// Copyright (c) 2001 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org) // // $URL: https://github.com/CGAL/cgal/blob/v5.1/Generator/include/CGAL/Random_polygon_2_sweep.h $ // $Id: Random_polygon_2_sweep.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot // SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial // // // Author(s) : Geert-Jan Giezeman // : Susan Hert #ifndef CGAL_RANDOM_POLYGON_2_SWEEP_H #define CGAL_RANDOM_POLYGON_2_SWEEP_H #include #include #include #include #include #include #include /* A polygon is called simple of no edges intersect each other, except consecutive edges, which intersect in their common vertex. The test for simplicity is implemented by means of a sweep line algorithm. The vertical line is swept from left to right. The edges of the polygon that are crossed by the sweep line are stored in a tree from bottom to top. We discern three types of events: - insertion events. When both edges of a polygon vertex extend to the right we need to insert both edges in the tree. We need to search with the vertex to find out between which edges the new edges are to be inserted. - deletion events. When both edges extend to the left of the vertex we need to remove both edges from the tree. We have to check that the vertex lies between the edges above and below the removed edges. - replacement event. In the other case we need to replace the edge that extends to the left by the edge that extends to the right. We need to check that the vertex lies between the edges above and below the current edge. We represent the tree by a std::set. This is not a perfect fit for the operations described above. In particular, the fact that we search with a VERTEX, while the set contains EDGES, is not directly supported. The insertion of edges is also complicated by the fact that we need to insert two edges starting at the same vertex. The order in which they are inserted in the tree does matter, because the edges go in separate directions. Because of this the set needs a special associated comparison function. Every edge has a flag 'is_in_tree', which is true for the edges in the tree but false for the edges when they are inserted. The comparison function treats the latter type of edge as a vertex. Another flag, is_left_to_right, tells which of the two vertices to take. The problem of the coinciding vertices is solved by the convention that the highest edges is always inserted first. The comparison function uses this fact. Vertex indices of the polygon play a double role. The number v can be used to identify vertex v or the edge from vertex v to vertex v+1. */ namespace CGAL { namespace i_generator_polygon { // namespace CGAL::i_generator_polygon is used for internal functions typedef i_polygon::Index_t Index_t; typedef i_polygon::Vertex_index Vertex_index; typedef i_polygon::Vertex_order Vertex_order; template class Vertex_data ; template class Less_segments { Vertex_data *m_vertex_data; bool less_than_in_tree(Vertex_index i, Vertex_index j) const; public: Less_segments(Vertex_data *vertex_data) : m_vertex_data(vertex_data) {} bool operator()(Vertex_index i, Vertex_index j) const; }; template class Vertex_data : public i_polygon::Vertex_data_base { public: typedef Less_segments Less_segs; typedef std::set Tree; typedef i_polygon::Edge_data Edge_data; typedef i_polygon::Vertex_data_base Base_class; using Base_class::next; using Base_class::prev; using Base_class::point; using Base_class::index_at_rank; using Base_class::ordered_left_to_right; using Base_class::orientation_2; std::vector edges; Vertex_index conflict1, conflict2; // Intersecting edges. Vertex_data(ForwardIterator begin, ForwardIterator end, const PolygonTraits& pgnt); void init(Tree *tree); void left_and_right_index(Vertex_index &left, Vertex_index &right, Vertex_index edge); Vertex_index left_index(Vertex_index edge) { return edges[edge.as_int()].is_left_to_right ? edge : next(edge); } void sweep(Tree *tree); bool insertion_event(Tree *tree, Vertex_index i, Vertex_index j, Vertex_index k); bool replacement_event(Tree *tree, Vertex_index cur, Vertex_index to_insert); bool deletion_event(Tree *tree, Vertex_index i, Vertex_index j); bool on_right_side(Vertex_index vt, Vertex_index edge, bool above); void find_conflict(Tree *tree, Vertex_index cur_vt, typename Tree::iterator seg1, typename Tree::iterator seg2); void find_conflict_between(Tree *, Vertex_index cur_vt, typename Tree::iterator seg1, typename Tree::iterator seg2); }; } // end of namespace i_generator_polygon // ----- implementation of i_generator_polygon functions. ----- namespace i_generator_polygon { template bool Less_segments:: operator()(Vertex_index i, Vertex_index j) const { if (i.as_int() == j.as_int()) { // Some STL implementations may call comparator(x, x) // to verify irreflexivity. Don't violate less_than_in_tree's // preconditions in such an environment. return false; } else if (m_vertex_data->edges[j.as_int()].is_in_tree) { return less_than_in_tree(i,j); } else { return !less_than_in_tree(j,i); } } template bool Less_segments:: less_than_in_tree(Vertex_index new_edge, Vertex_index tree_edge) const { #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "less_than_in_tree" << std::endl; #endif CGAL_polygon_precondition( m_vertex_data->edges[tree_edge.as_int()].is_in_tree); CGAL_polygon_precondition( !m_vertex_data->edges[new_edge.as_int()].is_in_tree); Vertex_index left, mid, right; m_vertex_data->left_and_right_index(left, right, tree_edge); mid = m_vertex_data->left_index(new_edge); if (mid.as_int() == left.as_int()) { return true; } switch (m_vertex_data->orientation_2( m_vertex_data->point(left), m_vertex_data->point(mid), m_vertex_data->point(right))) { case LEFT_TURN: return true; case RIGHT_TURN: return false; case COLLINEAR: break; } CGAL_polygon_assertion(m_vertex_data->less_xy_2( m_vertex_data->point(left), m_vertex_data->point(mid))); CGAL_polygon_assertion( m_vertex_data->less_xy_2( m_vertex_data->point(mid), m_vertex_data->point(right))); m_vertex_data->is_simple_result = false; Vertex_index mid_succ = m_vertex_data->next(mid); if (mid_succ.as_int() <= (std::min)(left.as_int(), right.as_int())) { // // have one of these two situations: // x+k x x+k+1 OR x+k+1 x x+k // left mid right left mid right // and need to swap x and x+1 (so reverse the range (x-1, x+k]) // m_vertex_data->conflict1 = m_vertex_data->prev(mid); } else { // have one of these two situations: // x x+k x+1 OR x+1 x+k x // left mid right left mid right // and need to swap x+1 and x+2 (so reverse range (x, x+k]) m_vertex_data->conflict1 = mid; } Vertex_index left_succ = m_vertex_data->next(left); if (left_succ.as_int() == right.as_int()) { #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "conflict2 is left" << std::endl; #endif m_vertex_data->conflict2 = left; } else { #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "conflict2 is left" << std::endl; #endif m_vertex_data->conflict2 = right; } return true; } template Vertex_data:: Vertex_data(ForwardIterator begin, ForwardIterator end, const PolygonTraits& pgn_traits) : Base_class(begin, end, pgn_traits) {} template void Vertex_data::init(Tree *tree) { // The initialization cannot be done in the constructor, // otherwise we copy singular valued iterators. edges.insert(edges.end(), this->m_size, Edge_data(tree->end())); } template void Vertex_data:: left_and_right_index(Vertex_index &left, Vertex_index &right, Vertex_index edge) { if (edges[edge.as_int()].is_left_to_right) { left = edge; right = next(edge); } else { right = edge; left = next(edge); } } template bool Vertex_data:: insertion_event(Tree *tree, Vertex_index prev_vt, Vertex_index mid_vt, Vertex_index next_vt) { #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "insertion_event" << std::endl; #endif // check which endpoint is above the other bool left_turn; switch(orientation_2(point(prev_vt), point(mid_vt), point(next_vt))) { case LEFT_TURN: left_turn = true; break; case RIGHT_TURN: left_turn = false; break; default: //found conflict prev_vt-seg - mid_vt-seg #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "conflict2 is next_vt" << std::endl; #endif conflict1 = prev_vt; conflict2 = next_vt; return false; } Edge_data &td_prev = edges[prev_vt.as_int()], &td_mid = edges[mid_vt.as_int()]; td_prev.is_in_tree = false; td_prev.is_left_to_right = false; td_mid.is_in_tree = false; td_mid.is_left_to_right = true; // insert the highest chain first std::pair result; if (left_turn) { result = tree->insert(prev_vt); // CGAL_polygon_assertion(result.second) td_prev.tree_it = result.first; td_prev.is_in_tree = true; if (!this->is_simple_result) return false; result = tree->insert(mid_vt); // CGAL_polygon_assertion(result.second) td_mid.tree_it = result.first; td_mid.is_in_tree = true; if (!this->is_simple_result) return false; } else { result = tree->insert(mid_vt); // CGAL_polygon_assertion(result.second) td_mid.tree_it = result.first; td_mid.is_in_tree = true; if (!this->is_simple_result) return false; result = tree->insert(prev_vt); // CGAL_polygon_assertion(result.second) td_prev.tree_it = result.first; td_prev.is_in_tree = true; if (!this->is_simple_result) return false; } return true; } template bool Vertex_data:: on_right_side(Vertex_index vt, Vertex_index edge_id, bool above) { Orientation turn = orientation_2(point(edge_id), point(vt), point(next(edge_id))); bool left_turn = edges[edge_id.as_int()].is_left_to_right ? above : !above; if (left_turn) { if (turn != RIGHT_TURN) { return false; } } else { if (turn != LEFT_TURN) { return false; } } return true; } template bool Vertex_data:: replacement_event(Tree *tree, Vertex_index cur_edge, Vertex_index next_edge) { #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "replacement_event" << std::endl; #endif // check if continuation point is on the right side of neighbor segments typedef typename Tree::iterator It; Edge_data &td = edges[cur_edge.as_int()]; CGAL_polygon_assertion(td.is_in_tree); It cur_seg = td.tree_it; Vertex_index cur_vt = (td.is_left_to_right) ? next_edge : cur_edge; if (cur_seg != tree->begin()) { It seg_below = cur_seg; --seg_below; if (!on_right_side(cur_vt, *seg_below, true)) { // found conflict cur_seg - seg_below #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "conflict2 is seg_below" << std::endl; #endif conflict1 = *cur_seg; conflict2 = *seg_below; return false; } } It seg_above = cur_seg; ++ seg_above; if (seg_above != tree->end()) { if (!on_right_side(cur_vt, *seg_above, false)) { // found conflict cur_seg - seg_above #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "conflict2 is seg_above" << std::endl; #endif conflict1 = *cur_seg; conflict2 = *seg_above; return false; } } // replace the segment Edge_data &new_td = edges[next_edge.as_int()]; new_td.is_left_to_right = td.is_left_to_right; new_td.is_in_tree = false; tree->erase(cur_seg); td.is_in_tree = false; new_td.tree_it = tree->insert(seg_above, next_edge); new_td.is_in_tree = true; return this->is_simple_result; } template void Vertex_data:: find_conflict(Tree *tree, Vertex_index cur_vt, typename Tree::iterator seg1, typename Tree::iterator seg2) { typedef typename Tree::iterator It; It cur = seg1; ++cur; while (cur != tree->end() && cur != seg2) ++cur; if (cur == seg2) find_conflict_between(tree, cur_vt, seg1, seg2); else find_conflict_between(tree, cur_vt, seg2, seg1); } template void Vertex_data:: find_conflict_between(Tree *, Vertex_index cur_vt, typename Tree::iterator seg1, typename Tree::iterator seg2) { #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "find_conflict_between" << std::endl; #endif typedef typename Tree::iterator It; It between_seg = seg1; ++between_seg; if (!on_right_side(cur_vt, *between_seg, false)) { // found conflict between_seg - seg1 #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "conflict1 is seg1" << std::endl; #endif conflict1 = *seg1; conflict2 = *between_seg; } else { // found conflict between_seg - seg2 #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "conflict1 is seg2" << std::endl; #endif conflict1 = *seg2; conflict2 = *between_seg; } } template bool Vertex_data:: deletion_event(Tree *tree, Vertex_index prev_vt, Vertex_index mid_vt) { #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "deletion_event" << std::endl; #endif // check if continuation point is on the right side of neighbor segments typedef typename Tree::iterator It; Edge_data &td_prev = edges[prev_vt.as_int()], &td_mid = edges[mid_vt.as_int()]; It prev_seg = td_prev.tree_it, mid_seg = td_mid.tree_it; Vertex_index cur_vt = (td_prev.is_left_to_right) ? mid_vt : prev_vt; It seg_above = prev_seg; ++seg_above; if (seg_above == mid_seg) { ++seg_above; } else { // mid_seg was not above prev_seg, so prev_seg should be above mid_seg // We check this to see if the edges are really neighbors in the tree. It prev_seg_copy = mid_seg; ++prev_seg_copy; if (prev_seg_copy != prev_seg) { find_conflict(tree, cur_vt, prev_seg, mid_seg); return false; } } // remove the segments tree->erase(prev_seg); td_prev.is_in_tree = false; tree->erase(mid_seg); td_mid.is_in_tree = false; // Check if the vertex that is removed lies between the two tree edges. if (seg_above != tree->end()) { if (!on_right_side(cur_vt, *seg_above, false)) { // found conflicts prev_seg - seg_above and mid_seg - seg_above #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "conflict2 is seg_above" << std::endl; #endif conflict1 = prev_vt; conflict2 = *seg_above; return false; } } if (seg_above != tree->begin()) { --seg_above; // which turns it into seg_below if (!on_right_side(cur_vt, *seg_above, true)) { // found conflicts prev_seg - seg_below and mid_seg - seg_below #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << "conflict2 is --seg_above" << std::endl; #endif conflict1 = prev_vt; conflict2 = *seg_above; return false; } } return true; } template void Vertex_data:: sweep(Tree *tree) { if (this->m_size < 3) return; bool success = true; for (Index_t i=0; i< this->m_size; ++i) { Vertex_index cur = index_at_rank(Vertex_order(i)); Vertex_index prev_vt = prev(cur), next_vt = next(cur); if (ordered_left_to_right(cur, next_vt)) { if (ordered_left_to_right(cur, prev_vt)) success = insertion_event(tree, prev_vt, cur, next_vt); else success = replacement_event(tree, prev_vt, cur); } else { if (ordered_left_to_right(cur, prev_vt)) success = replacement_event(tree, cur, prev_vt); else success = deletion_event(tree, prev_vt, cur); } if (!success) break; } if (!success) this->is_simple_result = false; } } // ----- End of implementation of i_generator_polygon functions. ----- template std::pair check_simple_polygon(Iterator points_begin, Iterator points_end, const PolygonTraits& polygon_traits) { typedef Iterator ForwardIterator; typedef std::set > Tree; i_generator_polygon::Vertex_data vertex_data(points_begin, points_end, polygon_traits); Tree tree(&vertex_data); vertex_data.init(&tree); vertex_data.sweep(&tree); std::pair result; if (vertex_data.is_simple_result) { result.first = result.second = -1; return result; } // swap with vertex_data.conflict1, vertex_data.conflict2; if (vertex_data.conflict1.as_int() < vertex_data.conflict2.as_int()) { result.first = vertex_data.conflict1.as_int(); result.second = vertex_data.conflict2.as_int(); } else { result.first = vertex_data.conflict2.as_int(); result.second = vertex_data.conflict1.as_int(); } return result; } template void make_simple_polygon(Iterator points_begin, Iterator points_end, const PolygonTraits& polygon_traits) { std::pair swap_interval; #if defined(CGAL_POLY_GENERATOR_DEBUG) Iterator it; std::cout << "In make_simple_polygon the points are: " << std::endl; int size = 0; for (it = points_begin; it != points_end; it++, size++) std::cout << *it << " "; std::cout << std::endl; #endif do { swap_interval = check_simple_polygon(points_begin, points_end, polygon_traits); #if defined(CGAL_POLY_GENERATOR_DEBUG) std::cout << swap_interval.first << " " << swap_interval.second << std::endl; CGAL_polygon_assertion(swap_interval.first >= -1 && swap_interval.second >= -1 && swap_interval.first < size && swap_interval.second < size); #endif // will break out when a negative nonsense value is selected // or with -1 is given indicating that the polygon was simple. // For positive nonsense values, one needs to know the how // many points there are... if (swap_interval.first <= -1 || swap_interval.second <= -1) break; // swap with vertex_data.conflict1, vertex_data.conflict2; Iterator b = points_begin; std::advance(b, swap_interval.first+1); Iterator e = b; std::advance(e, swap_interval.second-swap_interval.first); std::reverse(b, e); } while (true); } } // end of namespace CGAL #include #endif // CGAL_RANDOM_POLYGON_2_SWEEP_H