// Copyright (c) 1999 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Stefan Schirra #ifndef CGAL_SPHERE_3_H #define CGAL_SPHERE_3_H #include #include #include #include #include #include namespace CGAL { template class Sphere_3 : public R_::Kernel_base::Sphere_3 { typedef typename R_::FT FT; // https://doc.cgal.org/latest/Manual/devman_code_format.html#secprogramming_conventions typedef typename R_::Point_3 Point_3_; typedef typename R_::Circle_3 Circle_3; typedef typename R_::Aff_transformation_3 Aff_transformation_3; typedef Sphere_3 Self; CGAL_static_assertion((boost::is_same::value)); public: typedef Dimension_tag<3> Ambient_dimension; typedef Dimension_tag<2> Feature_dimension; typedef typename R_::Kernel_base::Sphere_3 Rep; const Rep& rep() const { return *this; } Rep& rep() { return *this; } typedef R_ R; Sphere_3() {} Sphere_3(const Rep& s) : Rep(s) {} Sphere_3(const Point_3_& p, const FT& sq_rad, const Orientation& o = COUNTERCLOCKWISE) : Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, sq_rad, o)) {} Sphere_3(const Point_3_& p, const Point_3_& q, const Point_3_& r, const Point_3_& u) : Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, q, r, u)) {} Sphere_3(const Point_3_& p, const Point_3_& q, const Point_3_& r, const Orientation& o = COUNTERCLOCKWISE) : Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, q, r, o)) {} Sphere_3(const Point_3_& p, const Point_3_& q, const Orientation& o = COUNTERCLOCKWISE) : Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, q, o)) {} explicit Sphere_3(const Point_3_& p, const Orientation& o = COUNTERCLOCKWISE) : Rep(typename R::Construct_sphere_3()(Return_base_tag(), p, o)) {} explicit Sphere_3(const Circle_3& c) : Rep(typename R::Construct_sphere_3()(c)) {} Sphere_3 orthogonal_transform(const Aff_transformation_3 &t) const; typename cpp11::result_of::type center() const { return R().construct_center_3_object()(*this); } FT squared_radius() const { return R().compute_squared_radius_3_object()(*this); } // Returns a circle with opposite orientation Sphere_3 opposite() const { return R().construct_opposite_sphere_3_object()(*this); } typename R::Orientation orientation() const { return R().orientation_3_object()(*this); } typename R::Bounded_side bounded_side(const Point_3_ &p) const { return R().bounded_side_3_object()(*this, p); } typename R::Oriented_side oriented_side(const Point_3_ &p) const { return R().oriented_side_3_object()(*this, p); } typename R::Boolean has_on(const Point_3_ &p) const { return R().has_on_3_object()(*this, p); } typename R::Boolean has_on(const Circle_3 &c) const { return R().has_on_3_object()(*this, c); } typename R::Boolean has_on_boundary(const Point_3_ &p) const { return R().has_on_boundary_3_object()(*this, p); //return bounded_side(p) == ON_BOUNDARY; } typename R::Boolean has_on_bounded_side(const Point_3_ &p) const { return bounded_side(p) == ON_BOUNDED_SIDE; } typename R::Boolean has_on_unbounded_side(const Point_3_ &p) const { return bounded_side(p) == ON_UNBOUNDED_SIDE; } typename R::Boolean has_on_negative_side(const Point_3_ &p) const { if (orientation() == COUNTERCLOCKWISE) return has_on_unbounded_side(p); return has_on_bounded_side(p); } typename R::Boolean has_on_positive_side(const Point_3_ &p) const { if (orientation() == COUNTERCLOCKWISE) return has_on_bounded_side(p); return has_on_unbounded_side(p); } typename R::Boolean is_degenerate() const { return R().is_degenerate_3_object()(*this); //return CGAL_NTS is_zero(squared_radius()); } Bbox_3 bbox() const { return R().construct_bbox_3_object()(*this); } }; template Sphere_3 Sphere_3:: orthogonal_transform(const typename R_::Aff_transformation_3& t) const { typedef typename R_::RT RT; typedef typename R_::FT FT; typedef typename R_::Vector_3 Vector_3; // FIXME: precond: t.is_orthogonal() (*UNDEFINED*) Vector_3 vec(RT(1), RT(0), RT(0)); // unit vector vec = vec.transform(t); // transformed FT sq_scale = vec.squared_length(); // squared scaling factor return Sphere_3(t.transform(this->center()), sq_scale * this->squared_radius(), t.is_even() ? this->orientation() : CGAL::opposite(this->orientation())); } template std::ostream& insert(std::ostream& os, const Sphere_3& c,const Cartesian_tag&) { switch(get_mode(os)) { case IO::ASCII : os << c.center() << ' ' << c.squared_radius() << ' ' << static_cast(c.orientation()); break; case IO::BINARY : os << c.center(); write(os, c.squared_radius()); write(os, static_cast(c.orientation())); break; default: os << "SphereC3(" << c.center() << ", " << c.squared_radius(); switch (c.orientation()) { case CLOCKWISE: os << ", clockwise)"; break; case COUNTERCLOCKWISE: os << ", counterclockwise)"; break; default: os << ", collinear)"; break; } break; } return os; } template std::ostream& insert(std::ostream& os, const Sphere_3& c, const Homogeneous_tag&) { switch(get_mode(os)) { case IO::ASCII : os << c.center() << ' ' << c.squared_radius() << ' ' << static_cast(c.orientation()); break; case IO::BINARY : os << c.center(); write(os, c.squared_radius()); write(os, static_cast(c.orientation())); break; default: os << "SphereH3(" << c.center() << ", " << c.squared_radius(); switch (c.orientation()) { case CLOCKWISE: os << ", clockwise)"; break; case COUNTERCLOCKWISE: os << ", counterclockwise)"; break; default: os << ", collinear)"; break; } break; } return os; } template < class R > std::ostream& operator<<(std::ostream& os, const Sphere_3& c) { return insert(os, c, typename R::Kernel_tag() ); } template std::istream& extract(std::istream& is, Sphere_3& c, const Cartesian_tag&) { typename R::Point_3 center; typename R::FT squared_radius(0); int o=0; switch(get_mode(is)) { case IO::ASCII : is >> center >> squared_radius >> o; break; case IO::BINARY : is >> center; read(is, squared_radius); is >> o; break; default: is.setstate(std::ios::failbit); std::cerr << "" << std::endl; std::cerr << "Stream must be in ascii or binary mode" << std::endl; break; } if (is) c = Sphere_3(center, squared_radius, static_cast(o)); return is; } template std::istream& extract(std::istream& is, Sphere_3& c, const Homogeneous_tag&) { typename R::Point_3 center; typename R::FT squared_radius; int o=0; switch(get_mode(is)) { case IO::ASCII : is >> center >> squared_radius >> o; break; case IO::BINARY : is >> center; read(is, squared_radius); is >> o; break; default: is.setstate(std::ios::failbit); std::cerr << "" << std::endl; std::cerr << "Stream must be in ascii or binary mode" << std::endl; break; } if (is) c = Sphere_3(center, squared_radius, static_cast(o)); return is; } template < class R > std::istream& operator>>(std::istream& is, Sphere_3& c) { return extract(is, c, typename R::Kernel_tag() ); } } //namespace CGAL #endif // CGAL_SPHERE_3_H