// Copyright (c) 1999 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Andreas Fabri, Stefan Schirra #ifndef CGAL_PLANE_3_H #define CGAL_PLANE_3_H #include #include #include #include #include #include namespace CGAL { template class Plane_3 : public R_::Kernel_base::Plane_3 { typedef typename R_::RT RT; typedef typename R_::Point_2 Point_2; typedef typename R_::Point_3 Point_3; typedef typename R_::Direction_3 Direction_3; typedef typename R_::Vector_3 Vector_3; typedef typename R_::Segment_3 Segment_3; typedef typename R_::Line_3 Line_3; typedef typename R_::Ray_3 Ray_3; typedef typename R_::Circle_3 Circle_3; typedef typename R_::Aff_transformation_3 Aff_transformation_3; typedef Plane_3 Self; CGAL_static_assertion((boost::is_same::value)); public: typedef Dimension_tag<3> Ambient_dimension; typedef Dimension_tag<2> Feature_dimension; typedef typename R_::Kernel_base::Plane_3 Rep; const Rep& rep() const { return *this; } Rep& rep() { return *this; } typedef R_ R; Plane_3() {} Plane_3(const Rep& p) : Rep(p) {} Plane_3(const Point_3& p, const Point_3& q, const Point_3& r) : Rep(typename R::Construct_plane_3()(Return_base_tag(), p, q, r)) {} Plane_3(const Point_3& p, const Direction_3& d) : Rep(typename R::Construct_plane_3()(Return_base_tag(), p, d)) {} Plane_3(const Point_3& p, const Vector_3& v) : Rep(typename R::Construct_plane_3()(Return_base_tag(), p, v)) {} Plane_3(const RT& a, const RT& b, const RT& c, const RT& d) : Rep(typename R::Construct_plane_3()(Return_base_tag(), a, b, c, d)) {} Plane_3(const Line_3& l, const Point_3& p) : Rep(typename R::Construct_plane_3()(Return_base_tag(), l, p)) {} Plane_3(const Segment_3& s, const Point_3& p) : Rep(typename R::Construct_plane_3()(Return_base_tag(), s, p)) {} Plane_3(const Ray_3& r, const Point_3& p) : Rep(typename R::Construct_plane_3()(Return_base_tag(), r, p)) {} explicit Plane_3(const Circle_3& c) : Rep(typename R::Construct_plane_3()(c)) {} Plane_3 transform(const Aff_transformation_3 &t) const { return t.transform(*this); } Plane_3 opposite() const { return R().construct_opposite_plane_3_object()(*this); } //Vector_3 orthogonal_vector() const; Direction_3 orthogonal_direction() const { return Direction_3(a(), b(), c()); } typename cpp11::result_of::type a() const { return R().compute_a_3_object()(*this); } typename cpp11::result_of::type b() const { return R().compute_b_3_object()(*this); } typename cpp11::result_of::type c() const { return R().compute_c_3_object()(*this); } typename cpp11::result_of::type d() const { return R().compute_d_3_object()(*this); } bool has_on(const Point_3 &p) const { return R().has_on_3_object()(*this, p); } bool has_on(const Circle_3 &c) const { return R().has_on_3_object()(*this, c); } bool has_on(const Line_3 &l) const { return R().has_on_3_object()(*this, l); } Line_3 perpendicular_line(const Point_3 &p) const { return R().construct_perpendicular_line_3_object()(*this, p); } Point_3 projection(const Point_3 &p) const { return R().construct_projected_point_3_object()(*this, p); } Point_3 point() const { return R().construct_point_on_3_object()(*this); } Vector_3 base1() const { return R().construct_base_vector_3_object()(*this, 1); } Vector_3 base2() const { return R().construct_base_vector_3_object()(*this, 2); } Vector_3 orthogonal_vector() const { return R().construct_orthogonal_vector_3_object()(*this); } Point_2 to_2d(const Point_3 &p) const { return R().construct_projected_xy_point_2_object()(*this, p); } Point_3 to_3d(const Point_2 &p) const { return R().construct_lifted_point_3_object()(*this, p); } //Point_3 projection(const Point_3 &p) const; //Direction_3 orthogonal_direction() const; Oriented_side oriented_side(const Point_3 &p) const { return R().oriented_side_3_object()(*this, p); } bool has_on_positive_side(const Point_3 &p) const { return R().has_on_positive_side_3_object()(*this, p); } bool has_on_negative_side(const Point_3 &p) const { return R().has_on_negative_side_3_object()(*this, p); } /* bool has_on(const Point_3 &p) const { return oriented_side(p) == ON_ORIENTED_BOUNDARY; } bool has_on(const Line_3 &l) const { return has_on(l.point()) && has_on(l.point() + l.direction().to_vector()); } */ bool is_degenerate() const { return R().is_degenerate_3_object()(*this); } }; template < class R > std::ostream & operator<<(std::ostream &os, const Plane_3 &p) { switch(get_mode(os)) { case IO::ASCII : return os << p.a() << ' ' << p.b() << ' ' << p.c() << ' ' << p.d(); case IO::BINARY : write(os, p.a()); write(os, p.b()); write(os, p.c()); write(os, p.d()); return os; default: os << "Plane_3(" << p.a() << ", " << p.b() << ", "; os << p.c() << ", " << p.d() <<")"; return os; } } template < class R > std::istream & operator>>(std::istream &is, Plane_3 &p) { typename R::RT a(0), b(0), c(0), d(0); switch(get_mode(is)) { case IO::ASCII : is >> iformat(a) >> iformat(b) >> iformat(c) >> iformat(d); break; case IO::BINARY : read(is, a); read(is, b); read(is, c); read(is, d); break; default: is.setstate(std::ios::failbit); std::cerr << "" << std::endl; std::cerr << "Stream must be in ascii or binary mode" << std::endl; break; } if (is) p = Plane_3(a, b, c, d); return is; } } //namespace CGAL #endif // CGAL_PLANE_3_H