// Copyright (c) 2006-2013 INRIA Nancy-Grand Est (France). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // See the file LICENSE.LGPL distributed with CGAL. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // Author: Luis PeƱaranda #ifndef CGAL_RS_ALGEBRAIC_Z_1_H #define CGAL_RS_ALGEBRAIC_Z_1_H #include "algebraic_1.h" namespace CGAL{ namespace RS_AK1{ // This class represents an algebraic number storing two polynomials of // which it is root: one of them is the given polynomial; the other one is // an integer polynomial, which is used to perform the operations such as // refinements. Since RS works only with integer polynomials, this // architecture permits to convert the input polynomials only once. template class Algebraic_z_1: public Algebraic_1, boost::totally_ordered, double>{ protected: typedef Polynomial_ Polynomial; typedef ZPolynomial_ ZPolynomial; typedef Bound_ Bound; typedef ZRefiner_ ZRefiner; typedef ZComparator_ ZComparator; typedef ZPtraits_ ZPtraits; typedef typename ZPtraits::Coefficient_type ZCoefficient; typedef typename ZPtraits::Scale ZScale; typedef Ptraits_ Ptraits; typedef typename Ptraits::Coefficient_type Coefficient; typedef typename Ptraits::Scale Scale; typedef Algebraic_1 Algebraic_base; typedef Algebraic_z_1 Algebraic; ZPolynomial zpol; public: Algebraic_z_1(){}; Algebraic_z_1(const Polynomial &p, const ZPolynomial &zp, const Bound &l, const Bound &r):Algebraic_base(p,l,r),zpol(zp){ CGAL_assertion(l<=r); } Algebraic_z_1(const Algebraic &a): Algebraic_base(a.pol,a.left,a.right),zpol(a.zpol){} Algebraic_z_1(const Bound &b){ typedef typename Ptraits::Shift Shift; typedef typename ZPtraits::Shift ZShift; this->left=b; this->right=b; Gmpq q(b); this->pol=Coefficient(mpq_denref(q.mpq()))* Shift()(Polynomial(1),1,0)- Coefficient(mpq_numref(q.mpq())); zpol=ZCoefficient(mpq_denref(q.mpq()))* ZShift()(ZPolynomial(1),1,0)- ZCoefficient(mpq_numref(q.mpq())); CGAL_assertion(this->left==this->right); CGAL_assertion(this->left==b); } template Algebraic_z_1(const T &t){ typedef typename Ptraits::Shift Shift; typedef typename ZPtraits::Shift ZShift; CGAL::Gmpq q(t); this->pol=Coefficient(mpq_denref(q.mpq()))* Shift()(Polynomial(1),1,0)- Coefficient(mpq_numref(q.mpq())); zpol=ZCoefficient(mpq_denref(q.mpq()))* ZShift()(ZPolynomial(1),1,0)- ZCoefficient(mpq_numref(q.mpq())); this->left=Bound(t,std::round_toward_neg_infinity); this->right=Bound(t,std::round_toward_infinity); CGAL_assertion(this->left<=t&&this->right>=t); } Algebraic_z_1(const CGAL::Gmpq &q){ typedef typename Ptraits::Shift Shift; typedef typename ZPtraits::Shift ZShift; this->pol=Coefficient(mpq_denref(q.mpq()))* Shift()(Polynomial(1),1,0)- Coefficient(mpq_numref(q.mpq())); zpol=ZCoefficient(mpq_denref(q.mpq()))* ZShift()(ZPolynomial(1),1,0)- ZCoefficient(mpq_numref(q.mpq())); this->left=Bound(); this->right=Bound(); mpfr_t b; mpfr_init(b); mpfr_set_q(b,q.mpq(),GMP_RNDD); mpfr_swap(b,this->left.fr()); mpfr_set_q(b,q.mpq(),GMP_RNDU); mpfr_swap(b,this->right.fr()); mpfr_clear(b); CGAL_assertion(this->left<=q&&this->right>=q); } ~Algebraic_z_1(){} ZPolynomial get_zpol()const{return zpol;} void set_zpol(const ZPolynomial &p){zpol=p;} Algebraic operator-()const{ return Algebraic(Scale()(this->get_pol(),Coefficient(-1)), ZScale()(get_zpol(),ZCoefficient(-1)), -this->right, -this->left); } #define CGAL_RS_COMPARE_ALGEBRAIC_Z(_a) \ (ZComparator()(get_zpol(),this->get_left(),this->get_right(), \ (_a).get_zpol(),(_a).get_left(),(_a).get_right())) Comparison_result compare(Algebraic a)const{ return CGAL_RS_COMPARE_ALGEBRAIC_Z(a); }; #define CGAL_RS_COMPARE_ALGEBRAIC_Z_TYPE(_t) \ bool operator<(_t t)const \ {Algebraic a(t);return CGAL_RS_COMPARE_ALGEBRAIC_Z(a)==CGAL::SMALLER;} \ bool operator>(_t t)const \ {Algebraic a(t);return CGAL_RS_COMPARE_ALGEBRAIC_Z(a)==CGAL::LARGER;} \ bool operator==(_t t)const \ {Algebraic a(t);return CGAL_RS_COMPARE_ALGEBRAIC_Z(a)==CGAL::EQUAL;} bool operator==(Algebraic a)const {return CGAL_RS_COMPARE_ALGEBRAIC_Z(a)==CGAL::EQUAL;} bool operator!=(Algebraic a)const {return CGAL_RS_COMPARE_ALGEBRAIC_Z(a)!=CGAL::EQUAL;} bool operator<(Algebraic a)const {return CGAL_RS_COMPARE_ALGEBRAIC_Z(a)==CGAL::SMALLER;} bool operator<=(Algebraic a)const {return CGAL_RS_COMPARE_ALGEBRAIC_Z(a)!=CGAL::LARGER;} bool operator>(Algebraic a)const {return CGAL_RS_COMPARE_ALGEBRAIC_Z(a)==CGAL::LARGER;} bool operator>=(Algebraic a)const {return CGAL_RS_COMPARE_ALGEBRAIC_Z(a)!=CGAL::SMALLER;} CGAL_RS_COMPARE_ALGEBRAIC_Z_TYPE(double) #undef CGAL_RS_COMPARE_ALGEBRAIC_Z_TYPE #undef CGAL_RS_COMPARE_ALGEBRAIC_Z #ifdef IEEE_DBL_MANT_DIG #define CGAL_RS_DBL_PREC IEEE_DBL_MANT_DIG #else #define CGAL_RS_DBL_PREC 53 #endif double to_double()const{ typedef Real_embeddable_traits RT; typedef typename RT::To_double TD; ZRefiner()(get_zpol(), this->get_left(), this->get_right(), CGAL_RS_DBL_PREC); CGAL_assertion(TD()(this->get_left())==TD()(this->get_right())); return TD()(this->get_left()); } std::pair to_interval()const{ typedef Real_embeddable_traits RT; typedef typename RT::To_interval TI; return std::make_pair(TI()(this->get_left()).first, TI()(this->get_right()).second); } #undef CGAL_RS_DBL_PREC }; // class Algebraic_z_1 } // namespace RS_AK1 // We define Algebraic_z_1 as real-embeddable template class Real_embeddable_traits >: public INTERN_RET::Real_embeddable_traits_base< RS_AK1::Algebraic_z_1, CGAL::Tag_true>{ typedef Polynomial_ P; typedef ZPolynomial_ ZP; typedef Bound_ B; typedef ZRefiner_ R; typedef ZComparator_ C; typedef Ptraits_ T; typedef ZPtraits_ ZT; public: typedef RS_AK1::Algebraic_z_1 Type; typedef CGAL::Tag_true Is_real_embeddable; typedef bool Boolean; typedef CGAL::Sign Sign; typedef CGAL::Comparison_result Comparison_result; typedef INTERN_RET::Real_embeddable_traits_base Base; typedef typename Base::Compare Compare; class Sgn:public CGAL::cpp98::unary_function{ public: CGAL::Sign operator()(const Type &a)const{ return Compare()(a,Type(0)); } }; class To_double:public CGAL::cpp98::unary_function{ public: double operator()(const Type &a)const{return a.to_double();} }; class To_interval: public CGAL::cpp98::unary_function >{ public: std::pair operator()(const Type &a)const{ return a.to_interval(); } }; class Is_zero:public CGAL::cpp98::unary_function{ public: bool operator()(const Type &a)const{ return Sgn()(a)==CGAL::ZERO; } }; class Is_finite:public CGAL::cpp98::unary_function{ public: bool operator()(const Type&)const{return true;} }; class Abs:public CGAL::cpp98::unary_function{ public: Type operator()(const Type &a)const{ return Sgn()(a)==CGAL::NEGATIVE?-a:a; } }; }; template inline RS_AK1::Algebraic_z_1 min BOOST_PREVENT_MACRO_SUBSTITUTION(RS_AK1::Algebraic_z_1 a, RS_AK1::Algebraic_z_1 b){ return(a inline RS_AK1::Algebraic_z_1 max BOOST_PREVENT_MACRO_SUBSTITUTION(RS_AK1::Algebraic_z_1 a, RS_AK1::Algebraic_z_1 b){ return(a>b?a:b); } template inline std::ostream& operator<<(std::ostream &o, const RS_AK1::Algebraic_z_1 &a){ return(o<<'['< inline std::istream& operator>>(std::istream &i, RS_AK1::Algebraic_z_1 &a){ std::istream::int_type c; P pol; ZP zpol; B lb,rb; c=i.get(); if(c!='['){ CGAL_error_msg("error reading istream, \'[\' expected"); return i; } i>>pol; c=i.get(); if(c!=','){ CGAL_error_msg("error reading istream, \',\' expected"); return i; } i>>zpol; c=i.get(); if(c!=','){ CGAL_error_msg("error reading istream, \',\' expected"); return i; } i>>lb; c=i.get(); if(c!=','){ CGAL_error_msg("error reading istream, \',\' expected"); return i; } i>>rb; c=i.get(); if(c!=']'){ CGAL_error_msg("error reading istream, \']\' expected"); return i; } a=RS_AK1::Algebraic_z_1(pol,zpol,lb,rb); return i; } } // namespace CGAL #endif // CGAL_RS_ALGEBRAIC_Z_1_H