// Copyright (c) 2006-2009 Max-Planck-Institute Saarbruecken (Germany). // All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Michael Hemmer // // ============================================================================ // TODO: The comments are all original EXACUS comments and aren't adapted. So // they may be wrong now. /*! \file NiX/Descartes.h \brief Defines class NiX::Descartes. Isolate real roots of polynomials. This file provides a class to isolate real roots of polynomials, using the algorithm based on the method of Descartes. The polynomial has to be a univariat polynomial over any number type which is contained in the real numbers. */ #ifndef CGAL_ALGEBRAIC_KERNEL_D_DESCARTES_H #define CGAL_ALGEBRAIC_KERNEL_D_DESCARTES_H #include #include #include #include #define POLYNOMIAL_REBIND( coeff ) \ typename CGAL::Polynomial_traits_d::template \ Rebind::Other::Type namespace CGAL { namespace internal { /*! \ingroup NiX_Algebraic_real * \brief A model of concept RealRootIsolator. */ template class Descartes { typedef CGAL::Fraction_traits FT_poly; typedef Fraction_traits FT_rat; public: //! First template parameter typedef Polynomial_ Polynomial; //! Second template parameter typedef Rational_ Rational; //! Bound type of the isolating intervals typedef Rational_ Bound; // Integer or Numerator/Denominator type of bound. typedef typename CGAL::Fraction_traits::Numerator_type Integer; private: typedef typename Polynomial::NT Coeff; typedef Integer IT; Polynomial poly_; int number_of_real_roots_; IT* numerator; IT* denominator_exponent; bool* is_exact; IT LEFT,SCALE,DENOM; bool is_strong_; int k; bool interval_given; public: /*! \brief Constructor from univariate square free polynomial. The RealRootIsolator provides isolating intervals for the real roots of the polynomial. \pre the polynomial is square free */ Descartes(const Polynomial& P = Polynomial(Coeff(0)), bool is_strong = false, int kk = 2) : poly_(P) , is_strong_(is_strong), k(kk), interval_given(false) { numerator = new IT[CGAL::degree(P)]; denominator_exponent = new IT[CGAL::degree(P)]; is_exact = new bool[CGAL::degree(P)]; number_of_real_roots_ = 0; if(CGAL::degree(P) == 0) { if(P.is_zero()) number_of_real_roots_ = -1; return; } intern_decompose(poly_,typename FT_poly::Is_fraction()); } // constructor for coefficient types \c Coeff with given interval // (experimental) Descartes(const Polynomial& P, const Rational& left, const Rational& right, bool is_strong = false, int kk = 2) : poly_(P) , is_strong_(is_strong), k(kk), interval_given(true) { numerator = new IT[CGAL::degree(P)]; denominator_exponent = new IT[CGAL::degree(P)]; is_exact = new bool[CGAL::degree(P)]; number_of_real_roots_ = 0; if(CGAL::degree(P) == 0) { if(P.is_zero()) number_of_real_roots_ = -1; return; } typename FT_rat::Decompose decompose; typedef typename FT_rat::Numerator Numerator; typedef typename FT_rat::Denominator Denominator; Numerator numleft, numright; Denominator denleft, denright; decompose(left,numleft,denleft); decompose(right,numright,denright); LEFT = numleft * denright; SCALE = numright * denleft - LEFT; DENOM = denleft * denright; poly_.scale_down(denleft*denright); intern_decompose(poly_,typename FT_poly::Is_decomposable()); } //! copy constructor Descartes(const Descartes& D) : poly_(D.poly_), number_of_real_roots_(D.number_of_real_roots_), LEFT(D.LEFT), SCALE(D.SCALE), DENOM(D.DENOM), is_strong_(D.is_strong_), k(D.k), interval_given(D.interval_given) { numerator = new IT[CGAL::degree(poly_)]; denominator_exponent = new IT[CGAL::degree(poly_)]; is_exact = new bool[CGAL::degree(poly_)]; for(int i=0; i= 0 && i < number_of_real_roots_); construct_binary(denominator_exponent[i], denominator_); numerator_= SCALE * numerator[i] + LEFT * denominator_; denominator_ = denominator_ * DENOM; } void right_bound(int i,IT& numerator_, IT& denominator_) const { CGAL_assertion(i >= 0 && i < number_of_real_roots_); if(is_exact[i]){ return left_bound(i,numerator_,denominator_); } else{ construct_binary(denominator_exponent[i],denominator_); numerator_= SCALE * (numerator[i]+1) + LEFT * denominator_; denominator_ = denominator_ * DENOM; } } public: /*! \brief returns \f${l_i}\f$ the left bound of the isolating interval for root \f$root_{i}\f$. In case is_exact_root(i) is true, \f$l_i = root_{i}\f$,\n otherwise: \f$l_i < root_{i}\f$. If \f$i-1>=0\f$, then \f$l_i > root_{i-1}\f$. \n If \f$i-1>=0\f$, then \f$l_i >= r_{i-1}\f$, the right bound of \f$root_{i-1}\f$\n \pre 0 <= i < number_of_real_roots() */ Rational left_bound(int i) const { IT numerator_, denominator_; left_bound(i,numerator_,denominator_); return Rational(numerator_) / Rational(denominator_); } /*! \brief returns \f${r_i}\f$ the right bound of the isolating interval for root \f$root_{i}\f$. In case is_exact_root(i) is true, \f$r_i = root_{i}\f$,\n otherwise: \f$r_i > root_{i}\f$. If \f$i+1< n \f$, then \f$r_i < root_{i+1}\f$, where \f$n\f$ is number of real roots.\n If \f$i+1< n \f$, then \f$r_i <= l_{i+1}\f$, the left bound of \f$root_{i+1}\f$\n \pre 0 <= i < number_of_real_roots() */ Rational right_bound(int i) const { IT numerator_, denominator_; right_bound(i,numerator_,denominator_); return Rational(numerator_) / Rational(denominator_); } private: void intern_decompose( Polynomial P_, ::CGAL::Tag_true){ typename FT_poly::Decompose decompose; typename FT_poly::Numerator_type NumP; typename FT_poly::Denominator_type dummy; decompose(P_,NumP,dummy); init_with(NumP); } void intern_decompose( Polynomial P, ::CGAL::Tag_false){ init_with(P); } template void init_with(const Polynomial__& P){ typedef typename Polynomial__::NT Coeff; if(!interval_given) { LEFT = -weak_upper_root_bound(P); SCALE = - LEFT * IT(2); DENOM = IT(1); } Polynomial__ R = ::CGAL::translate(P,Coeff(LEFT)); Polynomial__ Q = ::CGAL::scale_up(R,Coeff(SCALE)); zero_one_descartes(Q,0,0); } //! returns the polynomial $(1 + x)^n P(1/(1 + x))$. template /* typename CGAL::Polynomial_traits_d ::template Rebind::Other::Type */ POLYNOMIAL_REBIND(Coeff__) variation_transformation(const POLYNOMIAL_REBIND(Coeff__)& P) { POLYNOMIAL_REBIND(Coeff__) R = reversal(P); return translate_by_one(R); } //! Returns an upper bound on the absolute value of all roots of $P$. /*! The upper bound is a power of two. Only works for univariate * polynomials. */ template IT weak_upper_root_bound(const POLYNOMIAL_REBIND(Coeff__)& P) { typename Real_embeddable_traits::Abs abs; const int n = CGAL::degree(P); IT r(1); // return value Coeff__ x(1); // needed to "evaluate" the polynomial Coeff__ val; for (;;) { val = -abs(P[n]); for (int i = n-1; i >= 0; i--) { val = val*x + abs(P[i]); } if (val < Coeff__(0)) return r; r *= IT(2); x = Coeff__(r); } } //! tests if the polynomial has no root in the interval. template bool not_zero_in_interval(const POLYNOMIAL_REBIND(Coeff__)& P) { if(CGAL::degree(P) == 0) return true; if(internal::sign_variations(variation_transformation(P)) != 0) return false; return (P[0] != Coeff__(0) && P.evaluate(Coeff__(1)) != Coeff__(0)); } //! Descartes algoritm to determine isolating intervals for the roots //! lying in the interval (0,1). // The parameters $(i,D)$ describe the interval $(i/2^D, (i+1)/2^D)$. // Here $0\leq i < 2^D$. template void zero_one_descartes(const POLYNOMIAL_REBIND(Coeff__)& P, IT i, IT D) { // Determine the number of sign variations of the transformed // polynomial $(1+x)^nP(1/(1+x))$. This gives the number of // roots of $P$ in $(0,1)$. POLYNOMIAL_REBIND(Coeff__) R = variation_transformation(P); int descarte = sign_variations(R); // no root if ( descarte == 0 ) return; // exactly one root // Note the termination criterion $P(0)\neq 0$ and $P(1)\neq 0$. // This ensures that the given interval is an isolating interval. if ( descarte == 1 && P[0] != Coeff__(0) && P.evaluate(Coeff__(1)) != Coeff__(0) ) { if(is_strong_) { strong_zero_one_descartes(P,i,D); return; } else { numerator[number_of_real_roots_] = i; denominator_exponent[number_of_real_roots_] = D; is_exact[number_of_real_roots_] = false; number_of_real_roots_++; return; } } // more than one root // Refine the interval. i = 2*i; D = D+1; // Transform the polynomial such that the first half of the interval // is mapped to the unit interval. POLYNOMIAL_REBIND(Coeff__) Q = scale_down(P,Coeff__(2)); // Consider the first half of the interval. zero_one_descartes(Q,i,D); // Test if the polynomial is zero at the midpoint of the interval POLYNOMIAL_REBIND(Coeff__) S = translate_by_one(Q); if ( S[0] == Coeff__(0) ) { numerator[number_of_real_roots_] = i + 1; denominator_exponent[number_of_real_roots_] = D; is_exact[number_of_real_roots_] = true; number_of_real_roots_++; } // Consider the second half of the interval. zero_one_descartes(S,i+1,D); } //! Strong Descartes algoritm to determine isolating intervals for the //! roots lying in the interval (0,1), where the first //! derivative have no sign change. \pre $P$ has only one root in the //! interval given by $(i,D)$. // The parameters $(i,D)$ describe the interval $(i/2^D, (i+1)/2^D)$. // Here $0\leq i < D$. template void strong_zero_one_descartes(const POLYNOMIAL_REBIND(Coeff__)& P, IT i, IT D) { // Test if the polynomial P' has no roots in the // interval. For further use in Newton, the interval should be not // too large. // test if isolating interval is smaller than epsilon // [l,r] -> r-l < epsilon // l = (r-l) * i/2^D + l // r = (r-l) * (i+1)/2^D + l // r-l = (r-l) * 1/2^D // r-l < epsilon = 2^(-k) // <=> (r-l) * 1/2^D < 2^(-k) // <=> 2^D > (r-l) / 2^(-k) // <=> 2^D > (r-l) * 2^k POLYNOMIAL_REBIND(Coeff__) PP = CGAL::differentiate(P); if(not_zero_in_interval(PP)) { // P' IT tmp; construct_binary(D-k, tmp); // tmp = 2^{D-k} if(tmp * DENOM > SCALE ) { numerator[number_of_real_roots_] = i; denominator_exponent[number_of_real_roots_] = D; is_exact[number_of_real_roots_] = false; number_of_real_roots_++; return; } } // either $P'$ fails the test, // or the interval is too large // Refine the interval. i = 2*i; D = D+1; // Transform the polynomial such that the first half of the interval // is mapped to the unit interval. POLYNOMIAL_REBIND(Coeff__) Q = scale_down(P,Coeff__(2)); // Test if the polynomial is zero at the midpoint of the interval POLYNOMIAL_REBIND(Coeff__) S = translate_by_one(Q); if ( S[0] == Coeff__(0) ) { numerator[number_of_real_roots_] = i + 1; denominator_exponent[number_of_real_roots_] = D; is_exact[number_of_real_roots_] = true; number_of_real_roots_++; return; } // Consider the first half of the interval. if(sign_variations(variation_transformation(Q)) == 1) { strong_zero_one_descartes(Q,i,D); return; } // Consider the second half of the interval. strong_zero_one_descartes(S,i+1,D); return; } }; } // namespace internal } //namespace CGAL #endif // CGAL_ALGEBRAIC_KERNEL_D_DESCARTES_H