// Copyright (c) 2002,2011 Utrecht University (The Netherlands). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Hans Tangelder () #ifndef CGAL_EUCLIDEAN_DISTANCE_SPHERE_POINT_H #define CGAL_EUCLIDEAN_DISTANCE_SPHERE_POINT_H #include #include #include #include #include namespace CGAL { template class Euclidean_distance_sphere_point { SearchTraits traits; public: typedef typename SearchTraits::Point_d Point_d; typedef typename SearchTraits::Sphere_d Sphere_d; typedef typename SearchTraits::FT FT; typedef typename SearchTraits::Construct_center_d Construct_center_d; typedef typename SearchTraits::Compute_squared_radius_d Compute_squared_radius_d; typedef typename SearchTraits::Construct_cartesian_const_iterator_d Construct_cartesian_const_iterator_d; typedef typename SearchTraits::Cartesian_const_iterator_d Cartesian_const_iterator_d; typedef Sphere_d Query_item; typedef typename internal::Get_dimension_tag::Dimension Dimension; public: // default constructor Euclidean_distance_sphere_point(const SearchTraits& traits_=SearchTraits()):traits(traits_) {} inline FT transformed_distance(const Sphere_d& q, const Point_d& p) const { Point_d c= Construct_center_d()(q); FT distance = FT(0); Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object(); Cartesian_const_iterator_d cit = construct_it(c), ce = construct_it(c,1), pit = construct_it(p); for(; cit != ce; cit++, pit++){ distance += ((*cit)-(*pit))*((*cit)-(*pit)); } distance += - Compute_squared_radius_d()(q); if (distance<0) distance=FT(0); return distance; } inline FT min_distance_to_rectangle(const Sphere_d& q, const Kd_tree_rectangle& r) const { Point_d c= Construct_center_d()(q); FT distance = FT(0); Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object(); Cartesian_const_iterator_d cit = construct_it(c), ce = construct_it(c,1); for (unsigned int i = 0; cit != ce; ++i, ++cit) { if ((*cit) < r.min_coord(i)) distance += (r.min_coord(i)-(*cit))*(r.min_coord(i)-(*cit)); else if ((*cit) > r.max_coord(i)) distance += ((*cit)-r.max_coord(i))*((*cit)-r.max_coord(i)); }; distance += - Compute_squared_radius_d()(q); if (distance<0) distance=FT(0); return distance; } inline FT min_distance_to_rectangle(const Sphere_d& q, const Kd_tree_rectangle& r,std::vector& dists) const { Point_d c= Construct_center_d()(q); FT distance = FT(0); Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object(); Cartesian_const_iterator_d cit = construct_it(c), ce = construct_it(c,1); for (unsigned int i = 0; cit != ce; ++i, ++cit) { if ((*cit) < r.min_coord(i)){ dists[i] =(r.min_coord(i)-(*cit)); distance += dists[i] * dists[i]; } else if ((*cit) > r.max_coord(i)){ dists[i] = ((*cit)-r.max_coord(i)); distance += dists[i] * dists[i]; } }; distance += - Compute_squared_radius_d()(q); if (distance<0) distance=FT(0); return distance; } inline FT max_distance_to_rectangle(const Sphere_d& q, const Kd_tree_rectangle& r) const { Construct_center_d construct_center_d; Point_d c = construct_center_d(q); FT distance=FT(0); Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object(); Cartesian_const_iterator_d cit = construct_it(c), ce = construct_it(c,1); for (unsigned int i = 0; cit != ce; ++i, ++cit) { if ((*cit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0)) distance += (r.max_coord(i)-(*cit))*(r.max_coord(i)-(*cit)); else distance += ((*cit)-r.min_coord(i))*((*cit)-r.min_coord(i)); }; distance += - Compute_squared_radius_d()(q); if (distance<0) distance=FT(0); return distance; } inline FT max_distance_to_rectangle(const Sphere_d& q, const Kd_tree_rectangle& r,std::vector& dists) const { Construct_center_d construct_center_d; Point_d c = construct_center_d(q); FT distance=FT(0); Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object(); Cartesian_const_iterator_d cit = construct_it(c), ce = construct_it(c,1); for (unsigned int i = 0; cit != ce; ++i, ++cit) { if ((*cit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0)){ dists[i] = (r.max_coord(i)-(*cit)); distance += dists[i] * dists[i]; } else{ dists[i] = ((*cit)-r.min_coord(i)); distance += dists[i] * dists[i]; } }; distance += - Compute_squared_radius_d()(q); if (distance<0) distance=FT(0); return distance; } inline FT transformed_distance(FT d) const { return d*d; } inline FT inverse_of_transformed_distance(FT d) const { return CGAL::sqrt(d); } }; // class Euclidean_distance_sphere_point } // namespace CGAL #endif // EUCLIDEAN_DISTANCE_SPHERE_POINT_H