// Copyright (c) 1997-2013 INRIA Sophia-Antipolis (France). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // Author(s) : Nico Kruithof #ifndef CGAL_PERIODIC_2_TRIANGULATION_2_H #define CGAL_PERIODIC_2_TRIANGULATION_2_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace CGAL { /// Periodic triangulation class. /// Its main functionality is: /// - Insertion of points /// - Deletion of points /// - Point location template < class Gt, class Tds = Triangulation_data_structure_2 < Periodic_2_triangulation_vertex_base_2, Periodic_2_triangulation_face_base_2 > > class Periodic_2_triangulation_2 : public Triangulation_cw_ccw_2 { typedef Periodic_2_triangulation_2 Self; public: // Public types of Periodic_2_triangulation_2 /// The triangulation data structure type typedef Tds Triangulation_data_structure; /// The traits class typedef Gt Geom_traits; /// The periodic offset type typedef typename Gt::Periodic_2_offset_2 Offset; /// The iso rectangle type typedef typename Gt::Iso_rectangle_2 Iso_rectangle; /// Integer tuple to store the number of sheets in each direction of space. typedef array Covering_sheets; /// The point type typedef typename Gt::Point_2 Point; /// The vector type typedef typename Gt::Segment_2 Segment; /// The segment type typedef typename Gt::Vector_2 Vector; /// The triangle type typedef typename Gt::Triangle_2 Triangle; /// Represents a point-offset pair. The point in the pair lies in the original domain. typedef std::pair Periodic_point; /// A pair of periodic points representing a segment in the periodic domain. typedef array, 2> Periodic_segment; /// A triple of periodic points representing a triangle in the periodic domain. typedef array, 3> Periodic_triangle; /// The vertex type typedef typename Tds::Vertex Vertex; /// The face type typedef typename Tds::Face Face; /// The edge type typedef typename Tds::Edge Edge; /// Size type (an unsigned integral type) typedef typename Tds::size_type size_type; /// Difference type (a signed integral type) typedef typename Tds::difference_type difference_type; /// Handle to a vertex typedef typename Tds::Vertex_handle Vertex_handle; /// Handle to a face typedef typename Tds::Face_handle Face_handle; /// Iterator over the faces typedef typename Tds::Face_iterator Face_iterator; /// Iterator over the edges typedef typename Tds::Edge_iterator Edge_iterator; /// Iterator over the vertices typedef typename Tds::Vertex_iterator Vertex_iterator; /// Iterator over the vertices whose corresponding points lie in the /// original domain, i.e. for each set of periodic copies the /// Unique_vertex_iterator iterates over exactly one representative. typedef Periodic_2_triangulation_unique_vertex_iterator_2 Unique_vertex_iterator; /// \name For compatibility with the Triangulation_2 class // \{ typedef Face_iterator Finite_faces_iterator; typedef Edge_iterator Finite_edges_iterator; typedef Vertex_iterator Finite_vertices_iterator; typedef Face_iterator All_faces_iterator; // \} /// Circulator over all faces incident to a vertex typedef typename Tds::Face_circulator Face_circulator; /// Circulator over all edges incident to a vertex typedef typename Tds::Edge_circulator Edge_circulator; /// Circulator over all vertices incident to a vertex typedef typename Tds::Vertex_circulator Vertex_circulator; /// \name Periodic iterator types //\{ /// Iterator over all periodic triangles typedef Periodic_2_triangulation_triangle_iterator_2 Periodic_triangle_iterator; /// Iterator over all periodic segments typedef Periodic_2_triangulation_segment_iterator_2 Periodic_segment_iterator; /// Iterator over all periodic points typedef Periodic_2_triangulation_point_iterator_2 Periodic_point_iterator; //\} /// \name Enumeration types //\{ /// Type determining how to iterate over the stored simplices in the triangulation enum Iterator_type { STORED = 0, UNIQUE, // 1 STORED_COVER_DOMAIN, // 2 UNIQUE_COVER_DOMAIN // 3 };//3 /// Return type of a point location query enum Locate_type { /// The query point lies on a vertex VERTEX = 0, /// The query point lies on an edge EDGE, /// The query point lies on a face FACE, /// The query point lies outside the affine hull of the triangulation, /// which is the case when the triangulation is empty. EMPTY, OUTSIDE_CONVEX_HULL, // unused, for compatibility with Alpha_shape_2 OUTSIDE_AFFINE_HULL // unused, for compatibility with Alpha_shape_2 }; /// Returns false, no infinite simplices in the periodic triangulation template bool is_infinite(const T&, int = 0) const { return false; } //\} // Auxiliary iterators for convenience // do not use default template argument to please VC++ /// Functor that returns the point given a vertex typedef Project_point Proj_point; /// \name STL types // \{ /// value_type similar to stl containers typedef Point value_type; // to have a back_inserter /// const_reference similar to stl containers typedef const value_type& const_reference; /// reference similar to stl containers typedef value_type& reference; // \} /// Tag to distinguish regular triangulations from others; typedef Tag_false Weighted_tag; /// Tag to distinguish periodic triangulations from others typedef Tag_true Periodic_tag; protected: // Protected types of Periodic_2_triangulation_2 typedef typename Gt::Orientation_2 Orientation_2; typedef typename Gt::Compare_x_2 Compare_x; typedef typename Gt::Compare_y_2 Compare_y; typedef typename Gt::FT FT; typedef std::pair Virtual_vertex; typedef std::map Virtual_vertex_map; typedef typename Virtual_vertex_map::const_iterator Virtual_vertex_map_it; /// Vector is contains virtual copies with offset off: /// virtual copy with offset off is stored at position: i=3*off[0]+off[1]-1 typedef std::map > Virtual_vertex_reverse_map; typedef typename Virtual_vertex_reverse_map::const_iterator Virtual_vertex_reverse_map_it; typedef std::map > Too_long_edges_map; typedef typename Too_long_edges_map::const_iterator Too_long_edges_map_it; /// \name Functors // \{ /// Functor for symbolically perturbing points class Perturbation_order { const Self *t; public: // Perturbation_order, public interface Perturbation_order(const Self *tr) : t(tr) { } bool operator()(const Point *p, const Point *q) const { return t->compare_xy(*p, *q) == SMALLER; } bool operator()(const Periodic_point *p, const Periodic_point *q) const { return t->compare_xy(p->first, q->first, p->second, q->second) == SMALLER; } }; // \} friend class Perturbation_order; private: // Copy constructor helpers class Finder; void copy_multiple_covering(const Periodic_2_triangulation_2 & tr); public: // Public functions of Periodic_2_triangulation_2 /// \name Constructors //\{ /// Constructor Periodic_2_triangulation_2( const Iso_rectangle &domain = Iso_rectangle(0, 0, 1, 1), const Geom_traits &geom_traits = Geom_traits()); /// Copy constructor Periodic_2_triangulation_2(const Periodic_2_triangulation_2 &tr); /// Assignment Periodic_2_triangulation_2 &operator=(const Periodic_2_triangulation_2 &tr); /// Copy the triangulation void copy_triangulation(const Periodic_2_triangulation_2 &tr); /// Swap two triangulations void swap(Periodic_2_triangulation_2 &tr); /// Clear the triangulation void clear(); /// Serialize the triangulation to an output stream std::ostream& save(std::ostream& os) const; /// Deserialize the triangulation from an input stream std::istream& load(std::istream& is); //\} /// \name Access functions //\{ /// Returns the geometric traits used for the predicates and constructions. const Geom_traits& geom_traits() const { return _gt; } /// Returns the datastructure storing the triangulation. const Triangulation_data_structure & tds() const { return _tds; } /// Returns the datastructure storing the triangulation. Triangulation_data_structure & tds() { return _tds; } /// Returns the domain of the 1-sheeted cover. const Iso_rectangle & domain() const { return _domain; } /// Returns the number of copies of the 1-sheeted cover stored in each of /// the principal directions. Covering_sheets number_of_sheets() const { return _cover; } /// Returns the dimension of the triangulation. int dimension() const { return _tds.dimension() == 2 ? 2 : 0; } //\} /// \name Number of simplices //\{ /// Returns whether the triangulation is empty. bool empty() const { return _tds.dimension() < 2; } /// Returns the number of vertices. Counts all vertices that are /// representatives of the same point in the 1-cover as one vertex. size_type number_of_vertices() const { if (is_1_cover()) return _tds.number_of_vertices(); else return _tds.number_of_vertices() / 9; } /// Returns the number of edges. Counts all edges that are /// representatives of the same segment in the 1-cover as one edge. size_type number_of_edges() const { if (is_1_cover()) return _tds.number_of_edges(); else return _tds.number_of_edges() / 9; } /// Returns the number of faces. Counts all faces that are /// representatives of the same triangle in the 1-cover as one face. size_type number_of_faces() const { if (is_1_cover()) return _tds.number_of_faces(); else return _tds.number_of_faces() / 9; } /// Returns the number of vertices stored in the datastructure. size_type number_of_stored_vertices() const { return _tds.number_of_vertices(); } /// Returns the number of edges stored in the datastructure. size_type number_of_stored_edges() const { return _tds.number_of_edges(); } /// Returns the number of faces stored in the datastructure. size_type number_of_stored_faces() const { return _tds.number_of_faces(); } //\} /// \name Methods regarding the covering /// \{ /// Checks whether the triangulation is a valid simplicial complex in the one cover. bool is_triangulation_in_1_sheet() const; /// Convert a 9 sheeted cover (used for sparse triangulations) to a single sheeted cover. /// \pre !is_1_cover(); void convert_to_1_sheeted_covering(); /// Convert a single sheeted cover (used for dense triangulations) to a 9 sheeted cover. /// \pre is_1_cover(); void convert_to_9_sheeted_covering(); // \} /// \name Geometric access functions // \{ /// Returns the periodic point given by vertex v. If t is /// represented in the 1-sheeted covering space, the offset is /// always zero. Otherwise v can correspond to a periodic copy /// outside domain of an input point. Periodic_point periodic_point(Vertex_handle v) const { return Periodic_point(v->point(), get_offset(v)); } /// If t is represented in the 1-sheeted covering space, this /// function returns the periodic point given by the i-th vertex of /// face f, that is the point in the original domain and the offset /// of the vertex in f. If t is represented in the 9-sheeted /// covering space, this offset is possibly added to another offset /// determining the periodic copy. /// \pre i == {0,1,2} Periodic_point periodic_point(Face_handle f, int i) const { return Periodic_point(f->vertex(i)->point(), get_offset(f, i)); } /// Returns the periodic segment formed by the two point-offset /// pairs corresponding to the two vertices of edge (f,i). /// \pre i == {0,1,2} Periodic_segment periodic_segment(Face_handle f, int i) const { CGAL_triangulation_precondition( number_of_vertices() != 0 ); CGAL_triangulation_precondition( i >= 0 && i <= 2); return make_array(periodic_point(f, ccw(i)), periodic_point(f, cw(i))); } /// Same as the previous method for edge e. Periodic_segment periodic_segment(const Edge &e) const { return periodic_segment(e.first, e.second); } /// Returns the periodic triangle formed by the three point-offset /// pairs corresponding to the three vertices of facet f. Periodic_triangle periodic_triangle(Face_handle f) const { return make_array(periodic_point(f, 0), periodic_point(f, 1), periodic_point(f, 2)); } /// Converts the Periodic_point pp (point-offset pair) to the corresponding /// Point in \f$R^2\f$. Point point(const Periodic_point & pp) const { return construct_point(pp.first, pp.second); } Point point(Vertex_handle v) const { return point(periodic_point(v)); } Point point(Face_handle fh, int i) const { return point(periodic_point(fh, i)); } /// Converts the Periodic_segment ps to a Segment in \f$R^2\f$. Segment segment(const Periodic_segment &ps) const { return construct_segment(ps[0].first, ps[1].first, ps[0].second, ps[1].second); } /// Converts the Periodic_triangle pt to a Triagle in \f$R^2\f$. Triangle triangle(const Periodic_triangle &pt) const { Triangle triang = construct_triangle(pt[0].first, pt[1].first, pt[2].first, pt[0].second, pt[1].second, pt[2].second); return triang; } /// Constructs the segment associated with the edge (f,i), respects the offset Segment segment(Face_handle f, int i) const { return segment(periodic_segment(f, i)); } /// Constructs the segment associated with the edge e, respects the offset Segment segment(const Edge& e) const { return segment(periodic_segment(e)); } /// Constructs the segment associated with the edge ec, respects the offset Segment segment(const Edge_circulator& ec) const { return segment(periodic_segment(ec->first, ec->second)); } /// Constructs the segment associated with the edge ei, respects the offset Segment segment(const Edge_iterator& ei) const { return segment(periodic_segment(ei->first, ei->second)); } /// Constructs the triangle associated with the face f, respects the offset Triangle triangle(Face_handle f) const { return triangle(periodic_triangle(f)); } //\} Point move_in_domain(const Point &p) { typename Gt::FT x = p.x(); typename Gt::FT y = p.y(); while (x < _domain.xmin()) x += _domain.xmax() - _domain.xmin(); while (x >= _domain.xmax()) x -= _domain.xmax() - _domain.xmin(); while (y < _domain.ymin()) y += _domain.ymax() - _domain.ymin(); while (y >= _domain.ymax()) y -= _domain.ymax() - _domain.ymin(); return Point(x, y); } /// \name Queries on simplices // \{ bool is_edge(Vertex_handle va, Vertex_handle vb) const { return _tds.is_edge(va, vb); } bool is_edge(Vertex_handle va, Vertex_handle vb, Face_handle& fr, int & i) const { return _tds.is_edge(va, vb, fr, i); } bool is_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3) const { return _tds.is_face(v1, v2, v3); } bool is_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3, Face_handle &fr) const { return _tds.is_face(v1, v2, v3, fr); } // \} /// \name Queries // \{ /// Wrapper function for locate if only the requested point is given. Face_handle locate(const Point &p, Face_handle start = Face_handle()) const { Locate_type lt; int li; return locate(p, Offset(), lt, li, start); } /// Wrapper function for locate if the offset is omitted. Face_handle locate(const Point& p, Locate_type& lt, int& li, Face_handle start = Face_handle()) const { return locate(p, Offset(), lt, li, start); } /// Returns the oriented side of the point p with respect to the /// triangle defined by the face f Oriented_side oriented_side(Face_handle f, const Point& p) const { return oriented_side(f, p, Offset()); } // \} /// \name Traversal of the Triangulation // \{ /// Iterator over all stored vertices. Starts at an arbitrary vertex. /// Returns vertices_end() if t.number_of_vertices()=0. Vertex_iterator vertices_begin() const { return _tds.vertices_begin(); } /// Past the end Vertex_iterator. Vertex_iterator vertices_end() const { return _tds.vertices_end(); } /// Iterator over all stored edges. Starts at an arbitrary edge. /// Returns edges_end() if t.number_of_vertices()=0. Edge_iterator edges_begin() const { return _tds.edges_begin(); } /// Past the end Edge_iterator. Edge_iterator edges_end() const { return _tds.edges_end(); } /// Iterator over all stored faces. Starts at an arbitrary face. /// Returns faces_end() if t.number_of_vertices()=0. Face_iterator faces_begin() const { return _tds.faces_begin(); } /// Past the end Face_iterator. Face_iterator faces_end() const { return _tds.faces_end(); } /// Iterator over all stored vertices. Starts at an arbitrary vertex. /// Returns vertices_end() if t.number_of_vertices()=0. Vertex_iterator finite_vertices_begin() const { return _tds.vertices_begin(); } /// Past the end Vertex_iterator. Vertex_iterator finite_vertices_end() const { return _tds.vertices_end(); } /// Iterator over all stored edges. Starts at an arbitrary edge. /// Returns edges_end() if t.number_of_vertices()=0. Edge_iterator finite_edges_begin() const { return _tds.edges_begin(); } /// Past the end Edge_iterator. Edge_iterator finite_edges_end() const { return _tds.edges_end(); } /// Iterator over all stored faces. Starts at an arbitrary face. /// Returns faces_end() if t.number_of_vertices()=0. Face_iterator finite_faces_begin() const { return _tds.faces_begin(); } /// Past the end Face_iterator. Face_iterator finite_faces_end() const { return _tds.faces_end(); } /// Iterator over all stored vertices. Starts at an arbitrary vertex. /// Returns vertices_end() if t.number_of_vertices()=0. Vertex_iterator all_vertices_begin() const { return _tds.vertices_begin(); } /// Past the end Vertex_iterator. Vertex_iterator all_vertices_end() const { return _tds.vertices_end(); } /// Iterator over all stored edges. Starts at an arbitrary edge. /// Returns edges_end() if t.number_of_vertices()=0. Edge_iterator all_edges_begin() const { return _tds.edges_begin(); } /// Past the end Edge_iterator. Edge_iterator all_edges_end() const { return _tds.edges_end(); } /// Iterator over all stored faces. Starts at an arbitrary face. /// Returns faces_end() if t.number_of_vertices()=0. Face_iterator all_faces_begin() const { return _tds.faces_begin(); } /// Past the end Face_iterator. Face_iterator all_faces_end() const { return _tds.faces_end(); } /// begin iterator over the non-virtual vertices Unique_vertex_iterator unique_vertices_begin() const { return CGAL::filter_iterator(vertices_end(), Periodic_2_triangulation_2_internal::Domain_tester(this), vertices_begin()); } /// past-the-end iterator over the non-virtual vertices Unique_vertex_iterator unique_vertices_end() const { return CGAL::filter_iterator(vertices_end(), Periodic_2_triangulation_2_internal::Domain_tester(this)); } // \} /// \name Geometric iterators //\{ /// Start iterator over the points Periodic_point_iterator periodic_points_begin(Iterator_type it = STORED) const { return Periodic_point_iterator(this, it); } /// Past-the-end iterator over the points Periodic_point_iterator periodic_points_end(Iterator_type it = STORED) const { return Periodic_point_iterator(this, 1, it); } /// Start iterator over the segments Periodic_segment_iterator periodic_segments_begin(Iterator_type it = STORED) const { return Periodic_segment_iterator(this, it); } /// Past-the-end iterator over the segments Periodic_segment_iterator periodic_segments_end(Iterator_type it = STORED) const { return Periodic_segment_iterator(this, 1, it); } /// Start iterator over the triangles Periodic_triangle_iterator periodic_triangles_begin(Iterator_type it = STORED) const { return Periodic_triangle_iterator(this, it); } /// Past-the-end iterator over the triangles Periodic_triangle_iterator periodic_triangles_end(Iterator_type it = STORED) const { return Periodic_triangle_iterator(this, 1, it); } //\} /// \name Incident simplices // \{ Face_circulator incident_faces(Vertex_handle v, Face_handle f = Face_handle()) const { return _tds.incident_faces(v, f); } Edge_circulator incident_edges(Vertex_handle v, Face_handle f = Face_handle()) const { return _tds.incident_edges(v, f); } /* Vertex_circulator incident_vertices(Vertex_handle v, Face_handle f = */ /* Face_handle()) const */ /* { */ /* bool DEPRECATED_USE_ADJACENT_VERTICES; */ /* return adjacent_vertices(v, f); */ /* } */ Vertex_circulator adjacent_vertices(Vertex_handle v, Face_handle f = Face_handle()) const { return _tds.incident_vertices(v, f); } // \} /// \name Traversal between adjacent faces // \{ Vertex_handle mirror_vertex(Face_handle f, int i) const { return _tds.mirror_vertex(f, i); } int mirror_index(Face_handle f, int i) const { return _tds.mirror_index(f, i); } //\} /// \name Modifiers // \{ /// Flips the edge and all periodic copies void flip(Face_handle f, int i); /// Inserts a point in the triangulation /// \param p the point to be inserted /// \param start the start face for point location /// \return The new vertex handle or an existing Vertex_handle if p was inserted before Vertex_handle insert(const Point &p, Face_handle start = Face_handle()); /// Inserts a point in the triangulation /// \pre The point has been located in the triangulation Vertex_handle insert(const Point& p, Locate_type lt, Face_handle loc, int li); /// Insert a point in the triangulation Vertex_handle push_back(const Point& p) { return insert(p); } // \} /// \name Advanced modifiers //\{ /// Insert the first vertex in the triangulation and creates the 9-cover. Vertex_handle insert_first(const Point& p); /// Inserts p in the face f and sets the offsets of the newly created faces /// Insert periodic copies in all periodic copies of the domain Vertex_handle insert_in_face(const Point& p, Face_handle f); /// Inserts (p,o) in the edge (f,i) and sets the offsets of the newly created faces /// Insert periodic copies in all periodic copies of the domain Vertex_handle insert_in_edge(const Point& p, Face_handle f, int i); /// Remove a degree 3 vertex from a 2D triangulation void remove_degree_3(Vertex_handle v); bool remove_degree_init(Vertex_handle v, const Offset &v_o, std::vector &f, std::vector &w, std::vector &offset_w, std::vector &i, int &d, int &maxd, bool &simplicity_criterion); /// Remove a vertex from a 2D triangulation with number_of_vertices() == 1 void remove_first(Vertex_handle v); /// Changes the domain. Note that this function calls clear(), i.e., /// it erases the existing triangulation. void set_domain(const Iso_rectangle &domain) { clear(); _domain = domain; _gt.set_domain(_domain); _edge_length_threshold = FT(0.166) * (_domain.xmax() - _domain.xmin()) * (_domain.xmax() - _domain.xmin()); } //\} /// \name Point location /// Do a remembering heuristic walk to locate point (p,o) Face_handle march_locate_2D(Face_handle f, const Point& p, const Offset& o, Locate_type& lt, int& li) const; /// Checks whether the result of two point location queries are equivalent. bool compare_walks(const Point& p, Face_handle c1, Face_handle c2, Locate_type& lt1, Locate_type& lt2, int li1, int li2) const; /// Testing where the point (p,off) lies w.r.t. the face f Bounded_side side_of_face(const Point &p, const Offset &off, Face_handle f, Locate_type <, int &li) const; /// Testing where the point (p,off) lies w.r.t. the face f Bounded_side side_of_face(const Point &p, Face_handle f, Locate_type <, int &li) const { return side_of_face(p, Offset(), f, lt, li); } //\} /// \name Predicates and Constructions //\{ /// Determines whether the point p lies on the (un-)bounded side of /// the triangle (p0,p1,p2) Bounded_side bounded_side(const Point &p0, const Point &p1, const Point &p2, const Point &p) const; /// Determines whether the point (p,o) lies on the (un-)bounded side of /// the triangle ((p0,o0),(p1,o1),(p2,o2)) Bounded_side bounded_side(const Point &p0, const Point &p1, const Point &p2, const Point &p, const Offset &o0, const Offset &o1, const Offset &o2, const Offset &o) const; /// Determines whether the point q lies strictly between the points p and r /// p,q and r are supposed to be collinear points bool collinear_between(const Point& p, const Point& q, const Point& r) const; /// Determines whether the point (q,o_q) lies strictly between the points (p,o_p) and (r,o_r) /// (q,o_q), (p,o_p) and (r,o_r) are supposed to be collinear points bool collinear_between(const Point& p, const Point& q, const Point& r, const Offset& o_p, const Offset& o_q, const Offset& o_r) const; /// Compares the x-coordinates of p and q Comparison_result compare_x(const Point& p, const Point& q) const; /// Compares the x-coordinates of (p,o_p) and (q,o_q) Comparison_result compare_x(const Point& p, const Point& q, const Offset &o_p, const Offset &o_q) const; /// Compares p and q lexicographically Comparison_result compare_xy(const Point& p, const Point& q, const Offset &o_p, const Offset &o_q) const; /// Compares (p,o_p) and (q,o_q) lexicographically Comparison_result compare_xy(const Point& p, const Point& q) const; /// Compares the x-coordinates of p and q Comparison_result compare_y(const Point& p, const Point& q) const; /// Compares the x-coordinates of (p,o_p) and (q,o_q) Comparison_result compare_y(const Point& p, const Point& q, const Offset &o_p, const Offset &o_q) const; /// Checks for equality of p and q bool xy_equal(const Point& p, const Point& q) const; /// Returns the orientation of p1,p2,p3 Orientation orientation(const Point& p1, const Point& p2, const Point& p3) const; /// Returns the orientation of (p1,o1), (p2,o2), (p3,o3) Orientation orientation(const Point& p1, const Point& p2, const Point& p3, const Offset& o1, const Offset& o2, const Offset& o3) const; //\} /// \name Miscellaneous //\{ /// Returns whether the union of the faces f and f->neighbor(i) form /// a convex quadrilateral. bool flippable(Face_handle f, int i); size_type degree(Vertex_handle v) const { return _tds.degree(v); } /// Checks if the triangulation is valid. bool is_valid(bool verbose = false, int level = 0) const; /// Checks if the face is valid. bool is_valid(Face_handle fh, bool verbose = false, int level = 0) const; //\} /// \name Undocumented functions, needed by the geometric iterators // \{ /// [Undoc] Returns whether the stored triangulation covers a 1-cover. bool is_1_cover() const { return (_cover[0] == 1) && (_cover[1] == 1); } /// [Undoc] Combines two offsets, where the first offset is defined by the /// virtual vertex and the second by the face. Offset combine_offsets(const Offset& o_c, const Offset& o_t) const { Offset o_ct(_cover[0] * o_t.x(), _cover[1] * o_t.y()); return o_c + o_ct; } /// [Undoc] Returns the offset of nb==ch->neighbor(i) with respect to ch. /// Get the offset between the origins of the internal offset coordinate /// systems of two neighboring faces with respect from ch to nb. /// /// - Find two corresponding vertices from each face /// - Return the difference of their offsets. /// Offset get_neighbor_offset(Face_handle fh, int i) const { Face_handle nb = fh->neighbor(i); return get_neighbor_offset(fh, i, nb, nb->index(fh)); } /// [Undoc] Returns the offset of nb==ch->neighbor(i) with respect to ch. /// Get the offset between the origins of the internal offset coordinate /// systems of two neighboring faces with respect from ch to nb. /// /// - Find two corresponding vertices from each face /// - Return the difference of their offsets. /// Offset get_neighbor_offset(Face_handle fh, int i, Face_handle nb, int j) const { // Redundance in the signature CGAL_triangulation_precondition(fh->neighbor(i) == nb); CGAL_triangulation_precondition(nb->neighbor(j) == fh); CGAL_triangulation_precondition(fh->vertex(cw(i)) == nb->vertex(ccw(j))); return int_to_off(nb->offset(ccw(j))) - int_to_off(fh->offset(cw(i))); } /// [Undoc] returns the combined offset of the vertex /// (if we are not on the 1-cover) and the offset defined by the face. Offset get_offset(Face_handle f, int i) const { if (is_1_cover()) return int_to_off(f->offset(i)); Virtual_vertex_map_it it = _virtual_vertices.find(f->vertex(i)); if (it != _virtual_vertices.end()) return combine_offsets(it->second.second, int_to_off(f->offset(i))); else return combine_offsets(Offset(), int_to_off(f->offset(i))); } /// [Undoc] Returns the offset of the vertex if we are not on the 1-cover. Offset get_offset(Vertex_handle vh) const { if (is_1_cover()) return Offset(); Virtual_vertex_map_it it = _virtual_vertices.find(vh); if (it != _virtual_vertices.end()) return it->second.second; else return Offset(); } /// Converts an offset to a bit pattern where bit1==offx and bit0==offy. int off_to_int(const Offset & off) const { CGAL_triangulation_assertion( off.x() == 0 || off.x() == 1 ); CGAL_triangulation_assertion( off.y() == 0 || off.y() == 1 ); int i = ((off.x() & 1) << 1) + (off.y() & 1); return i; } /// Creates an offset from a bit pattern. Offset int_to_off(int i) const { return Offset((i >> 1) & 1, i & 1); } // \} // Protected functions of Periodic_2_triangulation_2 /// Const accessor to the virtual vertices reverse map, /// used to optimize point location for periodic copies. const Virtual_vertex_reverse_map &virtual_vertices_reverse() const { return _virtual_vertices_reverse; } /// [Undoc] Returns the non-virtual copy of the vertex. Vertex_handle get_original_vertex(Vertex_handle vh) const { if (is_1_cover()) return vh; Virtual_vertex_map_it it = _virtual_vertices.find(vh); if (it != _virtual_vertices.end()) return it->second.first; else return vh; } /// Tests whether a vertex is a periodic copy of a vertex in the 3-cover. bool is_virtual(Vertex_handle v) { if (is_1_cover()) return false; return (_virtual_vertices.find(v) != _virtual_vertices.end()); } const std::vector& periodic_copies(const Vertex_handle v) const { CGAL_triangulation_precondition(number_of_sheets() != make_array(1, 1) ); CGAL_triangulation_precondition(_virtual_vertices.find(v) == _virtual_vertices.end()); CGAL_triangulation_assertion(_virtual_vertices_reverse.find(v) != _virtual_vertices_reverse.end()); return _virtual_vertices_reverse.find(v)->second; } template Stream& draw_triangulation(Stream& os) const { Edge_iterator it = edges_begin(); for (; it != edges_end(); ++it) { os << segment(it); } return os; } protected: std::vector insert_dummy_points(); inline void try_to_convert_to_one_cover() { // Fall back to 1-cover if the criterion that the longest edge is shorter // than sqrt(0.166) is fulfilled. if (_too_long_edge_counter == 0 && !is_1_cover()) { CGAL_triangulation_expensive_assertion( is_valid() ); this->convert_to_1_sheeted_covering(); CGAL_triangulation_expensive_assertion( is_valid() ); } } protected: // Protected functions of Periodic_2_triangulation_2 /// Inserts a point with an offset in the triangulation /// \pre The point has been located in the triangulation Vertex_handle insert(const Point& p, const Offset& o, Locate_type lt, Face_handle loc, int li, Vertex_handle vh); /// \name Helper functions for queries // \{ /// Locates the simplex containing the point represented by p and o. /// /// The type of the simplex is stored in lt. /// The simplex containing the point is returned using lt and li. /// The Face_handle start is the start point of the heuristic walk. Face_handle locate(const Point& p, const Offset &o, Locate_type& lt, int& li, Face_handle start = Face_handle()) const; /// Returns the oriented side of the point (p,o) with respect to the /// triangle defined by the face f Oriented_side oriented_side(Face_handle f, const Point& p, const Offset &o) const; // \} /// \name Insertion helpers //\{ /// Insert too long edges in the star of v void insert_too_long_edges_in_star(Vertex_handle v); /// Insert too long edge void insert_too_long_edge(Face_handle f, int i); /// Remove too long edges in the star of v void remove_too_long_edges_in_star(Vertex_handle v); /// Removes an edge if it is too long void remove_too_long_edge(Face_handle f, int i); /// Check whether an edge is too long bool edge_is_too_long(const Point &p1, const Point &p2) const; /// Flips the edge, no periodic copies are flipped void flip_single_edge(Face_handle f, int i); /// Remove a vertex from the virtual copies maps /// Used when a Delaunay vertex is removed void remove_from_virtual_copies(Vertex_handle v); //\} /// \name Wrapping the traits //\{ Point construct_point(const Point& p, const Offset &o) const { return geom_traits().construct_point_2_object()(p, o); } Point construct_point(const Periodic_point& pp) const { return construct_point(pp.first, pp.second); } Triangle construct_triangle(const Point &p1, const Point &p2, const Point &p3, const Offset &o1, const Offset &o2, const Offset &o3) const { return geom_traits().construct_triangle_2_object()(p1, p2, p3, o1, o2, o3); } Triangle construct_triangle(const Periodic_triangle& tri) const { return construct_triangle(tri[0].first, tri[1].first, tri[2].first, tri[0].second, tri[1].second, tri[2].second); } Segment construct_segment(const Point &p1, const Point &p2, const Offset &o1, const Offset &o2) const { return geom_traits().construct_segment_2_object()(p1, p2, o1, o2); } Segment construct_segment(const Periodic_segment& seg) const { return construct_segment(seg[0].first, seg[1].first, seg[0].second, seg[1].second); } //\} /// Test whether removing vertex v decreases the dimension of the triangulation. bool test_dim_down(Vertex_handle /*v*/) const { //test the dimensionality of the resulting triangulation //upon removing of vertex v return number_of_vertices() == 1; } void make_hole(Vertex_handle v, std::list & hole); Face_handle create_face(Face_handle f1, int i1, Face_handle f2, int i2, Face_handle f3, int i3); Face_handle create_face(Face_handle f1, int i1, Face_handle f2, int i2); Face_handle create_face(Face_handle f, int i, Vertex_handle v); Face_handle create_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3); Face_handle create_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3, Face_handle f1, Face_handle f2, Face_handle f3); Face_handle create_face(); Face_handle create_face(Face_handle); //calls copy constructor of Face void delete_face(Face_handle f); void delete_vertex(Vertex_handle v); // template members bool well_oriented(Vertex_handle v) const { Face_circulator fc = incident_faces(v), done(fc); do { Orientation o; Vertex_handle v0 = fc->vertex(0); Vertex_handle v1 = fc->vertex(1); Vertex_handle v2 = fc->vertex(2); if (fc->has_zero_offsets()) { o = orientation(v0->point(), v1->point(), v2->point()); } else { Offset off0 = get_offset(fc, 0); Offset off1 = get_offset(fc, 1); Offset off2 = get_offset(fc, 2); o = orientation(v0->point(), v1->point(), v2->point(), off0, off1, off2); } if (o != COUNTERCLOCKWISE) return false; } while (++fc != done); return true; } template Vertex_handle star_hole(const Point& p, EdgeIt edge_begin, EdgeIt edge_end) { std::list empty_list; return star_hole(p, edge_begin, edge_end, empty_list.begin(), empty_list.end()); } template Vertex_handle star_hole(const Point& p, EdgeIt edge_begin, EdgeIt edge_end, FaceIt face_begin, FaceIt face_end) { CGAL_assertion(is_1_cover()); Vertex_handle v = _tds.star_hole(edge_begin, edge_end, face_begin, face_end); v->set_point(p); return v; } /// Periodic functions //\{ /// These functions give the pair (vertex, offset) that corresponds /// to the i-th vertex of face f. The vertex returned is not a virtual copy. void get_vertex(Face_handle f, int i, Vertex_handle &vh, Offset &off) const; /// These functions give the pair (vertex, offset) that corresponds /// to the i-th vertex of vertex vh. The vertex returned is not a virtual copy. void get_vertex(Vertex_handle vh_i, Vertex_handle &vh, Offset &off) const; /// Returns the face containing the three vertices defined by vh[0], vh1[1] and vh[2]. inline Face_handle get_face(const Vertex_handle* vh) const; /// Constructs a list of too long edges in the triangulation. int find_too_long_edges( std::map >& edges) const; /// Returns the offset such that (p, o) lies on the bounded side of the face f. Offset get_location_offset(Face_handle f, const Point &p, const Offset &o) const { CGAL_triangulation_precondition( number_of_vertices() != 0 ); if (is_1_cover() && f->has_zero_offsets()) { // default case: return Offset(); } else { int cumm_off = f->offset(0) | f->offset(1) | f->offset(2); // Special case for the periodic space. // Fetch vertices and respective offsets of c from _virtual_vertices const Point *pts[3]; Offset off[3]; for (int i = 0; i < 3; i++) { pts[i] = &(f->vertex(i)->point()); off[i] = get_offset(f, i); } // Main idea seems to just test all possibilities. for (int i = 0; i < 4; i++) { if (((cumm_off | (~i)) & 3) == 3) { if (bounded_side(*pts[0], *pts[1], *pts[2], p, off[0], off[1], off[2], combine_offsets(o, int_to_off(i))) != ON_UNBOUNDED_SIDE) { return int_to_off(i); } } } } CGAL_assertion(false); return Offset(); } /// Assigns the offsets to the vertices of the face f, and makes the offset minimal in each direction. void set_offsets(Face_handle f, int o0, int o1, int o2) { int off0[2] = { (o0 >> 1) & 1, (o0 & 1) }; int off1[2] = { (o1 >> 1) & 1, (o1 & 1) }; int off2[2] = { (o2 >> 1) & 1, (o2 & 1) }; // Make sure that there is at least one zero offset in every direction for (int i = 0; i < 2; i++) { int min_off = (std::min)((std::min)(off0[i], off1[i]), off2[i]); if (min_off != 0) { off0[i] -= min_off; off1[i] -= min_off; off2[i] -= min_off; } } o0 = ((off0[0] & 1) << 1) + (off0[1] & 1); o1 = ((off1[0] & 1) << 1) + (off1[1] & 1); o2 = ((off2[0] & 1) << 1) + (off2[1] & 1); f->set_offsets(o0, o1, o2); } /// Assigns the offsets to the vertices of the face f, and makes the offset minimal in each direction. template void set_offsets(Face_handle f, const Offset &o0, const Offset &o1, const Offset &o2) { int off0[2] = { o0.x(), o0.y() }; int off1[2] = { o1.x(), o1.y() }; int off2[2] = { o2.x(), o2.y() }; for (int i = 0; i < 2; i++) { int min_off = (std::min)((std::min)(off0[i], off1[i]), off2[i]); if (min_off != 0) { off0[i] -= min_off; off1[i] -= min_off; off2[i] -= min_off; } } CGAL_triangulation_assertion((std::min)((std::min)(off0[0], off1[0]), off2[0]) == 0); CGAL_triangulation_assertion((std::min)((std::min)(off0[1], off1[1]), off2[1]) == 0); CGAL_triangulation_assertion((0 <= off0[0]) && (off0[0] < 2)); CGAL_triangulation_assertion((0 <= off1[0]) && (off1[0] < 2)); CGAL_triangulation_assertion((0 <= off2[0]) && (off2[0] < 2)); CGAL_triangulation_assertion((0 <= off0[1]) && (off0[1] < 2)); CGAL_triangulation_assertion((0 <= off1[1]) && (off1[1] < 2)); CGAL_triangulation_assertion((0 <= off2[1]) && (off2[1] < 2)); int o0i = ((off0[0] & 1) << 1) + (off0[1] & 1); int o1i = ((off1[0] & 1) << 1) + (off1[1] & 1); int o2i = ((off2[0] & 1) << 1) + (off2[1] & 1); f->set_offsets(o0i, o1i, o2i); } //\} /// Checks the too_long_edges bookkeeping bool is_valid_too_long_edges(bool verbose = false, int level = 0) const; /** @name Checking helpers */ //@{ /// calls has_self_edges for every face of the triangulation bool has_self_edges() const { Face_iterator it; for ( it = all_faces_begin(); it != all_faces_end(); ++it ) if (has_self_edges(it)) return true; return false; } bool has_self_edges(Face_handle fh) const { CGAL_triangulation_assertion((fh->vertex(0) != fh->vertex(1)) || (fh->offset(0) != fh->offset(1))); CGAL_triangulation_assertion((fh->vertex(0) != fh->vertex(2)) || (fh->offset(0) != fh->offset(2))); CGAL_triangulation_assertion((fh->vertex(1) != fh->vertex(2)) || (fh->offset(1) != fh->offset(2))); return ((fh->vertex(0) == fh->vertex(1)) || (fh->vertex(0) == fh->vertex(2)) || (fh->vertex(1) == fh->vertex(2))); } //@} protected: // Protected data of Periodic_2_triangulation_2 /// \name Triangulation data members // \{ /// Geometric traits Gt _gt; /// Triangulation data structure Tds _tds; // \} private: /// Inserts (p,o) in the face f and sets the offsets of the newly created faces /// Doesn't insert periodic copies Vertex_handle insert_in_face(const Point& p, const Offset &o, Face_handle f, Vertex_handle vh); /// Inserts (p,o) in the edge (f,i) and sets the offsets of the newly created faces /// Doesn't insert periodic copies Vertex_handle insert_in_edge(const Point& p, const Offset &o, Face_handle f, int i, Vertex_handle vh); /// Remove a vertex without removing it's possible periodic copies. /// Helper functions void remove_degree_3_single_copy(Vertex_handle vh); // Private data of Periodic_2_triangulation_2 /// \name Periodic members //\{ /// Determines if we currently compute in 3-cover or 1-cover. Covering_sheets _cover; /// The domain Iso_rectangle _domain; protected: // @fixme this covering stuff should really be at the Delaunay level (will need // to be if P2RT2 is ever introduced...) /// This threshold should be chosen such that if all edges are shorter, /// we can be sure that there are no self-edges anymore. FT _edge_length_threshold; /// This adjacency list stores all edges that are longer than /// edge_length_threshold. Too_long_edges_map _too_long_edges; /// Number of edges that are too long size_t _too_long_edge_counter; private: /// map of offsets for periodic copies of vertices Virtual_vertex_map _virtual_vertices; /// map of a non-virtual vertex to its virtual copies Virtual_vertex_reverse_map _virtual_vertices_reverse; //\} }; // class Periodic_2_triangulation_2 // CONSTRUCTORS template Periodic_2_triangulation_2::Periodic_2_triangulation_2( const Iso_rectangle & domain, const Geom_traits& geom_traits) : _gt(geom_traits), _tds() , _cover(make_array(1, 1)) , _domain(domain) , _too_long_edge_counter(0) { CGAL_triangulation_precondition(_domain.xmax() - _domain.xmin() == _domain.ymax() - _domain.ymin()); set_domain(_domain); } // copy constructor duplicates vertices and faces template Periodic_2_triangulation_2::Periodic_2_triangulation_2(const Periodic_2_triangulation_2 &tr) { copy_triangulation(tr); } //Assignment template Periodic_2_triangulation_2 & Periodic_2_triangulation_2::operator=( const Periodic_2_triangulation_2 &tr) { copy_triangulation(tr); return *this; } // Helping functions template < class GT, class Tds > class Periodic_2_triangulation_2::Finder { const Self* _t; const Point & _p; public: Finder(const Self* t, const Point &p) : _t(t), _p(p) {} bool operator()(const Vertex_handle v) { return _t->xy_equal(v->point(), _p); } }; template < class GT, class Tds > inline void Periodic_2_triangulation_2:: copy_multiple_covering(const Periodic_2_triangulation_2 & tr) { // Write the respective offsets in the vertices to make them // automatically copy with the tds. for (Vertex_iterator vit = tr.vertices_begin() ; vit != tr.vertices_end() ; ++vit) { vit->set_offset(tr.get_offset(vit)); } // copy the tds _tds = tr.tds(); // make a list of all vertices that belong to the original // domain and initialize the basic structure of // virtual_vertices_reverse std::list vlist; for (Vertex_iterator vit = vertices_begin() ; vit != vertices_end() ; ++vit) { if (vit->offset() == Offset()) { vlist.push_back(vit); _virtual_vertices_reverse.insert( std::make_pair(vit, std::vector(8))); CGAL_triangulation_assertion(_virtual_vertices_reverse.find(vit) ->second.size() == 8); } } // Iterate over all vertices that are not in the original domain // and construct the respective entries to virtual_vertices and // virtual_vertices_reverse for (Vertex_iterator vit2 = vertices_begin() ; vit2 != vertices_end() ; ++vit2) { if (vit2->offset() != Offset()) { //TODO: use some binding, maybe boost instead of the Finder. typename std::list::iterator vlist_it = std::find_if(vlist.begin(), vlist.end(), Finder(this, vit2->point())); Offset off = vit2->offset(); _virtual_vertices.insert(std::make_pair(vit2, std::make_pair(*vlist_it, off))); _virtual_vertices_reverse.find(*vlist_it) ->second[3 * off[0] + off[1] - 1] = vit2; CGAL_triangulation_assertion(get_offset(vit2) == off); } } // Cleanup vertex offsets for (Vertex_iterator vit = vertices_begin() ; vit != vertices_end() ; ++vit) vit->clear_offset(); for (Vertex_iterator vit = tr.vertices_begin() ; vit != tr.vertices_end() ; ++vit) vit->clear_offset(); // Build up the too_long_edges container _too_long_edge_counter = 0; _too_long_edges.clear(); for (Vertex_iterator vit = vertices_begin() ; vit != vertices_end() ; ++vit) _too_long_edges[vit] = std::list(); std::pair edge_to_add; Point p1, p2; int i, j; for (Edge_iterator eit = edges_begin() ; eit != edges_end() ; ++eit) { if (&*(eit->first->vertex(cw(eit->second))) < &*(eit->first->vertex(ccw(eit->second)))) { i = cw(eit->second); j = ccw(eit->second); } else { i = ccw(eit->second); j = cw(eit->second); } edge_to_add = std::make_pair(eit->first->vertex(i), eit->first->vertex(j)); p1 = construct_point(eit->first->vertex(i)->point(), get_offset(eit->first, i)); p2 = construct_point(eit->first->vertex(j)->point(), get_offset(eit->first, j)); Vertex_handle v_no = eit->first->vertex(i); if (squared_distance(p1, p2) > _edge_length_threshold) { CGAL_triangulation_assertion( find(_too_long_edges[v_no].begin(), _too_long_edges[v_no].end(), edge_to_add.second) == _too_long_edges[v_no].end()); _too_long_edges[v_no].push_back(edge_to_add.second); _too_long_edge_counter++; } } } template void Periodic_2_triangulation_2::copy_triangulation( const Periodic_2_triangulation_2 &tr) { _tds.clear(); _gt = tr._gt; _cover = tr._cover; _domain = tr._domain; _edge_length_threshold = tr._edge_length_threshold; _too_long_edge_counter = tr._too_long_edge_counter; if (tr.is_1_cover()) { _tds = tr.tds(); } else { copy_multiple_covering(tr); } CGAL_assertion(_too_long_edge_counter == tr._too_long_edge_counter); CGAL_triangulation_expensive_postcondition(*this == tr); } template void Periodic_2_triangulation_2::swap(Periodic_2_triangulation_2 &tr) { _tds.swap(tr._tds); Geom_traits t = geom_traits(); _gt = tr.geom_traits(); tr._gt = t; std::swap(tr._cover, _cover); std::swap(tr._domain, _domain); std::swap(tr._edge_length_threshold, _edge_length_threshold); std::swap(tr._too_long_edges, _too_long_edges); std::swap(tr._too_long_edge_counter, _too_long_edge_counter); std::swap(tr._virtual_vertices, _virtual_vertices); std::swap(tr._virtual_vertices_reverse, _virtual_vertices_reverse); } template void Periodic_2_triangulation_2::clear() { _tds.clear(); _tds.set_dimension(-2); _too_long_edges.clear(); _too_long_edge_counter = 0; _virtual_vertices.clear(); _virtual_vertices_reverse.clear(); _cover = make_array(1, 1); } template bool Periodic_2_triangulation_2::is_valid(Face_handle fh, bool /*verbose*/, int /*level*/) const { bool result = true; int xmin, xmax, ymin, ymax; xmin = ymin = 3; xmax = ymax = 0; for (int i = 0; i < 3; ++i) { Offset o = get_offset(fh, i); xmin = (std::min)(xmin, o[0]); xmax = (std::max)(xmax, o[0]); ymin = (std::min)(ymin, o[1]); ymax = (std::max)(ymax, o[1]); } // Should at most cross 1 border in each direction result &= (xmax - xmin <= 1); result &= (ymax - ymin <= 1); if (!result) { std::cerr << "min/max: " << xmin << "," << xmax << " " << ymin << "," << ymax << std::endl; for (int i = 0; i < 3; ++i) { Offset o = get_offset(fh, i); std::cerr << "Offset: " << o << std::endl; } std::cerr << std::endl; CGAL_triangulation_assertion(false); } return result; } template bool Periodic_2_triangulation_2::is_valid(bool verbose, int level) const { bool result = _tds.is_valid(verbose, level); CGAL_triangulation_assertion(result); if (dimension() == 2) { // Check positive orientation: const Point *p[3]; Offset off[3]; for (Face_iterator fit = faces_begin(); fit != faces_end(); ++fit) { for (int i = 0; i < 3; i++) { p[i] = &fit->vertex(i)->point(); off[i] = get_offset(fit, i); } if (orientation(*p[0], *p[1], *p[2], off[0], off[1], off[2]) != POSITIVE) { if (verbose) { std::cerr << "Periodic_2_triangulation_2: wrong orientation:" << "\n" << *p[0] << " \t" << off[0] << "\n" << *p[1] << " \t" << off[1] << "\n" << *p[2] << " \t" << off[2] << std::endl; } result = false; } } } CGAL_triangulation_assertion(result); // Check for the right number of simplices int copies = number_of_sheets()[0] * number_of_sheets()[1]; result &= (number_of_stored_vertices() == copies * number_of_vertices()); result &= (number_of_stored_edges() == copies * number_of_edges()); result &= (number_of_stored_faces() == copies * number_of_faces()); CGAL_triangulation_assertion(result); // check number of euler characteristic. This cannot be done by the Tds // which does not know the genus result &= (number_of_stored_vertices() - number_of_stored_edges() + number_of_stored_faces() == 0); CGAL_triangulation_assertion(result); result &= !has_self_edges(); CGAL_triangulation_assertion(result); // Edges should not be longer than 1 periodicity for (Face_iterator fit = faces_begin(); fit != faces_end(); ++fit) { result &= is_valid(fit, verbose, level); } CGAL_triangulation_assertion(result); result &= is_1_cover() == _virtual_vertices.empty(); result &= is_1_cover() == _virtual_vertices_reverse.empty(); result &= (_virtual_vertices.size() == (number_of_sheets()[0] * number_of_sheets()[1] - 1) * _virtual_vertices_reverse.size()); CGAL_triangulation_assertion(result); for (Virtual_vertex_map_it it = _virtual_vertices.begin(); it != _virtual_vertices.end(); ++it) { const Vertex_handle © = it->first; const Vertex_handle &orig = it->second.first; const Offset &off = it->second.second; size_t index = number_of_sheets()[0] * off[0] + off[1] - 1; Virtual_vertex_reverse_map_it rev_it = _virtual_vertices_reverse.find(orig); if (rev_it != _virtual_vertices_reverse.end()) { if (index < rev_it->second.size()) { result &= (rev_it->second[index] == copy); } else { result &= false; } } else { result &= false; } } CGAL_triangulation_assertion(result); for (Virtual_vertex_reverse_map_it it = _virtual_vertices_reverse.begin(); it != _virtual_vertices_reverse.end(); ++it) { const std::vector &copies = it->second; result &= copies.size() == 8; for (size_t i = 0; i < copies.size(); ++i) { Virtual_vertex_map_it copy_it = _virtual_vertices.find(copies[i]); if (copy_it != _virtual_vertices.end()) { result &= copy_it->second.first == it->first; } else { result &= false; } } } // Check the too_long_edges administration result &= is_valid_too_long_edges(verbose, level); return result; } template bool Periodic_2_triangulation_2::is_valid_too_long_edges(bool verbose, int /*level*/) const { bool result = true; result &= is_1_cover() == _too_long_edges.empty(); CGAL_triangulation_assertion(result); size_t too_long_edges = 0; for (Too_long_edges_map_it it = _too_long_edges.begin(); it != _too_long_edges.end(); ++it) { too_long_edges += it->second.size(); } CGAL_triangulation_assertion(result); if (_too_long_edge_counter != too_long_edges) { if (verbose) std::cout << "Too long edge counter is incorrect: " << _too_long_edge_counter << " != " << too_long_edges << std::endl; result = false; } CGAL_triangulation_assertion(result); /// Expensive check whether the right too long edges are in the list if (is_1_cover()) { for (Edge_iterator eit = edges_begin(); eit != edges_end(); ++eit) { Vertex_handle vh1 = eit->first->vertex(ccw(eit->second)); Vertex_handle vh2 = eit->first->vertex(cw(eit->second)); Point p1 = construct_point(vh1->point(), get_offset(eit->first, ccw(eit->second))); Point p2 = construct_point(vh2->point(), get_offset(eit->first, cw(eit->second))); result &= (!edge_is_too_long(p1, p2)); } CGAL_triangulation_assertion(result); } else { too_long_edges = 0; for (Edge_iterator eit = edges_begin(); eit != edges_end(); ++eit) { Vertex_handle vh1 = eit->first->vertex(ccw(eit->second)); Vertex_handle vh2 = eit->first->vertex(cw(eit->second)); Point p1 = construct_point(vh1->point(), get_offset(eit->first, ccw(eit->second))); Point p2 = construct_point(vh2->point(), get_offset(eit->first, cw(eit->second))); if (&*vh2 < &*vh1) std::swap(vh1, vh2); CGAL_triangulation_assertion(&*vh1 < &*vh2); bool too_long = edge_is_too_long(p1, p2); if (too_long != edge_is_too_long(p2, p1)) { if (verbose) std::cout << "Long edge criterion not symmetric c(v1,v2) != c(v2,v1)" << std::endl; result = false; } CGAL_triangulation_assertion(result); Too_long_edges_map_it it = _too_long_edges.find(vh1); if (it == _too_long_edges.end()) { if (too_long) { if (verbose) std::cout << "1. Too long edge not in the datastructure" << std::endl; result = false; } result &= !too_long; CGAL_triangulation_assertion(result); } else { typename std::list::const_iterator it2 = find(it->second.begin(), it->second.end(), vh2); if (too_long) { too_long_edges++; if (it2 == it->second.end()) { if (verbose) std::cout << "2. Too long edge not in the datastructure" << std::endl; result = false; } CGAL_triangulation_assertion(result); } else { if (it2 != it->second.end()) { if (verbose) std::cout << "Edge is not too long, but contained in the datastructure" << std::endl; result = false; } CGAL_triangulation_assertion(result); } } } if (_too_long_edge_counter != too_long_edges) { if (verbose) std::cout << "Counts do not match: " << _too_long_edge_counter << " != " << too_long_edges << std::endl; result = false; } CGAL_triangulation_assertion(result); } return result; } template bool Periodic_2_triangulation_2::flippable(Face_handle f, int i) { Face_handle nb = f->neighbor(i); int j = nb->index(f); const Point *p[4]; p[0] = &f->vertex(i)->point(); // i p[1] = &nb->vertex(j)->point(); // opposite p[2] = &f->vertex(ccw(i))->point(); // ccw p[3] = &f->vertex(cw(i))->point(); // cw if (is_1_cover() && f->has_zero_offsets() && nb->has_zero_offsets()) { // if (orientation(*p[0], *p[1], *p[2]) != RIGHT_TURN) // return false; // if (orientation(*p[0], *p[1], *p[3]) != LEFT_TURN) // return false; if (orientation(*p[0], *p[1], *p[2]) == LEFT_TURN) return false; if (orientation(*p[0], *p[1], *p[3]) == RIGHT_TURN) return false; } else { Offset off[4]; off[0] = get_offset(f, i); off[1] = combine_offsets(get_offset(nb, j), get_neighbor_offset(nb, j, f, i)); off[2] = get_offset(f, ccw(i)); off[3] = get_offset(f, cw(i)); // if (orientation(*p[0], *p[1], *p[2], off[0], off[1], off[2]) != RIGHT_TURN) // return false; // if (orientation(*p[0], *p[1], *p[3], off[0], off[1], off[3]) != LEFT_TURN) // return false; if (orientation(*p[0], *p[1], *p[2], off[0], off[1], off[2]) == LEFT_TURN) return false; if (orientation(*p[0], *p[1], *p[3], off[0], off[1], off[3]) == RIGHT_TURN) return false; } return true; } template void Periodic_2_triangulation_2::flip(Face_handle f, int i) { if (is_1_cover()) { flip_single_edge(f, i); return; } Vertex_handle vh1 = f->vertex( cw(i)); Vertex_handle vh2 = f->vertex(ccw(i)); Virtual_vertex_map_it it_vh1 = _virtual_vertices.find(vh1); Virtual_vertex_map_it it_vh2 = _virtual_vertices.find(vh2); Offset vh1_offset, vh2_offset; if (it_vh1 != _virtual_vertices.end()) { vh1 = it_vh1->second.first; vh1_offset = it_vh1->second.second; } if (it_vh2 != _virtual_vertices.end()) { vh2 = it_vh2->second.first; vh2_offset = it_vh2->second.second; } CGAL_triangulation_assertion( virtual_vertices_reverse().find(vh1) != virtual_vertices_reverse().end()); CGAL_triangulation_assertion( virtual_vertices_reverse().find(vh2) != virtual_vertices_reverse().end()); const std::vector &v1s = virtual_vertices_reverse().find(vh1)->second; const std::vector &v2s = virtual_vertices_reverse().find(vh2)->second; CGAL_assertion(v1s.size() == 8); CGAL_assertion(v1s.size() == v2s.size()); Face_handle fh; int index=0; Vertex_handle vh1_copy, vh2_copy; // Virtual copies for (int x = 0; x < 3; ++x) { for (int y = 0; y < 3; ++y) { int i1 = 3 * ((x + vh1_offset.x()) % 3) + ((y + vh1_offset.y()) % 3); int i2 = 3 * ((x + vh2_offset.x()) % 3) + ((y + vh2_offset.y()) % 3); if (i1 == 0) vh1_copy = vh1; else vh1_copy = v1s[i1 - 1]; if (i2 == 0) vh2_copy = vh2; else vh2_copy = v2s[i2 - 1]; bool found = is_edge(vh1_copy, vh2_copy, fh, index); CGAL_USE(found); CGAL_assertion(found); if (found) flip_single_edge(fh, index); } } try_to_convert_to_one_cover(); } template void Periodic_2_triangulation_2::flip_single_edge(Face_handle f, int i) { CGAL_triangulation_precondition(f != Face_handle()); CGAL_triangulation_precondition(i == 0 || i == 1 || i == 2); CGAL_triangulation_precondition(dimension() == 2); CGAL_triangulation_precondition(flippable(f, i)); if (!is_1_cover()) remove_too_long_edge(f, i); Face_handle nb = f->neighbor(i); if (f->has_zero_offsets() && nb->has_zero_offsets()) { _tds.flip(f, i); if (!is_1_cover()) insert_too_long_edge(f, ccw(i)); return; } int nb_index = nb->index(f); int offsets[4]; offsets[0] = f->offset(i); offsets[1] = f->offset(cw(i)); offsets[2] = f->offset(ccw(i)); offsets[3] = nb->offset(nb_index); // Move the offsets of f and nb in the same space by correcting for nb_offset Offset nb_offset = get_neighbor_offset(f, i, nb, nb_index); if (nb_offset.x() != 0) { if (nb_offset.x() == 1) { CGAL_assertion(((offsets[0] & 2) | (offsets[1] & 2) | (offsets[2] & 2)) == 0); offsets[0] |= 2; offsets[1] |= 2; offsets[2] |= 2; } else { CGAL_triangulation_assertion(nb_offset.x() == -1); CGAL_assertion((offsets[3] & 2) == 0); offsets[3] |= 2; } } if (nb_offset.y() != 0) { if (nb_offset.y() == 1) { CGAL_assertion(((offsets[0] & 1) | (offsets[1] & 1) | (offsets[2] & 1)) == 0); offsets[0] |= 1; offsets[1] |= 1; offsets[2] |= 1; } else { CGAL_triangulation_assertion(nb_offset.y() == -1); CGAL_assertion((offsets[3] & 1) == 0); offsets[3] |= 1; } } CGAL_assertion((offsets[0] & offsets[1] & offsets[2] & offsets[3]) == 0); CGAL_triangulation_assertion_code(Vertex_handle vh = f->vertex(i)); CGAL_triangulation_assertion_code(Vertex_handle vh_ccw = f->vertex(ccw(i))); _tds.flip(f, i); // Combinatorial checks CGAL_triangulation_assertion(vh == f->vertex(i)); CGAL_triangulation_assertion(vh_ccw == f->vertex(ccw(i))); CGAL_triangulation_assertion(f->vertex(i) == nb->vertex(cw(nb_index))); CGAL_triangulation_assertion(f->vertex(cw(i)) == nb->vertex(nb_index)); // Restore the offsets int new_off[3]; // For face f new_off[i] = offsets[0]; new_off[ccw(i)] = offsets[2]; new_off[cw(i)] = offsets[3]; set_offsets(f, new_off[0], new_off[1], new_off[2]); // For face nb new_off[nb_index] = offsets[3]; new_off[ccw(nb_index)] = offsets[1]; new_off[cw(nb_index)] = offsets[0]; set_offsets(nb, new_off[0], new_off[1], new_off[2]); if (!is_1_cover()) insert_too_long_edge(f, ccw(i)); } template void Periodic_2_triangulation_2::remove_from_virtual_copies(Vertex_handle v) { typename Virtual_vertex_reverse_map::iterator rev_it = _virtual_vertices_reverse.find(v); CGAL_triangulation_assertion(rev_it != _virtual_vertices_reverse.end()); const std::vector &virtual_copies = rev_it->second; for (size_t i = 0; i < virtual_copies.size(); ++i) { _virtual_vertices.erase(virtual_copies[i]); } _virtual_vertices_reverse.erase(rev_it); } template typename Periodic_2_triangulation_2::Vertex_handle Periodic_2_triangulation_2 < Gt, Tds >::insert_first(const Point& p) { CGAL_assertion(empty()); // The empty triangulation has a single sheeted cover _cover = make_array(3, 3); /// Virtual vertices, one per periodic domain Vertex_handle vir_vertices[3][3]; /// Virtual faces, two per periodic domain Face_handle faces[3][3][2]; // Initialise vertices: vir_vertices[0][0] = _tds.create_vertex(); vir_vertices[0][0]->set_point(p); _virtual_vertices_reverse[vir_vertices[0][0]] = std::vector(); for (int i = 0; i < _cover[0]; i++) { for (int j = 0; j < _cover[1]; j++) { if ((i != 0) || (j != 0)) { // Initialise virtual vertices out of the domain for debugging vir_vertices[i][j] = _tds.create_vertex(); vir_vertices[i][j]->set_point(p); //+Offset(i,j)); _virtual_vertices[vir_vertices[i][j]] = Virtual_vertex( vir_vertices[0][0], Offset(i, j)); _virtual_vertices_reverse[vir_vertices[0][0]].push_back( vir_vertices[i][j]); } } } // Create faces: for (int i = 0; i < _cover[0]; i++) { for (int j = 0; j < _cover[1]; j++) { for (int f = 0; f < 2; f++) { // f faces per 'rectangle' faces[i][j][f] = _tds.create_face(); } } } // table containing the vertex information // index to the right vertex: [number of faces][vertex][offset] int vertex_ind[2][3][2] = { { { 0, 0 }, { 1, 1 }, { 0, 1 } }, { { 0, 0 }, { 1, 0 }, { 1, 1 } } }; // Table containing the neighbor information // [number of faces][neighbor][offset,face] int neighb_ind[2][3][3] = { { { 0, 1, 1 }, { -1, 0, 1 }, { 0, 0, 1 } }, { { 1, 0, 0 }, { 0, 0, 0 }, { 0, -1, 0 } } }; for (int i = 0; i < _cover[0]; i++) { for (int j = 0; j < _cover[1]; j++) { int offset = ((i == _cover[0] - 1 ? 2 : 0) | (j == _cover[1] - 1 ? 1 : 0)); for (int f = 0; f < 2; f++) { faces[i][j][f]->set_vertices(vir_vertices[(i + vertex_ind[f][0][0]) % _cover[0]][(j + vertex_ind[f][0][1]) % _cover[1]], vir_vertices[(i + vertex_ind[f][1][0]) % _cover[0]][(j + vertex_ind[f][1][1]) % _cover[1]], vir_vertices[(i + vertex_ind[f][2][0]) % _cover[0]][(j + vertex_ind[f][2][1]) % _cover[1]]); set_offsets(faces[i][j][f], offset & (vertex_ind[f][0][0] * 2 + vertex_ind[f][0][1] * 1), offset & (vertex_ind[f][1][0] * 2 + vertex_ind[f][1][1] * 1), offset & (vertex_ind[f][2][0] * 2 + vertex_ind[f][2][1] * 1)); faces[i][j][f]->set_neighbors(faces[(i + _cover[0] + neighb_ind[f][0][0]) % _cover[0]][(j + _cover[1] + neighb_ind[f][0][1]) % _cover[1]][neighb_ind[f][0][2]], faces[(i + _cover[0] + neighb_ind[f][1][0]) % _cover[0]][(j + _cover[1] + neighb_ind[f][1][1]) % _cover[1]][neighb_ind[f][1][2]], faces[(i + _cover[0] + neighb_ind[f][2][0]) % _cover[0]][(j + _cover[1] + neighb_ind[f][2][1]) % _cover[1]][neighb_ind[f][2][2]]); } } } // set pointers from the vertices to incident faces. for (int i = 0; i < _cover[0]; i++) { for (int j = 0; j < _cover[1]; j++) { vir_vertices[i][j]->set_face(faces[i][j][0]); } } _tds.set_dimension(2); // create the base for too_long_edges; CGAL_triangulation_assertion(_too_long_edges.empty() ); CGAL_triangulation_assertion(_too_long_edge_counter == 0); // Insert all vertices as the first vertex in the _too_long_edges list int k = 0; std::list empty_list; for (Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit) { _too_long_edges[vit] = empty_list; k++; } // Insert all edges as all edges are too long _too_long_edge_counter = 0; for (Edge_iterator eit = edges_begin(); eit != edges_end(); eit++) { Vertex_handle vh1 = eit->first->vertex(ccw(eit->second)); Vertex_handle vh2 = eit->first->vertex(cw(eit->second)); if (&*vh1 < &*vh2) { _too_long_edges[vh1].push_back(vh2); } else { _too_long_edges[vh2].push_back(vh1); } _too_long_edge_counter++; } return vir_vertices[0][0]; } template typename Periodic_2_triangulation_2::Vertex_handle Periodic_2_triangulation_2::insert_in_edge(const Point& p, Face_handle f, int i) { return insert(p, EDGE, f, i); } template typename Periodic_2_triangulation_2::Vertex_handle Periodic_2_triangulation_2::insert_in_edge(const Point& p, const Offset &o, Face_handle f, int i, Vertex_handle vh) { // Insert in edge calls an insert_in_face and a flip. // Therefore there is no need to update the too_long_edges bookkeeping directly. CGAL_triangulation_assertion(number_of_vertices() != 0); CGAL_triangulation_assertion((!is_1_cover()) || (o == Offset())); // Backup of the neighbor and its relative offset Face_handle nb = f->neighbor(i); int j = nb->index(f); CGAL_triangulation_assertion_code(Offset current_offset = get_location_offset(f, p, o)); CGAL_triangulation_assertion (orientation(f->vertex(cw(i))->point(), p, f->vertex(ccw(i))->point(), get_offset(f, cw(i)), combine_offsets(o, current_offset), get_offset(f, ccw(i))) == COLLINEAR && collinear_between(f->vertex(cw(i))->point(), p, f->vertex(ccw(i))->point(), get_offset(f, cw(i)), combine_offsets(o, current_offset), get_offset(f, ccw(i))) ); /// Insert in the face and flip an edge Vertex_handle v = insert_in_face(p, o, f, vh); flip_single_edge(nb, j); return v; } template typename Periodic_2_triangulation_2::Vertex_handle Periodic_2_triangulation_2::insert_in_face(const Point& p, Face_handle f) { return insert(p, FACE, f, 0); } template typename Periodic_2_triangulation_2::Vertex_handle Periodic_2_triangulation_2::insert_in_face(const Point& p, const Offset &o, Face_handle f, Vertex_handle vh) { CGAL_triangulation_assertion(f != Face_handle()); CGAL_triangulation_assertion(number_of_vertices() != 0); CGAL_triangulation_assertion((!is_1_cover()) || (o == Offset())); const bool simplicity_criterion = f->has_zero_offsets() && o.is_zero(); Offset current_off; // Save the neighbors and the offsets Face_handle nb[3]; int nb_index[3]; int offsets[3]; CGAL_triangulation_assertion_code( Vertex_handle vertices[3]; ) if (!simplicity_criterion) { // Choose the periodic copy of tester.point() that is inside c. current_off = get_location_offset(f, p, o); CGAL_triangulation_assertion(oriented_side(f, p, combine_offsets(o, current_off)) != ON_NEGATIVE_SIDE); for (int i = 0; i < 3; ++i) { nb[i] = f->neighbor(i); nb_index[i] = nb[i]->index(f); offsets[i] = f->offset(i); CGAL_triangulation_assertion_code( vertices[i] = f->vertex(i); ); } } // Insert the new vertex Vertex_handle v = _tds.insert_in_face(f); v->set_point(p); if (!simplicity_criterion) { // Update the offsets int v_offset = off_to_int(current_off); int new_offsets[3]; for (int i = 0; i < 3; ++i) { Face_handle new_face = nb[i]->neighbor(nb_index[i]); int v_index = new_face->index(v); CGAL_triangulation_assertion(new_face->vertex(ccw(v_index)) == vertices[ccw(i)]); CGAL_triangulation_assertion(new_face->vertex(cw(v_index)) == vertices[cw(i)]); new_offsets[v_index] = v_offset; new_offsets[ccw(v_index)] = offsets[ccw(i)]; new_offsets[cw(v_index)] = offsets[cw(i)]; set_offsets(new_face, new_offsets[0], new_offsets[1], new_offsets[2]); } } if (!is_1_cover()) { // update the book-keeping in case of a periodic copy if (vh != Vertex_handle()) { _virtual_vertices[v] = Virtual_vertex(vh, o); _virtual_vertices_reverse[vh].push_back(v); } insert_too_long_edges_in_star(v); } return v; } template typename Periodic_2_triangulation_2::Vertex_handle Periodic_2_triangulation_2::insert(const Point &p, Face_handle start) { CGAL_triangulation_assertion((_domain.xmin() <= p.x()) && (p.x() < _domain.xmax())); CGAL_triangulation_assertion((_domain.ymin() <= p.y()) && (p.y() < _domain.ymax())); if (number_of_stored_vertices() == 0) { return insert_first(p); } if (start == Face_handle()) { start = faces_begin(); } Locate_type lt; int li; Face_handle loc = locate(p, lt, li, start); if (start != Face_handle()) { CGAL_assertion(start->vertex(0) != Vertex_handle()); } return insert(p, lt, loc, li); } template typename Periodic_2_triangulation_2::Vertex_handle Periodic_2_triangulation_2::insert(const Point& p, Locate_type lt, Face_handle loc, int li) { if (number_of_stored_vertices() == 0) { return insert_first(p); } // vstart is a vertex incident to the Face_handle start that will be used as // for creating a start point for the virtual vertices. // We use the virtual copies of a vertex incident to loc. Vertex_handle vstart; if (!is_1_cover()) { Virtual_vertex_map_it vvmit = _virtual_vertices.find(loc->vertex(0)); if (vvmit == _virtual_vertices.end()) { vstart = loc->vertex(0); } else { vstart = vvmit->second.first; } // vstart should be non-virtual, but should have virtual copies CGAL_triangulation_assertion(_virtual_vertices.find(vstart) == _virtual_vertices.end()); CGAL_triangulation_assertion(_virtual_vertices_reverse.find(vstart) != _virtual_vertices_reverse.end()); } Vertex_handle vh = insert(p, Offset(), lt, loc, li, Vertex_handle()); // Don't add periodic copies if we are on the 1-cover if (is_1_cover()) return vh; // Don't continue if the point lies on a vertex as this will break the // start_vertices array below. if (lt == VERTEX) return vh; const std::vector &start_vertices = _virtual_vertices_reverse.find(vstart)->second; CGAL_assertion(start_vertices.size() == size_t(number_of_sheets()[0] * number_of_sheets()[1] - 1)); for (int i = 0; i < number_of_sheets()[0]; i++) { for (int j = 0; j < number_of_sheets()[1]; j++) { if ((i != 0) || (j != 0)) { loc = start_vertices[i * 3 + j - 1]->face(); Offset offset(i, j); loc = locate(p, offset, lt, li, loc); insert(p, offset, lt, loc, li, vh); } } } return vh; } template typename Periodic_2_triangulation_2::Vertex_handle Periodic_2_triangulation_2 < Gt, Tds >::insert(const Point& p, const Offset &o, Locate_type lt, Face_handle loc, int li, Vertex_handle vh) // insert a point p, whose localization is known (lt, f, i) { Vertex_handle result; switch (lt) { case FACE: { result = insert_in_face(p, o, loc, vh); break; } case EDGE: { result = insert_in_edge(p, o, loc, li, vh); break; } case VERTEX: { // The vertex is a special case, we can return immediately CGAL_assertion(vh == Vertex_handle()); return loc->vertex(li); } case EMPTY: { result = insert_first(p); break; } default: { CGAL_triangulation_assertion(false); // locate step failed return Vertex_handle(); } } if (!is_1_cover() && (vh == Vertex_handle())) { _virtual_vertices_reverse[result] = std::vector(); } return result; } template inline void Periodic_2_triangulation_2::remove_degree_3(Vertex_handle v) { CGAL_assertion(number_of_vertices() > 1); CGAL_assertion(degree(v) == 3); if (is_1_cover()) { remove_degree_3_single_copy(v); return; } { Virtual_vertex_map_it it = _virtual_vertices.find(v); if (it != _virtual_vertices.end()) { v = it->second.first; } } remove_too_long_edges_in_star(v); typename Virtual_vertex_reverse_map::iterator reverse_it = _virtual_vertices_reverse.find(v); CGAL_assertion(reverse_it != _virtual_vertices_reverse.end()); const std::vector &virtual_copies = reverse_it->second; for (typename std::vector::const_iterator it = virtual_copies.begin(); it != virtual_copies.end(); ++it) { _virtual_vertices.erase(*it); remove_degree_3_single_copy(*it); } _virtual_vertices_reverse.erase(reverse_it); remove_degree_3_single_copy(v); } template inline void Periodic_2_triangulation_2::remove_degree_3_single_copy(Vertex_handle vh) { Face_handle f = vh->face(); int i = ccw(f->index(vh)); Face_handle f2 = f->neighbor(i); int j = f2->index(f); // Get the offsets in ccw order Offset off[3]; off[i] = get_offset(f, i); off[ccw(i)] = get_offset(f, ccw(i)); off[cw(i)] = combine_offsets(get_offset(f2, j), get_neighbor_offset(f2, j, f, i)); if (off[0].x() < 0 || off[1].x() < 0 || off[2].x() < 0) { Offset o(number_of_sheets()[0], 0); off[0] += o; off[1] += o; off[2] += o; } if (off[0].y() < 0 || off[1].y() < 0 || off[2].y() < 0) { Offset o(0, number_of_sheets()[1]); off[0] += o; off[1] += o; off[2] += o; } // Remove the vertex, keep face f _tds.remove_degree_3(vh, f); // Reset the offsets set_offsets(f, (off[0].x() >= number_of_sheets()[0] ? 2 : 0) + (off[0].y() >= number_of_sheets()[1] ? 1 : 0), (off[1].x() >= number_of_sheets()[0] ? 2 : 0) + (off[1].y() >= number_of_sheets()[1] ? 1 : 0), (off[2].x() >= number_of_sheets()[0] ? 2 : 0) + (off[2].y() >= number_of_sheets()[1] ? 1 : 0)); } template inline void Periodic_2_triangulation_2::remove_first(Vertex_handle) { CGAL_assertion(number_of_vertices() == 1); clear(); return; } template < class Gt, class Tds > bool Periodic_2_triangulation_2:: remove_degree_init(Vertex_handle v, const Offset &v_o, std::vector &f, std::vector &w, std::vector &offset_w, std::vector &i, int &d, int &maxd, bool &simplicity_criterion) { Bbox_2 bbox = v->point().bbox(); simplicity_criterion = is_1_cover(); f[0] = v->face(); d = 0; do { i[d] = f[d]->index(v); w[d] = f[d]->vertex( ccw(i[d]) ); offset_w[d] = get_offset(f[d], ccw(i[d])) - get_offset(f[d], i[d]) + v_o; w[d]->set_face( f[d]->neighbor(i[d])); // do no longer bother about set_face simplicity_criterion &= (offset_w[d] == offset_w[0]); bbox = bbox + this->construct_point(w[d]->point(), offset_w[d]).bbox(); ++d; if ( d == maxd) { maxd *= 2; f.resize(maxd); w.resize(maxd); offset_w.resize(maxd); i.resize(maxd); } f[d] = f[d - 1]->neighbor( ccw(i[d - 1]) ); } while(f[d] != f[0]); return is_1_cover() && this->edge_is_too_long(Point(bbox.xmin(), bbox.ymin()), Point(bbox.xmax(), bbox.ymax())); } template void Periodic_2_triangulation_2::make_hole(Vertex_handle v, std::list & hole) { remove_too_long_edges_in_star(v); std::list to_delete; Face_handle f, fn; int i, in; Vertex_handle vv; Face_circulator fc = incident_faces(v); Face_circulator done(fc); do { f = fc; fc++; i = f->index(v); fn = f->neighbor(i); in = fn->index(f); vv = f->vertex(cw(i)); if (vv->face() == f) vv->set_face(fn); vv = f->vertex(ccw(i)); if (vv->face() == f) vv->set_face(fn); fn->set_neighbor(in, Face_handle()); hole.push_back(Edge(fn, in)); to_delete.push_back(f); } while (fc != done); while (!to_delete.empty()) { delete_face(to_delete.front()); to_delete.pop_front(); } return; } template inline typename Periodic_2_triangulation_2::Face_handle Periodic_2_triangulation_2 < Gt, Tds >::create_face(Face_handle f1, int i1, Face_handle f2, int i2, Face_handle f3, int i3) { return _tds.create_face(f1, i1, f2, i2, f3, i3); } template inline typename Periodic_2_triangulation_2::Face_handle Periodic_2_triangulation_2 < Gt, Tds >::create_face(Face_handle f1, int i1, Face_handle f2, int i2) { return _tds.create_face(f1, i1, f2, i2); } template inline typename Periodic_2_triangulation_2::Face_handle Periodic_2_triangulation_2 < Gt, Tds >::create_face(Face_handle f, int i, Vertex_handle v) { return _tds.create_face(f, i, v); } template inline typename Periodic_2_triangulation_2::Face_handle Periodic_2_triangulation_2 < Gt, Tds >::create_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3) { return _tds.create_face(v1, v2, v3); } template inline typename Periodic_2_triangulation_2::Face_handle Periodic_2_triangulation_2 < Gt, Tds >::create_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3, Face_handle f1, Face_handle f2, Face_handle f3) { return _tds.create_face(v1, v2, v3, f1, f2, f3); } template inline typename Periodic_2_triangulation_2::Face_handle Periodic_2_triangulation_2 < Gt, Tds >::create_face(Face_handle fh) { return _tds.create_face(fh); } template inline typename Periodic_2_triangulation_2::Face_handle Periodic_2_triangulation_2 < Gt, Tds >::create_face() { return _tds.create_face(); } template inline void Periodic_2_triangulation_2::delete_face(Face_handle f) { _tds.delete_face(f); } template inline void Periodic_2_triangulation_2::delete_vertex(Vertex_handle v) { _tds.delete_vertex(v); } template bool Periodic_2_triangulation_2::compare_walks(const Point& p, Face_handle c1, Face_handle c2, Locate_type& lt1, Locate_type& lt2, int li1, int li2) const { bool b = true; b &= (lt1 == lt2); if ((lt1 == lt2) && (lt1 == VERTEX)) { b &= (c1->vertex(li1) == c2->vertex(li2)); } else if ((lt1 == lt2) && (lt1 == EDGE)) { b &= ((c1 == c2) || ((c1->neighbor(li1) == c2) && (c2->neighbor(li2) == c1))); } else if ((lt1 == lt2) && (lt1 == EMPTY)) { // Skip } else { b &= (lt1 == lt2); b &= (lt1 == FACE); b &= (c1 == c2); } if (!b) { std::cerr << "from compare_walks " << std::endl; std::cerr << "point " << p << std::endl; std::cerr << "locate 1 " << &*c1 << "\t" << lt1 << "\t" << li1 << std::endl; std::cerr << "locate 2 " << &*c2 << "\t" << lt2 << "\t" << li2 << std::endl; std::cerr << std::endl; show_face(c1); std::cerr << std::endl; show_face(c2); std::cerr << std::endl; } CGAL_triangulation_assertion(b); return b; } template typename Periodic_2_triangulation_2::Face_handle Periodic_2_triangulation_2:: march_locate_2D(Face_handle f, const Point& query, const Offset& o_p, Locate_type& lt, int& li) const { CGAL_assertion(!empty()); Offset off_query = o_p; // Random generator boost::rand48 rng; boost::uniform_smallint<> two(0, 1); boost::variate_generator > coin(rng, two); // Give the point the best start-offset possible if (is_1_cover() && !f->has_zero_offsets()) { int cumm_off = f->offset(0) | f->offset(1) | f->offset(2); if (((cumm_off & 2) == 2) && (FT(2) * query.x() < (_domain.xmax() + _domain.xmin()))) off_query += Offset(1, 0); if (((cumm_off & 1) == 1) && (FT(2) * query.y() < (_domain.ymax() + _domain.ymin()))) off_query += Offset(0, 1); } Face_handle prev = Face_handle(); int prev_index = 0; Offset off[3]; Orientation o[3]; while (1) { // Instead of testing its edges in a random order we do the following // until we find a neighbor to go further: // As we come from prev we do not have to check the edge leading to prev // Now we flip a coin in order to decide if we start checking the // edge before or the edge after the edge leading to prev int left_first = coin() % 2; bool simplicity_criterion = f->has_zero_offsets() && off_query.is_null() && is_1_cover(); const Point *p[3] = { &f->vertex(0)->point(), &f->vertex(1)->point(), &f->vertex(2)->point() }; // Get the offsets if (!simplicity_criterion) { if (!is_1_cover()) { // Just fetch the vertices of c as points with offsets for (int i = 0; i < 3; i++) { off[i] = get_offset(f, i); } } else { // We are on the one cover and on the boundary between domains // Hence, we need to check predicates with offsets for (int i = 0; i < 3; i++) { off[i] = int_to_off(f->offset(i)); } } } if (prev == Face_handle()) { prev = f; // First step, also check the prev_index if (simplicity_criterion) { o[ccw(prev_index)] = orientation(*p[ccw(prev_index)], *p[cw(prev_index)], query); } else { o[ccw(prev_index)] = orientation(*p[ccw(prev_index)], *p[cw(prev_index)], query, off[ccw(prev_index)], off[cw(prev_index)], off_query); } if (o[ccw(prev_index)] == NEGATIVE) { // This assignment is already done: prev = f f = f->neighbor(prev_index); int new_index = f->index(prev); if (!(simplicity_criterion && f->has_zero_offsets())) off_query = combine_offsets(off_query, get_neighbor_offset(prev, prev_index, f, new_index)); prev_index = new_index; continue; } } else { o[ccw(prev_index)] = POSITIVE; } if (left_first) { if (simplicity_criterion) { o[prev_index] = orientation(*p[prev_index], *p[ccw(prev_index)], query); } else { o[prev_index] = orientation(*p[prev_index], *p[ccw(prev_index)], query, off[prev_index], off[ccw(prev_index)], off_query); } if (o[prev_index] == NEGATIVE) { prev = f; f = f->neighbor(cw(prev_index)); int new_index = f->index(prev); if (!(simplicity_criterion && f->has_zero_offsets())) off_query = combine_offsets(off_query, get_neighbor_offset(prev, cw(prev_index), f, new_index)); prev_index = new_index; continue; } } { // Do right side if (simplicity_criterion) { o[cw(prev_index)] = orientation(*p[cw(prev_index)], *p[prev_index], query); } else { o[cw(prev_index)] = orientation(*p[cw(prev_index)], *p[prev_index], query, off[cw(prev_index)], off[prev_index], off_query); } if (o[cw(prev_index)] == NEGATIVE) { prev = f; f = f->neighbor(ccw(prev_index)); int new_index = f->index(prev); if (!(simplicity_criterion && f->has_zero_offsets())) off_query = combine_offsets(off_query, get_neighbor_offset(prev, ccw(prev_index), f, new_index)); prev_index = new_index; continue; } } if (!left_first) { if (simplicity_criterion) { o[prev_index] = orientation(*p[prev_index], *p[ccw(prev_index)], query); } else { o[prev_index] = orientation(*p[prev_index], *p[ccw(prev_index)], query, off[prev_index], off[ccw(prev_index)], off_query); } if (o[prev_index] == NEGATIVE) { prev = f; f = f->neighbor(cw(prev_index)); int new_index = f->index(prev); if (!(simplicity_criterion && f->has_zero_offsets())) off_query = combine_offsets(off_query, get_neighbor_offset(prev, cw(prev_index), f, new_index)); prev_index = new_index; continue; } } // now p is in c or on its boundary int sum = (o[0] == COLLINEAR) + (o[1] == COLLINEAR) + (o[2] == COLLINEAR); switch (sum) { case 0: { lt = FACE; li = 4; break; } case 1: { lt = EDGE; li = (o[0] == COLLINEAR) ? 2 : (o[1] == COLLINEAR) ? 0 : 1; break; } case 2: { lt = VERTEX; li = (o[0] != COLLINEAR) ? 2 : (o[1] != COLLINEAR) ? 0 : 1; break; } } return f; } } template typename Periodic_2_triangulation_2::Face_handle Periodic_2_triangulation_2 < Gt, Tds >::locate(const Point& p, const Offset &o, Locate_type& lt, int& li, Face_handle start) const { CGAL_triangulation_assertion((_domain.xmin() <= p.x()) && (p.x() < _domain.xmax())); CGAL_triangulation_assertion((_domain.ymin() <= p.y()) && (p.y() < _domain.ymax())); if (dimension() <= 0) { lt = EMPTY; li = 4; return Face_handle(); } // Triangulation is not empty if (start == Face_handle()) { start = faces_begin(); } return march_locate_2D(start, p, o, lt, li); } /** Delete each redundant face and the not anymore needed data * structures. * * This function consists of four iterations over all faces and one * iteration over all vertices: * -# Face iteration: mark all faces that are to delete * -# Face iteration: redirect neighbors of remaining faces * -# Face iteration: redirect vertices of remaining faces * -# Face iteration: delete all faces marked in the 1. iteration * -# Vertex iteration: delete all vertices outside the original domain. */ template void Periodic_2_triangulation_2::convert_to_1_sheeted_covering() { // ################################################################### // ### First face iteration ########################################## // ################################################################### { if (is_1_cover()) return; CGAL_triangulation_expensive_assertion(is_triangulation_in_1_sheet()); bool to_delete, has_simplifiable_offset; Virtual_vertex_map_it vvmit; // First iteration over all faces: Mark the faces that are to delete. // Faces are to delete if they cannot be translated anymore in the // direction of one of the axes without yielding negative offsets. for (Face_iterator it = all_faces_begin(); it != all_faces_end(); ++it) { to_delete = false; // for all directions in 2D Space for (int j = 0; j < 2; j++) { has_simplifiable_offset = true; // for all vertices of face it for (int i = 0; i < 3; i++) { vvmit = _virtual_vertices.find(it->vertex(i)); if (vvmit == _virtual_vertices.end()) { // if it->vertex(i) lies inside the original domain: // the face cannot be moved any more because if we did, then // it->vertex(i) will get at least one negative offset. has_simplifiable_offset = false; } else { // if it->vertex(i) lies outside the original domain: // The face can certainly be deleted if the offset contains a 2 to_delete |= (vvmit->second.second[j] == 2); // The face can be moved into one direction only if the offset of // all for vertices is >=1 for this direction. Since we already // tested for 2 it is sufficient to test here for 1. has_simplifiable_offset &= (vvmit->second.second[j] == 1); } } // if the offset can be simplified, i.e. the face can be moved, then // it can be deleted. if (has_simplifiable_offset) to_delete = true; } // Mark all faces that are to delete. They cannot be deleted yet, // because neighboring information still needs to be extracted. it->set_additional_flag(to_delete ? 1 : 0); } } // ################################################################### // ### Second face iteration ######################################### // ################################################################### { Vertex_handle vert[3], nbv[3]; Offset off[3]; Face_handle nb, new_neighbor; std::vector > new_neighbor_relations; // Second iteration over all faces: redirect neighbors where necessary for (Face_iterator it = all_faces_begin(); it != all_faces_end(); ++it) { // Skip all faces that are to delete. if (it->get_additional_flag() == 1) continue; // Redirect neighbors: Only neighbors that are marked by the // additional_flag have to be substituted by one of their periodic // copies. The unmarked neighbors stay the same. for (int i = 0; i < 3; i++) { if (it->neighbor(i)->get_additional_flag() != 1) continue; nb = it->neighbor(i); for (int j = 0; j < 3; j++) { off[j] = Offset(); get_vertex(nb, j, vert[j], off[j]); } int x, y; x = (std::min)((std::min)(off[0][0], off[1][0]), off[2][0]); y = (std::min)((std::min)(off[0][1], off[1][1]), off[2][1]); // The vector from nb to the "original" periodic copy of nb, that is // the copy that will not be deleted. Offset difference_offset(x, y); CGAL_triangulation_assertion( !difference_offset.is_null() ); // We now have to find the "original" periodic copy of nb from // its vertices. Therefore, we first have to find the vertices. for (int j = 0; j < 3; j++) { CGAL_triangulation_assertion( (off[j] - difference_offset)[0] >= 0); CGAL_triangulation_assertion( (off[j] - difference_offset)[1] >= 0); CGAL_triangulation_assertion( (off[j] - difference_offset)[0] < 3); CGAL_triangulation_assertion( (off[j] - difference_offset)[1] < 3); // find the Vertex_handles of the vertices of the "original" // periodic copy of nb. If the vertex is inside the original // domain, there is nothing to do if ((off[j] - difference_offset).is_null()) { nbv[j] = vert[j]; // If the vertex is outside the original domain, we have to search // in _virtual_vertices in the "wrong" direction. That means, we // cannot use _virtual_vertices.find but have to use // _virtual_vertices_reverse. } else { Offset nbo = off[j] - difference_offset; nbv[j] = _virtual_vertices_reverse.find(vert[j]) ->second[nbo[0] * 3 + nbo[1] - 1]; } } // Find the new neighbor by its 4 vertices new_neighbor = get_face(nbv); // Store the new neighbor relation. This cannot be applied yet because // it would disturb the functioning of get_face( ... ) new_neighbor_relations.push_back(make_triple(it, i, new_neighbor)); } } // Apply the new neighbor relations now. for (unsigned int i = 0; i < new_neighbor_relations.size(); i++) { new_neighbor_relations[i].first->set_neighbor( new_neighbor_relations[i].second, new_neighbor_relations[i].third); } } // ################################################################### // ### Third face iteration ########################################## // ################################################################### { Vertex_handle vert[3]; Offset off[3]; // Third iteration over all faces: redirect vertices where necessary for (Face_iterator it = all_faces_begin(); it != all_faces_end(); ++it) { // Skip all faces that are marked to delete if (it->get_additional_flag() == 1) continue; // Find the corresponding vertices of it in the original domain // and set them as new vertices of it. for (int i = 0; i < 3; i++) { off[i] = Offset(); get_vertex(it, i, vert[i], off[i]); it->set_vertex(i, vert[i]); CGAL_triangulation_assertion(vert[i]->point()[0] < _domain.xmax()); CGAL_triangulation_assertion(vert[i]->point()[1] < _domain.ymax()); CGAL_triangulation_assertion(vert[i]->point()[0] >= _domain.xmin()); CGAL_triangulation_assertion(vert[i]->point()[1] >= _domain.ymin()); // redirect also the face pointer of the vertex. it->vertex(i)->set_face(it); } // Set the offsets. set_offsets(it, off[0], off[1], off[2]); CGAL_triangulation_assertion( int_to_off(it->offset(0)) == off[0] ); CGAL_triangulation_assertion( int_to_off(it->offset(1)) == off[1] ); CGAL_triangulation_assertion( int_to_off(it->offset(2)) == off[2] ); } } // ################################################################### // ### Fourth face iteration ######################################### // ################################################################### { // Delete the marked faces. std::vector faces_to_delete; for (Face_iterator fit = all_faces_begin(); fit != all_faces_end(); ++fit) { if (fit->get_additional_flag() == 1) faces_to_delete.push_back(fit); } for (typename std::vector::iterator it = faces_to_delete.begin(); it != faces_to_delete.end(); ++it) { _tds.delete_face(*it); } } // ################################################################### // ### Vertex iteration ############################################## // ################################################################### { // Delete all the vertices in _virtual_vertices, that is all vertices // outside the original domain. std::vector vertices_to_delete; for (Vertex_iterator vit = all_vertices_begin(); vit != all_vertices_end(); ++vit) { if (_virtual_vertices.count(vit) != 0) { CGAL_triangulation_assertion( _virtual_vertices.count( vit ) == 1 ); vertices_to_delete.push_back(vit); } } for (typename std::vector::iterator it = vertices_to_delete.begin(); it != vertices_to_delete.end(); ++it) { _tds.delete_vertex(*it); } } _cover = make_array(1, 1); _virtual_vertices.clear(); _virtual_vertices_reverse.clear(); _too_long_edge_counter = 0; _too_long_edges.clear(); CGAL_triangulation_assertion(is_1_cover()); } template void Periodic_2_triangulation_2::convert_to_9_sheeted_covering() { if (_cover == make_array(3, 3)) return; CGAL_triangulation_precondition(is_1_cover()); // Create 9 copies of each vertex and write virtual_vertices and // virtual_vertices_reverse std::list original_vertices; // try to use std::copy instead of the following loop. for (Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit) original_vertices.push_back(vit); for (typename std::list::iterator vit = original_vertices.begin(); vit != original_vertices.end(); ++vit) { Vertex_handle v_cp; std::vector copies; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { if (i == 0 && j == 0) continue; v_cp = _tds.create_vertex(*vit); copies.push_back(v_cp); _virtual_vertices.insert(std::make_pair(v_cp, std::make_pair(*vit, Offset(i, j)))); } _virtual_vertices_reverse.insert(std::make_pair(*vit, copies)); } // Create 9 copies of each face from the respective copies of the // vertices and write virtual_faces and virtual_faces_reverse. typedef std::map > Virtual_face_map; typedef std::map > Virtual_face_reverse_map; typedef typename Virtual_face_reverse_map::const_iterator VCRMIT; Virtual_face_map virtual_faces; Virtual_face_reverse_map virtual_faces_reverse; std::list original_faces; for (Face_iterator fit = faces_begin(); fit != faces_end(); ++fit) original_faces.push_back(fit); // Store vertex offsets in a separate data structure std::list off_v; for (typename std::list::iterator vit = original_vertices.begin(); vit != original_vertices.end(); ++vit) { Face_handle ccc = (*vit)->face(); int v_index = ccc->index(*vit); off_v.push_back(int_to_off(ccc->offset(v_index))); } // Store neighboring offsets in a separate data structure std::list > off_nb; for (typename std::list::iterator fit = original_faces.begin(); fit != original_faces.end(); ++fit) { array off_nb_f; for (int i = 0; i < 3; i++) { Face_handle fff = *fit; Face_handle nnn = fff->neighbor(i); off_nb_f[i] = get_neighbor_offset(fff, i, nnn, nnn->index(fff)); } off_nb.push_back(off_nb_f); } // Create copies of faces for (typename std::list::iterator fit = original_faces.begin(); fit != original_faces.end(); ++fit) { Face_handle c_cp; Vertex_handle v0, v1, v2; std::vector copies; Virtual_vertex_reverse_map_it vvrmit[3]; Offset vvoff[3]; for (int i = 0; i < 3; i++) { vvrmit[i] = _virtual_vertices_reverse.find((*fit)->vertex(i)); CGAL_triangulation_assertion( vvrmit[i] != _virtual_vertices_reverse.end()); vvoff[i] = int_to_off((*fit)->offset(i)); } Vertex_handle vvh[3]; for (int n = 0; n < 8; n++) // iterate over faces { for (int i = 0; i < 3; i++) // iterate over vertices of the face { // Decomposition of n into an offset (nx,ny): // nx = ((n+1)/3)%3, ny = (n+1)%3 int o_i = ((n + 1) / 3 + vvoff[i].x() + 3) % 3; int o_j = ((n + 1) + vvoff[i].y() + 3) % 3; int n_c = 3 * o_i + o_j - 1; CGAL_triangulation_assertion(n_c >= -1); if (n_c == -1) vvh[i] = (*fit)->vertex(i); else vvh[i] = vvrmit[i]->second[n_c]; } c_cp = _tds.create_face(vvh[0], vvh[1], vvh[2]); copies.push_back(c_cp); } virtual_faces_reverse.insert(std::make_pair(*fit, copies)); } // Set new vertices of boundary faces of the original domain. for (typename std::list::iterator fit = original_faces.begin(); fit != original_faces.end(); ++fit) { for (int i = 0; i < 3; i++) { Virtual_vertex_reverse_map_it vvrmit = _virtual_vertices_reverse.find( (*fit)->vertex(i)); CGAL_triangulation_assertion(vvrmit != _virtual_vertices_reverse.end()); Offset vvoff = int_to_off((*fit)->offset(i)); if (!vvoff.is_null()) { int n_f = 3 * vvoff.x() + vvoff.y() - 1; CGAL_triangulation_assertion(n_f >= 0); CGAL_triangulation_assertion(static_cast(n_f) < vvrmit->second.size()); (*fit)->set_vertex(i, vvrmit->second[n_f]); } } } // Set neighboring relations of face copies typename std::list >::iterator oit = off_nb.begin(); for (typename std::list::iterator fit = original_faces.begin(); fit != original_faces.end(); ++fit, ++oit) { CGAL_triangulation_assertion( oit != off_nb.end() ); VCRMIT c_cp = virtual_faces_reverse.find(*fit); CGAL_triangulation_assertion(c_cp != virtual_faces_reverse.end()); for (int i = 0; i < 3; i++) { Face_handle fit_nb = (*fit)->neighbor(i); VCRMIT c_cp_nb = virtual_faces_reverse.find(fit_nb); CGAL_triangulation_assertion(c_cp_nb != virtual_faces_reverse.end()); Offset nboff = (*oit)[i]; for (int n = 0; n < 8; n++) { int n_nb; if (nboff.is_null()) n_nb = n; else { int o_i = ((n + 1) / 3 - nboff.x() + 3) % 3; int o_j = (n + 1 - nboff.y() + 3) % 3; n_nb = 3 * o_i + o_j - 1; } if (n_nb == -1) { CGAL_triangulation_assertion(fit_nb->has_vertex(c_cp->second[n]->vertex(ccw(i))) ); CGAL_triangulation_assertion(fit_nb->has_vertex(c_cp->second[n]->vertex( cw(i))) ); c_cp->second[n]->set_neighbor(i, fit_nb); } else { CGAL_triangulation_assertion(n_nb >= 0); CGAL_triangulation_assertion(static_cast(n_nb) <= c_cp_nb->second.size()); CGAL_triangulation_assertion(c_cp_nb->second[n_nb]->has_vertex(c_cp->second[n]->vertex(ccw(i))) ); CGAL_triangulation_assertion(c_cp_nb->second[n_nb]->has_vertex(c_cp->second[n]->vertex( cw(i))) ); c_cp->second[n]->set_neighbor(i, c_cp_nb->second[n_nb]); } } } } // Set neighboring relations of original faces oit = off_nb.begin(); for (typename std::list::iterator fit = original_faces.begin(); fit != original_faces.end(); ++fit, ++oit) { CGAL_triangulation_assertion( oit != off_nb.end() ); for (int i = 0; i < 3; i++) { Offset nboff = (*oit)[i]; if (!nboff.is_null()) { Face_handle fit_nb = (*fit)->neighbor(i); VCRMIT c_cp_nb = virtual_faces_reverse.find(fit_nb); CGAL_triangulation_assertion(c_cp_nb != virtual_faces_reverse.end()); int o_i = (3 - nboff.x()) % 3; int o_j = (3 - nboff.y()) % 3; int n_nb = 3 * o_i + o_j - 1; CGAL_triangulation_assertion(n_nb >= 0); CGAL_triangulation_assertion(static_cast(n_nb) <= c_cp_nb->second.size()); CGAL_triangulation_assertion(c_cp_nb->second[n_nb]->has_vertex((*fit)->vertex(ccw(i))) ); CGAL_triangulation_assertion(c_cp_nb->second[n_nb]->has_vertex((*fit)->vertex( cw(i))) ); (*fit)->set_neighbor(i, c_cp_nb->second[n_nb]); } } } // Set incident faces for (Face_iterator fit = faces_begin(); fit != faces_end(); ++fit) { for (int i = 0; i < 3; i++) { fit->vertex(i)->set_face(fit); } } // Set offsets where necessary for (typename std::list::iterator fit = original_faces.begin(); fit != original_faces.end(); ++fit) { VCRMIT c_cp = virtual_faces_reverse.find(*fit); CGAL_triangulation_assertion( c_cp != virtual_faces_reverse.end()); Offset off[3]; for (int i = 0; i < 3; i++) off[i] = int_to_off((*fit)->offset(i)); if (off[0].is_null() && off[1].is_null() && off[2].is_null()) continue; for (int n = 0; n < 8; n++) { Offset off_cp[4]; int o_i = ((n + 1) / 3) % 3; int o_j = (n + 1) % 3; if (o_i != 2 && o_j != 2) continue; for (int i = 0; i < 3; i++) { off_cp[i] = Offset((o_i == 2) ? off[i].x() : 0, (o_j == 2) ? off[i].y() : 0); CGAL_triangulation_assertion(off_cp[i].x() == 0 || off_cp[i].x() == 1); CGAL_triangulation_assertion(off_cp[i].y() == 0 || off_cp[i].y() == 1); } set_offsets(c_cp->second[n], off_cp[0], off_cp[1], off_cp[2]); } } // Iterate over all original faces and reset offsets. for (typename std::list::iterator fit = original_faces.begin(); fit != original_faces.end(); ++fit) { //This statement does not seem to have any effect set_offsets(*fit, 0, 0, 0); CGAL_triangulation_assertion((*fit)->offset(0) == 0); CGAL_triangulation_assertion((*fit)->offset(1) == 0); CGAL_triangulation_assertion((*fit)->offset(2) == 0); } _cover = make_array(3, 3); // Set up too long edges data structure int i = 0; for (Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit) { _too_long_edges[vit] = std::list(); ++i; } _too_long_edge_counter = find_too_long_edges(_too_long_edges); CGAL_triangulation_expensive_assertion(is_valid()); CGAL_triangulation_assertion(!is_1_cover()); } // iterate over all edges and store the ones that are longer than // edge_length_threshold in edges. Return the number of too long edges. template inline int Periodic_2_triangulation_2::find_too_long_edges(std::map < Vertex_handle, std::list > & edges) const { Point p1, p2; int counter = 0; Vertex_handle v_no, vh; for (Edge_iterator eit = edges_begin(); eit != edges_end(); eit++) { p1 = construct_point(eit->first->vertex(ccw(eit->second))->point(), get_offset(eit->first, ccw(eit->second))); p2 = construct_point(eit->first->vertex(cw(eit->second))->point(), get_offset(eit->first, cw(eit->second))); if (edge_is_too_long(p1, p2)) { if (&*(eit->first->vertex(ccw(eit->second))) < &*(eit->first->vertex(cw( eit->second)))) { v_no = eit->first->vertex(ccw(eit->second)); vh = eit->first->vertex(cw(eit->second)); } else { v_no = eit->first->vertex(cw(eit->second)); vh = eit->first->vertex(ccw(eit->second)); } edges[v_no].push_back(vh); counter++; } } return counter; } /** * - fh->offset(i) is an bit tuple encapsulated in an integer. Each bit * represents the offset in one direction --> 2-cover! * - int_to_off(int) decodes this again. * - Finally the offset vector is multiplied by cover. * So if we are working in 3-cover we translate it to the neighboring * 3-cover and not only to the neighboring domain. */ template inline void Periodic_2_triangulation_2::get_vertex(Face_handle fh, int i, Vertex_handle &vh, Offset &off) const { off = combine_offsets(Offset(), int_to_off(fh->offset(i))); vh = fh->vertex(i); if (is_1_cover()) return; Vertex_handle vh_i = vh; get_vertex(vh_i, vh, off); return; } template inline void Periodic_2_triangulation_2::get_vertex(Vertex_handle vh_i, Vertex_handle &vh, Offset &off) const { Virtual_vertex_map_it it = _virtual_vertices.find(vh_i); if (it == _virtual_vertices.end()) { // if vh_i is not contained in virtual_vertices, then it is in the // original domain. vh = vh_i; CGAL_triangulation_assertion(vh != Vertex_handle()); } else { // otherwise it has to be looked up as well as its offset. vh = it->second.first; off += it->second.second; CGAL_triangulation_assertion(vh->point().x() < _domain.xmax()); CGAL_triangulation_assertion(vh->point().y() < _domain.ymax()); CGAL_triangulation_assertion(vh->point().x() >= _domain.xmin()); CGAL_triangulation_assertion(vh->point().y() >= _domain.ymin()); } } /** Find the Face that consists of the three given vertices * * Iterates over all faces and compare the three vertices of each face * with the three vertices in vh. */ template inline typename Periodic_2_triangulation_2::Face_handle Periodic_2_triangulation_2 < GT, Tds >::get_face(const Vertex_handle* vh) const { bool contains_v[2]; Face_circulator fc = incident_faces(vh[2]); Face_circulator done(fc); do { CGAL_triangulation_assertion( fc->vertex(0) == vh[2] || fc->vertex(1) == vh[2] || fc->vertex(2) == vh[2]); for (int j = 0; j < 2; j++) { contains_v[j] = (fc->vertex(0) == vh[j]) || (fc->vertex(1) == vh[j]) || (fc->vertex(2) == vh[j]); } if (contains_v[0] && contains_v[1]) { return fc; } } while (++fc != done); CGAL_triangulation_assertion(false); return Face_handle(); } template Bounded_side Periodic_2_triangulation_2::side_of_face(const Point &q, const Offset &off, Face_handle f, Locate_type <, int &li) const { CGAL_triangulation_precondition(number_of_vertices() != 0); Orientation o0, o1, o2; o0 = o1 = o2 = ZERO; int cumm_off = f->offset(0) | f->offset(1) | f->offset(2); if ((cumm_off == 0) && is_1_cover()) { CGAL_triangulation_assertion(off == Offset()); const Point &p0 = f->vertex(0)->point(); const Point &p1 = f->vertex(1)->point(); const Point &p2 = f->vertex(2)->point(); if (((o0 = orientation(q, p1, p2)) == NEGATIVE) || ((o1 = orientation(p0, q, p2)) == NEGATIVE) || ((o2 = orientation(p0, p1, q)) == NEGATIVE)) { return ON_UNBOUNDED_SIDE; } } else // Special case for the periodic space. { Offset off_q; Offset offs[3]; const Point *p[3]; for (int i = 0; i < 3; i++) { p[i] = &(f->vertex(i)->point()); offs[i] = get_offset(f, i); } CGAL_triangulation_assertion(orientation(*p[0], *p[1], *p[2], offs[0], offs[1], offs[2]) == POSITIVE); bool found = false; for (int i = 0; (i < 4) && (!found); i++) { if ((cumm_off | ((~i) & 3)) == 3) { o0 = o1 = o2 = NEGATIVE; off_q = combine_offsets(off, int_to_off(i)); if (((o0 = orientation(q, *p[1], *p[2], off_q, offs[1], offs[2])) != NEGATIVE) && ((o1 = orientation(*p[0], q, *p[2], offs[0], off_q, offs[2])) != NEGATIVE) && ((o2 = orientation(*p[0], *p[1], q, offs[0], offs[1], off_q)) != NEGATIVE)) { found = true; } } } if (!found) return ON_UNBOUNDED_SIDE; } // now all the oi's are >=0 // sum gives the number of facets p lies on int sum = ((o0 == ZERO) ? 1 : 0) + ((o1 == ZERO) ? 1 : 0) + ((o2 == ZERO) ? 1 : 0); switch (sum) { case 0: { lt = FACE; return ON_BOUNDED_SIDE; } case 1: { lt = EDGE; // i = index such that q lies on edge (f,li) li = (o0 == ZERO) ? 0 : (o1 == ZERO) ? 1 : 2; return ON_BOUNDARY; } case 2: { lt = VERTEX; // i = index such that q lies on vertex li li = (o0 != ZERO) ? 0 : (o1 != ZERO) ? 1 : 2; return ON_BOUNDARY; } default: { // impossible : cannot be on 3 edges for a real triangle CGAL_triangulation_assertion(false); return ON_BOUNDARY; } } } template Oriented_side Periodic_2_triangulation_2::oriented_side(Face_handle f, const Point& p, const Offset &o) const { Point &p0 = f->vertex(0)->point(); Point &p1 = f->vertex(1)->point(); Point &p2 = f->vertex(2)->point(); int cumm_off = f->offset(0) | f->offset(1) | f->offset(2); if ((cumm_off == 0) && is_1_cover()) { CGAL_precondition(o == Offset()); // return position of point p with respect to the oriented triangle p0p1p2 // the orientation of the vertices is assumed to be counter clockwise CGAL_assertion(orientation(p0, p1, p2) == LEFT_TURN); Bounded_side bs = bounded_side(p0, p1, p2, p); switch (bs) { case ON_BOUNDARY: return ON_ORIENTED_BOUNDARY; case ON_BOUNDED_SIDE: return ON_POSITIVE_SIDE; case ON_UNBOUNDED_SIDE: return ON_NEGATIVE_SIDE; } } else // Special case for the periodic space. { Offset off_q; Offset off0 = get_offset(f, 0); Offset off1 = get_offset(f, 1); Offset off2 = get_offset(f, 2); // return position of point p with respect to the oriented triangle p0p1p2 // the orientation of the vertices is assumed to be counter clockwise CGAL_assertion(orientation(p0, p1, p2, off0, off1, off2) == LEFT_TURN); Bounded_side bs; for (int i = 0; (i <= 7); i++) { if ((cumm_off | ((~i) & 3)) == 3) { off_q = combine_offsets(o, int_to_off(i)); bs = bounded_side(p0, p1, p2, p, off0, off1, off2, off_q); if (bs != ON_UNBOUNDED_SIDE) { return (bs == ON_BOUNDARY ? ON_ORIENTED_BOUNDARY : ON_POSITIVE_SIDE); } } } return ON_NEGATIVE_SIDE; } CGAL_assertion(false); return ON_NEGATIVE_SIDE; } template Bounded_side Periodic_2_triangulation_2::bounded_side(const Point &p0, const Point &p1, const Point &p2, const Point &p) const { // return position of point p with respect to triangle p0p1p2 CGAL_triangulation_precondition( orientation(p0, p1, p2) != COLLINEAR); Orientation o1 = orientation(p0, p1, p); Orientation o2 = orientation(p1, p2, p); Orientation o3 = orientation(p2, p0, p); if (o1 == COLLINEAR) { if (o2 == COLLINEAR || o3 == COLLINEAR) return ON_BOUNDARY; if (collinear_between(p0, p, p1)) return ON_BOUNDARY; return ON_UNBOUNDED_SIDE; } if (o2 == COLLINEAR) { if (o3 == COLLINEAR) return ON_BOUNDARY; if (collinear_between(p1, p, p2)) return ON_BOUNDARY; return ON_UNBOUNDED_SIDE; } if (o3 == COLLINEAR) { if (collinear_between(p2, p, p0)) return ON_BOUNDARY; return ON_UNBOUNDED_SIDE; } // from here none ot, o1, o2 and o3 are known to be non null if (o1 == o2 && o2 == o3) return ON_BOUNDED_SIDE; return ON_UNBOUNDED_SIDE; } template Bounded_side Periodic_2_triangulation_2::bounded_side(const Point &p0, const Point &p1, const Point &p2, const Point &p, const Offset &o0, const Offset &o1, const Offset &o2, const Offset &o) const { // return position of point p with respect to triangle p0p1p2 CGAL_triangulation_precondition( orientation(p0, p1, p2, o0, o1, o2) != COLLINEAR); Orientation orient1 = orientation(p0, p1, p, o0, o1, o); Orientation orient2 = orientation(p1, p2, p, o1, o2, o); Orientation orient3 = orientation(p2, p0, p, o2, o0, o); if (orient1 == COLLINEAR) { if (orient2 == COLLINEAR || orient3 == COLLINEAR) return ON_BOUNDARY; if (collinear_between(p0, p, p1, o0, o, o1)) return ON_BOUNDARY; return ON_UNBOUNDED_SIDE; } if (orient2 == COLLINEAR) { if (orient3 == COLLINEAR) return ON_BOUNDARY; if (collinear_between(p1, p, p2, o1, o, o2)) return ON_BOUNDARY; return ON_UNBOUNDED_SIDE; } if (orient3 == COLLINEAR) { if (collinear_between(p2, p, p0, o2, o, o0)) return ON_BOUNDARY; return ON_UNBOUNDED_SIDE; } // from here none ot, o1, o2 and o3 are known to be non null if (orient1 == orient2 && orient2 == orient3) return ON_BOUNDED_SIDE; return ON_UNBOUNDED_SIDE; } template bool Periodic_2_triangulation_2::collinear_between(const Point& p, const Point& q, const Point& r) const { // return true if point q is strictly between p and r // p,q and r are supposed to be collinear points Comparison_result c_pr = compare_x(p, r); Comparison_result c_pq; Comparison_result c_qr; if(c_pr == EQUAL) { c_pq = compare_y(p, q); c_qr = compare_y(q, r); } else { c_pq = compare_x(p, q); c_qr = compare_x(q, r); } return ( (c_pq == SMALLER) && (c_qr == SMALLER) ) || ( (c_pq == LARGER) && (c_qr == LARGER) ); } template bool Periodic_2_triangulation_2::collinear_between(const Point& p, const Point& q, const Point& r, const Offset& o_p, const Offset& o_q, const Offset& o_r) const { // return true if point q is strictly between p and r // p,q and r are supposed to be collinear points Comparison_result c_pr = compare_x(p, r, o_p, o_r); Comparison_result c_pq; Comparison_result c_qr; if (c_pr == EQUAL) { c_pq = compare_y(p, q, o_p, o_q); c_qr = compare_y(q, r, o_q, o_r); } else { c_pq = compare_x(p, q, o_p, o_q); c_qr = compare_x(q, r, o_q, o_r); } return (((c_pq == SMALLER) && (c_qr == SMALLER)) || ((c_pq == LARGER) && (c_qr == LARGER))); } template inline Comparison_result Periodic_2_triangulation_2::compare_x( const Point& p, const Point& q) const { return geom_traits().compare_x_2_object()(p, q); } template inline Comparison_result Periodic_2_triangulation_2::compare_x( const Point& p, const Point& q, const Offset &o_p, const Offset &o_q) const { return geom_traits().compare_x_2_object()(p, q, o_p, o_q); } template inline Comparison_result Periodic_2_triangulation_2::compare_xy( const Point& p, const Point& q) const { Comparison_result res = geom_traits().compare_x_2_object()(p, q); if (res == EQUAL) { return geom_traits().compare_y_2_object()(p, q); } return res; } template inline Comparison_result Periodic_2_triangulation_2::compare_xy( const Point& p, const Point& q, const Offset &o_p, const Offset &o_q) const { Comparison_result res = geom_traits().compare_x_2_object()(p, q, o_p, o_q); if (res == EQUAL) { return geom_traits().compare_y_2_object()(p, q, o_p, o_q); } return res; } template inline Comparison_result Periodic_2_triangulation_2::compare_y( const Point& p, const Point& q) const { return geom_traits().compare_y_2_object()(p, q); } template inline Comparison_result Periodic_2_triangulation_2::compare_y( const Point& p, const Point& q, const Offset &o_p, const Offset &o_q) const { return geom_traits().compare_y_2_object()(p, q, o_p, o_q); } template inline bool Periodic_2_triangulation_2::xy_equal(const Point& p, const Point& q) const { return compare_xy(p, q) == EQUAL; } template inline Orientation Periodic_2_triangulation_2::orientation( const Point& p0, const Point& p1, const Point& p2) const { return geom_traits().orientation_2_object()(p0, p1, p2); } template inline Orientation Periodic_2_triangulation_2::orientation( const Point& p0, const Point& p1, const Point& p2, const Offset& o0, const Offset& o1, const Offset& o2) const { return geom_traits().orientation_2_object()(p0, p1, p2, o0, o1, o2); } template void Periodic_2_triangulation_2::insert_too_long_edges_in_star(Vertex_handle vh) { // Insert the too long edges in the star of vh Face_handle f = vh->face(); Face_handle f_start = f; do { int i = ccw(f->index(vh)); insert_too_long_edge(f, i); // Proceed to the next face f = f->neighbor(i); } while (f != f_start); } template void Periodic_2_triangulation_2::insert_too_long_edge(Face_handle f, int i) { Vertex_handle vh1 = f->vertex(ccw(i)); Vertex_handle vh2 = f->vertex(cw(i)); CGAL_assertion(vh1 != Vertex_handle()); CGAL_assertion(vh2 != Vertex_handle()); Point p1 = construct_point(vh1->point(), get_offset(f, ccw(i))); Point p2 = construct_point(vh2->point(), get_offset(f, cw(i))); if (&*vh1 < &*vh2) { if (edge_is_too_long(p1, p2) && (find(_too_long_edges[vh1].begin(), _too_long_edges[vh1].end(), vh2) == _too_long_edges[vh1].end())) { _too_long_edges[vh1].push_back(vh2); _too_long_edge_counter++; } } else { CGAL_triangulation_precondition(&*vh2 < &*vh1); if (edge_is_too_long(p2, p1) && (find(_too_long_edges[vh2].begin(), _too_long_edges[vh2].end(), vh1) == _too_long_edges[vh2].end())) { _too_long_edges[vh2].push_back(vh1); _too_long_edge_counter++; } } } template void Periodic_2_triangulation_2::remove_too_long_edges_in_star( Vertex_handle vh) { if (is_1_cover()) return; // Insert the too long edges in the star of vh Face_handle f = vh->face(); Face_handle f_start = f; do { int i = f->index(vh); int i2 = ccw(i); Vertex_handle vh2 = f->vertex(i2); // Point corresponding to v Point p1 = construct_point(vh->point(), get_offset(f, f->index(vh))); // Point corresponding to the other vertex Point p2 = construct_point(vh2->point(), get_offset(f, i2)); if (&*vh < &*vh2) { if (edge_is_too_long(p1, p2) && (find(_too_long_edges[vh].begin(), _too_long_edges[vh].end(), vh2) != _too_long_edges[vh].end())) { _too_long_edges[vh].remove(vh2); _too_long_edge_counter--; } } else { CGAL_triangulation_precondition(&*vh2 < &*vh); if (edge_is_too_long(p1, p2) && (find(_too_long_edges[vh2].begin(), _too_long_edges[vh2].end(), vh) != _too_long_edges[vh2].end())) { _too_long_edges[vh2].remove(vh); _too_long_edge_counter--; } } // Proceed to the next face f = f->neighbor(i2); } while (f != f_start); } template void Periodic_2_triangulation_2::remove_too_long_edge(Face_handle f, int i) { Vertex_handle vh1 = f->vertex(cw(i)); Vertex_handle vh2 = f->vertex(ccw(i)); Point p1 = construct_point(vh1->point(), get_offset(f, cw(i))); Point p2 = construct_point(vh2->point(), get_offset(f, ccw(i))); if (edge_is_too_long(p1, p2)) { if (&*vh1 < &*vh2) { typename std::list::iterator it = find( _too_long_edges[vh1].begin(), _too_long_edges[vh1].end(), vh2); if (it != _too_long_edges[vh1].end()) { _too_long_edges[vh1].erase(it); _too_long_edge_counter--; } } else { typename std::list::iterator it = find( _too_long_edges[vh2].begin(), _too_long_edges[vh2].end(), vh1); if (it != _too_long_edges[vh2].end()) { _too_long_edges[vh2].erase(it); _too_long_edge_counter--; } } } } template bool Periodic_2_triangulation_2::edge_is_too_long(const Point &p1, const Point &p2) const { return squared_distance(p1, p2) > _edge_length_threshold; } template inline bool Periodic_2_triangulation_2::is_triangulation_in_1_sheet() const { if (is_1_cover()) return true; for (Vertex_iterator vit = vertices_begin(); vit != vertices_end(); ++vit) { if (_virtual_vertices.find(vit) == _virtual_vertices.end()) continue; std::set nb_v_odom; Vertex_handle vh; Offset off; Vertex_circulator vcir = adjacent_vertices(vit); Vertex_circulator vstart = vcir; size_t degree = 0; do { get_vertex(vcir, vh, off); nb_v_odom.insert(vh); degree++; } while (++vcir != vstart); if (degree != nb_v_odom.size()) return false; } return true; } template std::ostream& Periodic_2_triangulation_2::save(std::ostream& os) const { // writes : // the number of vertices // the domain as four coordinates: xmin ymin ymax zmax // the current covering that guarantees the triangulation to be a // simplicial complex // the non combinatorial information on vertices (points in case of 1-sheeted // covering, point-offset pairs otherwise) // ALL PERIODIC COPIES OF ONE VERTEX MUST BE STORED CONSECUTIVELY // the number of faces // the faces by the indices of their vertices in the preceding list // of vertices, plus the non combinatorial information on each face // the neighbors of each face by their index in the preceding list of faces // outputs dimension, domain and number of vertices Covering_sheets cover = number_of_sheets(); size_type n = number_of_vertices(); if (is_ascii(os)) os << domain() << std::endl << cover[0] << " " << cover[1] << std::endl << n*cover[0]*cover[1] << std::endl; else { os << domain(); write(os, cover[0]); write(os, cover[1]); write(os, n * cover[0]*cover[1]); } std::cout << "Line:" << __LINE__ << " cover[0]:" << cover[0] << " cover[1]:" << cover[1] << " n*c0*c1:" << (n * cover[0]*cover[1]) << std::endl; std::cout << "save, #Vertices: " << n << std::endl; if (n == 0) return os; // write the vertices Unique_hash_map V; std::size_t i = 0; if (is_1_cover()) { for (Vertex_iterator it = vertices_begin(); it != vertices_end(); ++it) { V[it] = i++; os << it->point(); if (is_ascii(os)) os << std::endl; } } else { Virtual_vertex_map_it vit, vvit; std::vector vv; for (Vertex_iterator it = vertices_begin(); it != vertices_end(); ++it) { vit = _virtual_vertices.find(it); if (vit != _virtual_vertices.end()) continue; V[it] = i++; if (is_ascii(os)) os << it->point() << std::endl << Offset(0, 0) << std::endl; else os << it->point() << Offset(0, 0); CGAL_triangulation_assertion(_virtual_vertices_reverse.find(it) != _virtual_vertices_reverse.end()); vv = _virtual_vertices_reverse.find(it)->second; CGAL_triangulation_assertion(vv.size() == 8); for (std::size_t j = 0; j < vv.size(); j++) { vvit = _virtual_vertices.find(vv[j]); CGAL_triangulation_assertion(vvit != _virtual_vertices.end()); V[vv[j]] = i++; if (is_ascii(os)) os << vv[j]->point() << std::endl << vvit->second.second << std::endl; else os << vv[j]->point() << vvit->second.second; } } } CGAL_triangulation_postcondition(i == _cover[0]*_cover[1]*n); Unique_hash_map F; int inum = 0; // asks the tds for the combinatorial information // vertices of the faces size_type m = _tds.number_of_faces(); if (is_ascii(os)) os << std::endl << m << std::endl; else write(os, m); std::cout << "save, #Faces: " << m << std::endl; for( Face_iterator ib = faces_begin(); ib != faces_end(); ++ib) { F[ib] = inum++; for(int j = 0; j < 3 ; ++j) { if(is_ascii(os)) os << V[ib->vertex(j)] << " "; else write(os, V[ib->vertex(j)]); } os << *ib ; if(is_ascii(os)) os << "\n"; } if(is_ascii(os)) os << "\n"; std::cout << "save, face check: " << inum << " == " << m << std::endl; CGAL_assertion(m == (size_type)inum); // neighbor pointers of the faces for( Face_iterator it = faces_begin(); it != faces_end(); ++it) { for(int j = 0; j < 3; ++j) { CGAL_assertion(F.is_defined(it->neighbor(j))); if(is_ascii(os)) os << F[it->neighbor(j)] << " "; else write(os, F[it->neighbor(j)]); } if(is_ascii(os)) os << "\n"; } // write offsets //for (unsigned int i=0 ; ioffset(j); if ( j == 3 ) os << std::endl; else os << ' '; } else write(os, ch->offset(j)); } } // write the non combinatorial information on the faces // using the << operator of Face // works because the iterator of the tds traverses the faces in the // same order as the iterator of the triangulation if(number_of_vertices() != 0) { for(Face_iterator it = faces_begin(); it != faces_end(); ++it) { os << *it; // other information if(is_ascii(os)) os << std::endl; } } return os; } template std::istream& Periodic_2_triangulation_2::load(std::istream& is) { // reads // the current covering that guarantees the triangulation to be a // simplicial complex // the number of vertices // the non combinatorial information on vertices (points in case of 1-sheeted // covering, point-offset pairs otherwise) // ALL PERIODIC COPIES OF ONE VERTEX MUST BE STORED CONSECUTIVELY // the number of faces // the faces by the indices of their vertices in the preceding list // of vertices, plus the non combinatorial information on each face // the neighbors of each face by their index in the preceding list of face CGAL_triangulation_precondition(is.good()); clear(); Iso_rectangle domain(0, 0, 1, 1); int cx = 0, cy = 0; size_type n = 0; if (is_ascii(is)) { is >> domain; is >> cx >> cy >> n; } else { is >> domain; read(is, cx); read(is, cy); read(is, n); } std::cout << "Line:" << __LINE__ << " cx:" << cx << " cy:" << cy << " n:" << n << std::endl; CGAL_triangulation_assertion((n / (cx * cy))*cx*cy == n); tds().set_dimension((n == 0 ? -2 : 2)); _domain = domain; _gt.set_domain(domain); _cover = make_array(cx, cy); if ( n == 0 ) return is; std::map< std::size_t, Vertex_handle > V; if (cx == 1 && cy == 1) { Point p; for (std::size_t i = 0; i < n; i++) { V[i] = tds().create_vertex(); is >> p; V[i]->set_point(p); } } else { Vertex_handle v, w; std::vector vv; Offset off; Point p; for (std::size_t i = 0; i < n; i++) { v = tds().create_vertex(); V[i] = v; is >> p >> off; V[i]->set_point(p); vv.clear(); for (int j = 1; j < cx * cy; j++) { i++; w = tds().create_vertex(); V[i] = w; is >> p >> off; V[i]->set_point(p); vv.push_back(w); _virtual_vertices[w] = std::make_pair(v, off); } _virtual_vertices_reverse[v] = vv; } } // Creation of the faces std::size_t index; size_type m; if (is_ascii(is)) is >> m; else read(is, m); std::vector F(m); std::cout << "load, #Faces: " << m << std::endl; { for(size_t i = 0; i < m; ++i) { F[i] = _tds.create_face() ; for(int j = 0; j < 3 ; ++j) { if (is_ascii(is)) is >> index; else read(is, index); CGAL_assertion(index < V.size()); F[i]->set_vertex(j, V[index]); // The face pointer of vertices is set too often, // but otherwise we had to use one more map V[index]->set_face(F[i]); } // read in non combinatorial info of the face is >> *(F[i]) ; } } // Setting the neighbor pointers { for(size_t i = 0; i < m; ++i) { for(int j = 0; j < 3; ++j) { if (is_ascii(is)) is >> index; else read(is, index); if (index >= F.size()) { std::cout << __FILE__ << ", " << __FUNCTION__ << ", l:" << __LINE__ << " f=" << i << "<" << m << ", index=" << j << " nb=" << index << " #F=" << F.size() << std::endl; } CGAL_assertion(i < F.size()); CGAL_assertion(index < F.size()); F[i]->set_neighbor(j, F[index]); } } } // read offsets int off[3] = {0, 0, 0}; for (std::size_t j = 0 ; j < m; j++) { if (is_ascii(is)) is >> off[0] >> off[1] >> off[2]; else { read(is, off[0]); read(is, off[1]); read(is, off[2]); } set_offsets(F[j], off[0], off[1], off[2]); } // read potential other information for (std::size_t j = 0 ; j < m; j++) is >> *(F[j]); int i = 0; for (Vertex_iterator vi = vertices_begin(); vi != vertices_end(); ++vi) { _too_long_edges[vi] = std::list(); ++i; } _edge_length_threshold = FT(0.166) * (_domain.xmax() - _domain.xmin()) * (_domain.xmax() - _domain.xmin()); _too_long_edge_counter = find_too_long_edges(_too_long_edges); CGAL_triangulation_expensive_assertion( is_valid() ); return is; } namespace internal { /// Internal function used by operator==. //TODO: introduce offsets template bool test_next(const Periodic_2_triangulation_2 &t1, const Periodic_2_triangulation_2 &t2, typename Periodic_2_triangulation_2::Face_handle c1, typename Periodic_2_triangulation_2::Face_handle c2, std::map < typename Periodic_2_triangulation_2::Face_handle, typename Periodic_2_triangulation_2::Face_handle > &Cmap, std::map < typename Periodic_2_triangulation_2::Vertex_handle, typename Periodic_2_triangulation_2::Vertex_handle > &Vmap) { // This function tests and registers the 4 neighbors of c1/c2, // and recursively calls itself over them. // Returns false if an inequality has been found. // Precondition: c1, c2 have been registered as well as their 4 vertices. CGAL_triangulation_precondition(t1.number_of_vertices() != 0); CGAL_triangulation_precondition(Cmap[c1] == c2); CGAL_triangulation_precondition(Vmap.find(c1->vertex(0)) != Vmap.end()); CGAL_triangulation_precondition(Vmap.find(c1->vertex(1)) != Vmap.end()); CGAL_triangulation_precondition(Vmap.find(c1->vertex(2)) != Vmap.end()); typedef Periodic_2_triangulation_2 Tr1; typedef Periodic_2_triangulation_2 Tr2; typedef typename Tr1::Vertex_handle Vertex_handle1; typedef typename Tr1::Face_handle Face_handle1; typedef typename Tr2::Vertex_handle Vertex_handle2; typedef typename Tr2::Face_handle Face_handle2; typedef typename std::map::const_iterator Cit; typedef typename std::map < Vertex_handle1, Vertex_handle2 >::const_iterator Vit; for (int i = 0; i <= 2; ++i) { Face_handle1 n1 = c1->neighbor(i); Cit cit = Cmap.find(n1); Vertex_handle1 v1 = c1->vertex(i); Vertex_handle2 v2 = Vmap[v1]; Face_handle2 n2 = c2->neighbor(c2->index(v2)); if (cit != Cmap.end()) { // n1 was already registered. if (cit->second != n2) return false; continue; } // n1 has not yet been registered. // We check that the new vertices match geometrically. // And we register them. Vertex_handle1 vn1 = n1->vertex(n1->index(c1)); Vertex_handle2 vn2 = n2->vertex(n2->index(c2)); Vit vit = Vmap.find(vn1); if (vit != Vmap.end()) { // vn1 already registered if (vit->second != vn2) return false; } else { if (t1.geom_traits().compare_xy_2_object()(vn1->point(), vn2->point()) != 0) return false; // We register vn1/vn2. Vmap.insert(std::make_pair(vn1, vn2)); } // We register n1/n2. Cmap.insert(std::make_pair(n1, n2)); // We recurse on n1/n2. if (!test_next(t1, t2, n1, n2, Cmap, Vmap)) return false; } return true; } } // namespace internal template std::istream& operator>>(std::istream& is, Periodic_2_triangulation_2 &tr) { return tr.load(is); } template std::ostream& operator<<(std::ostream& os, Periodic_2_triangulation_2 &tr) { return tr.save(os); } template < class GT, class Tds1, class Tds2 > bool operator==(const Periodic_2_triangulation_2 &t1, const Periodic_2_triangulation_2 &t2) { typedef typename Periodic_2_triangulation_2::Vertex_handle Vertex_handle1; typedef typename Periodic_2_triangulation_2::Face_handle Face_handle1; typedef typename Periodic_2_triangulation_2::Vertex_handle Vertex_handle2; typedef typename Periodic_2_triangulation_2::Vertex_handle Vertex_iterator2; typedef typename Periodic_2_triangulation_2::Face_handle Face_handle2; typedef typename Periodic_2_triangulation_2::Face_circulator Face_circulator2; typedef typename Periodic_2_triangulation_2::Point Point; typedef typename Periodic_2_triangulation_2::Offset Offset; // Some quick checks. if ( t1.domain() != t2.domain() || t1.number_of_sheets() != t2.number_of_sheets()) return false; if ( t1.number_of_vertices() != t2.number_of_vertices() || t1.number_of_faces() != t2.number_of_faces()) return false; // Special case for empty triangulations if (t1.number_of_vertices() == 0) return true; // We will store the mapping between the 2 triangulations vertices and // faces in 2 maps. std::map Vmap; std::map Cmap; // find a common point Vertex_handle1 v1 = static_cast(t1.vertices_begin()); Vertex_handle2 iv2; for (Vertex_iterator2 vit2 = t2.vertices_begin() ; vit2 != t2.vertices_end(); ++vit2) { if (t1.compare_xy(vit2->point(), v1->point(), t2.get_offset(vit2), t1.get_offset(v1)) != EQUAL) continue; iv2 = static_cast(vit2); break; } if (iv2 == Vertex_handle2()) return false; Vmap.insert(std::make_pair(v1, iv2)); // We pick one face of t1, and try to match it against the // faces of t2. Face_handle1 c = v1->face(); Vertex_handle1 v2 = c->vertex(t1.cw(c->index(v1))); Vertex_handle1 v3 = c->vertex(t1.ccw(c->index(v1))); Point p2 = v2->point(); Point p3 = v3->point(); Offset o2 = t1.get_offset(v2); Offset o3 = t1.get_offset(v3); Face_circulator2 fc = t2.incident_faces(iv2), done(fc); do { int inf = fc->index(iv2); if (t1.compare_xy(p2, fc->vertex((inf + 1) % 3)->point(), o2, t2.get_offset(fc->vertex((inf + 1) % 3))) == EQUAL) Vmap.insert(std::make_pair(v2, fc->vertex((inf + 1) % 3))); else if (t1.compare_xy(p2, fc->vertex((inf + 2) % 3)->point(), o2, t2.get_offset(fc->vertex((inf + 2) % 3))) == EQUAL) Vmap.insert(std::make_pair(v2, fc->vertex((inf + 2) % 3))); else continue; // None matched v2. if (t1.compare_xy(p3, fc->vertex((inf + 1) % 3)->point(), o3, t2.get_offset(fc->vertex((inf + 1) % 3))) == EQUAL) Vmap.insert(std::make_pair(v3, fc->vertex((inf + 1) % 3))); else if (t1.compare_xy(p3, fc->vertex((inf + 2) % 3)->point(), o3, t2.get_offset(fc->vertex((inf + 2) % 3))) == EQUAL) Vmap.insert(std::make_pair(v3, fc->vertex((inf + 2) % 3))); else continue; // None matched v3. // Found it ! Cmap.insert(std::make_pair(c, fc)); break; } while (++fc != done); if (Cmap.size() == 0) return false; // We now have one face, we need to propagate recursively. return internal::test_next(t1, t2, Cmap.begin()->first, Cmap.begin()->second, Cmap, Vmap); } template < class GT, class Tds1, class Tds2 > inline bool operator!=(const Periodic_2_triangulation_2 &t1, const Periodic_2_triangulation_2 &t2) { return ! (t1 == t2); } #define CGAL_INCLUDE_FROM_PERIODIC_2_TRIANGULATION_2_H #include #undef CGAL_INCLUDE_FROM_PERIODIC_2_TRIANGULATION_2_H } //namespace CGAL #endif //CGAL_PERIODIC_2_TRIANGULATION_2_H