-1) ) return CGAL::internal::principal_sturm_habicht_sequence(p,out); else return CGAL::internal::principal_sturm_habicht_sequence (Move()(p,i),out); } }; // returns the Exponten_vector of the innermost leading coefficient struct Degree_vector{ typedef Exponent_vector result_type; typedef Polynomial_d argument_type; // returns the exponent vector of inner_most_lcoeff. result_type operator()(const Polynomial_d& polynomial) const{ typename PTC::Degree_vector degree_vector; Exponent_vector result = degree_vector(polynomial.lcoeff()); result.push_back(polynomial.degree()); return result; } }; // substitute every variable by its new value in the iterator range // begin refers to the innermost/first variable struct Substitute{ public: template typename CGAL::Coercion_traits< typename std::iterator_traits::value_type, Innermost_coefficient_type >::Type operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end) const { typedef typename std::iterator_traits ITT; typedef typename ITT::iterator_category Category; return (*this)(p,begin,end,Category()); } template typename CGAL::Coercion_traits< typename std::iterator_traits::value_type, Innermost_coefficient_type >::Type operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end, std::forward_iterator_tag) const { typedef typename std::iterator_traits ITT; std::list list(begin,end); return (*this)(p,list.begin(),list.end()); } template typename CGAL::Coercion_traits ::value_type, Innermost_coefficient_type>::Type operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end, std::bidirectional_iterator_tag) const { typedef typename std::iterator_traits::value_type value_type; typedef CGAL::Coercion_traits CT; typename PTC::Substitute subs; typename CT::Type x = typename CT::Cast()(*(--end)); int i = Degree()(p); typename CT::Type y = subs(Get_coefficient()(p,i),begin,end); while (--i >= 0){ y *= x; y += subs(Get_coefficient()(p,i),begin,end); } return y; } }; // substitute every variable by its new value in the iterator range // begin refers to the innermost/first variable struct Substitute_homogeneous{ template struct Result_type{ typedef std::iterator_traits ITT; typedef typename ITT::value_type value_type; typedef Coercion_traits CT; typedef typename CT::Type Type; }; public: template typename Result_type::Type operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end) const{ int hdegree = Total_degree()(p); typedef std::iterator_traits ITT; std::list list(begin,end); // make the homogeneous variable the first in the list list.push_front(list.back()); list.pop_back(); // reverse and begin with the outermost variable return (*this)(p, list.rbegin(), list.rend(), hdegree); } // this operator is undcoumented and for internal use: // the iterator range starts with the outermost variable // and ends with the homogeneous variable template typename Result_type::Type operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end, int hdegree) const{ typedef std::iterator_traits ITT; typedef typename ITT::value_type value_type; typedef Coercion_traits CT; typename PTC::Substitute_homogeneous subsh; typename CT::Type x = typename CT::Cast()(*begin++); int i = Degree()(p); typename CT::Type y = subsh(Get_coefficient()(p,i),begin,end, hdegree-i); while (--i >= 0){ y *= x; y += subsh(Get_coefficient()(p,i),begin,end,hdegree-i); } return y; } }; }; } // namespace internal // Definition of Polynomial_traits_d // // In order to determine the algebraic category of the innermost coefficient, // the Polynomial_traits_d_base class with "Null_tag" is used. template< class Polynomial > class Polynomial_traits_d : public internal::Polynomial_traits_d_base< Polynomial, typename Algebraic_structure_traits< typename internal::Innermost_coefficient_type::Type >::Algebraic_category, typename Algebraic_structure_traits< Polynomial >::Algebraic_category > , public Algebraic_structure_traits{ //------------ Rebind ----------- private: template struct Gen_polynomial_type{ typedef CGAL::Polynomial::Type> Type; }; template struct Gen_polynomial_type{ typedef T Type; }; public: template struct Rebind{ typedef Polynomial_traits_d::Type> Other; }; //------------ Rebind ----------- }; } //namespace CGAL #include #endif // CGAL_POLYNOMIAL_TRAITS_D_H