// Copyright (c) 2002,2011 Utrecht University (The Netherlands). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Hans Tangelder () // Note: Use p=0 to denote the weighted Linf-distance // For 0 #include #include #include #include #include #include namespace CGAL { namespace internal { template struct Array_or_vector_selector { typedef std::vector type; static void resize(type&v, std::size_t d) { v.resize(d); } }; template struct Array_or_vector_selector > { typedef cpp11::array type; static void resize(type&, std::size_t CGAL_assertion_code(d)) { CGAL_assertion(d==D); } }; } template class Weighted_Minkowski_distance { SearchTraits traits; public: typedef typename SearchTraits::Point_d Point_d; typedef Point_d Query_item; typedef typename SearchTraits::FT FT; typedef typename internal::Get_dimension_tag::Dimension Dimension; typedef internal::Array_or_vector_selector Weight_vector_traits; typedef typename Weight_vector_traits::type Weight_vector; private: typedef typename SearchTraits::Cartesian_const_iterator_d Coord_iterator; FT power; Weight_vector the_weights; public: // default constructor Weighted_Minkowski_distance(const SearchTraits& traits_=SearchTraits()) : traits(traits_),power(2) {} Weighted_Minkowski_distance(const int d,const SearchTraits& traits_=SearchTraits()) : traits(traits_),power(2), the_weights(d) { for (int i = 0; i < d; ++i) the_weights[i]=FT(1); } //default copy constructor and destructor template Weighted_Minkowski_distance (FT pow, int dim, InputIterator begin, InputIterator CGAL_assertion_code(end), const SearchTraits& traits_=SearchTraits()) : traits(traits_),power(pow) { CGAL_assertion(power >= FT(0)); Weight_vector_traits::resize(the_weights, dim); for (int i = 0; i < dim; ++i){ the_weights[i] = *begin; ++begin; CGAL_assertion(the_weights[i]>=FT(0)); } CGAL_assertion(begin == end); } inline FT transformed_distance(const Query_item& q, const Point_d& p) const { return transformed_distance(q,p, Dimension()); } //Dynamic version for runtime dimension inline FT transformed_distance(const Query_item& q, const Point_d& p, Dynamic_dimension_tag) const { FT distance = FT(0); typename SearchTraits::Construct_cartesian_const_iterator_d construct_it= traits.construct_cartesian_const_iterator_d_object(); Coord_iterator qit = construct_it(q), qe = construct_it(q,1), pit = construct_it(p); if (power == FT(0)) { for (unsigned int i = 0; qit != qe; ++qit, ++i) if (the_weights[i] * CGAL::abs((*qit) - (*pit)) > distance) distance = the_weights[i] * CGAL::abs((*qit)-(*pit)); } else for (unsigned int i = 0; qit != qe; ++qit, ++i) distance += the_weights[i] * std::pow(CGAL::abs((*qit)-(*pit)),power); return distance; } //Generic version for DIM > 3 template inline FT transformed_distance(const Query_item& q, const Point_d& p, Dimension_tag) const { FT distance = FT(0); typename SearchTraits::Construct_cartesian_const_iterator_d construct_it= traits.construct_cartesian_const_iterator_d_object(); Coord_iterator qit = construct_it(q), qe = construct_it(q,1), pit = construct_it(p); if (power == FT(0)) { for (unsigned int i = 0; qit != qe; ++qit, ++i) if (the_weights[i] * CGAL::abs((*qit) - (*pit)) > distance) distance = the_weights[i] * CGAL::abs((*qit)-(*pit)); } else for (unsigned int i = 0; qit != qe; ++qit, ++i) distance += the_weights[i] * std::pow(CGAL::abs((*qit)-(*pit)),power); return distance; } //DIM = 2 loop unrolled inline FT transformed_distance(const Query_item& q, const Point_d& p, Dimension_tag<2>) const { FT distance = FT(0); typename SearchTraits::Construct_cartesian_const_iterator_d construct_it= traits.construct_cartesian_const_iterator_d_object(); Coord_iterator qit = construct_it(q), pit = construct_it(p); if (power == FT(0)) { if (the_weights[0] * CGAL::abs((*qit) - (*pit)) > distance) distance = the_weights[0] * CGAL::abs((*qit)-(*pit)); qit++;pit++; if (the_weights[1] * CGAL::abs((*qit) - (*pit)) > distance) distance = the_weights[1] * CGAL::abs((*qit)-(*pit)); } else{ distance += the_weights[0] * std::pow(CGAL::abs((*qit)-(*pit)),power); qit++;pit++; distance += the_weights[1] * std::pow(CGAL::abs((*qit)-(*pit)),power); } return distance; } //DIM = 3 loop unrolled inline FT transformed_distance(const Query_item& q, const Point_d& p, Dimension_tag<3>) const { FT distance = FT(0); typename SearchTraits::Construct_cartesian_const_iterator_d construct_it= traits.construct_cartesian_const_iterator_d_object(); Coord_iterator qit = construct_it(q), pit = construct_it(p); if (power == FT(0)) { if (the_weights[0] * CGAL::abs((*qit) - (*pit)) > distance) distance = the_weights[0] * CGAL::abs((*qit)-(*pit)); qit++;pit++; if (the_weights[1] * CGAL::abs((*qit) - (*pit)) > distance) distance = the_weights[1] * CGAL::abs((*qit)-(*pit)); qit++;pit++; if (the_weights[2] * CGAL::abs((*qit) - (*pit)) > distance) distance = the_weights[2] * CGAL::abs((*qit)-(*pit)); } else{ distance += the_weights[0] * std::pow(CGAL::abs((*qit)-(*pit)),power); qit++;pit++; distance += the_weights[1] * std::pow(CGAL::abs((*qit)-(*pit)),power); qit++;pit++; distance += the_weights[2] * std::pow(CGAL::abs((*qit)-(*pit)),power); } return distance; } inline FT min_distance_to_rectangle(const Query_item& q, const Kd_tree_rectangle& r) const { FT distance = FT(0); typename SearchTraits::Construct_cartesian_const_iterator_d construct_it= traits.construct_cartesian_const_iterator_d_object(); Coord_iterator qit = construct_it(q), qe = construct_it(q,1); if (power == FT(0)) { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if (the_weights[i]*(r.min_coord(i) - (*qit)) > distance) distance = the_weights[i] * (r.min_coord(i)- (*qit)); if (the_weights[i] * ((*qit) - r.max_coord(i)) > distance) distance = the_weights[i] * ((*qit)-r.max_coord(i)); } } else { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if ((*qit) < r.min_coord(i)) distance += the_weights[i] * std::pow(r.min_coord(i)-(*qit),power); if ((*qit) > r.max_coord(i)) distance += the_weights[i] * std::pow((*qit)-r.max_coord(i),power); } }; return distance; } inline FT min_distance_to_rectangle(const Query_item& q, const Kd_tree_rectangle& r,std::vector& dists) const { FT distance = FT(0); typename SearchTraits::Construct_cartesian_const_iterator_d construct_it= traits.construct_cartesian_const_iterator_d_object(); Coord_iterator qit = construct_it(q), qe = construct_it(q,1); if (power == FT(0)) { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if (the_weights[i]*(r.min_coord(i) - (*qit)) > distance){ dists[i] = (r.min_coord(i)- (*qit)); distance = the_weights[i] * dists[i]; } if (the_weights[i] * ((*qit) - r.max_coord(i)) > distance){ dists[i] = ((*qit)-r.max_coord(i)); distance = the_weights[i] * dists[i]; } } } else { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if ((*qit) < r.min_coord(i)){ dists[i] = r.min_coord(i)-(*qit); distance += the_weights[i] * std::pow(dists[i],power); } if ((*qit) > r.max_coord(i)){ dists[i] = (*qit)-r.max_coord(i); distance += the_weights[i] * std::pow(dists[i],power); } } }; return distance; } inline FT max_distance_to_rectangle(const Query_item& q, const Kd_tree_rectangle& r) const { FT distance=FT(0); typename SearchTraits::Construct_cartesian_const_iterator_d construct_it= traits.construct_cartesian_const_iterator_d_object(); Coord_iterator qit = construct_it(q), qe = construct_it(q,1); if (power == FT(0)) { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if ((*qit) >= (r.min_coord(i) + r.max_coord(i))/FT(2.0)) { if (the_weights[i] * ((*qit) - r.min_coord(i)) > distance) distance = the_weights[i] * ((*qit)-r.min_coord(i)); else if (the_weights[i] * (r.max_coord(i) - (*qit)) > distance) distance = the_weights[i] * ( r.max_coord(i)-(*qit)); } } } else { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if ((*qit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0)) distance += the_weights[i] * std::pow(r.max_coord(i)-(*qit),power); else distance += the_weights[i] * std::pow((*qit)-r.min_coord(i),power); } }; return distance; } inline FT max_distance_to_rectangle(const Query_item& q, const Kd_tree_rectangle& r,std::vector& dists) const { FT distance=FT(0); typename SearchTraits::Construct_cartesian_const_iterator_d construct_it= traits.construct_cartesian_const_iterator_d_object(); Coord_iterator qit = construct_it(q), qe = construct_it(q,1); if (power == FT(0)) { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if ((*qit) >= (r.min_coord(i) + r.max_coord(i))/FT(2.0)) { if (the_weights[i] * ((*qit) - r.min_coord(i)) > distance){ dists[i] = (*qit)-r.min_coord(i); distance = the_weights[i] * (dists[i]); } else if (the_weights[i] * (r.max_coord(i) - (*qit)) > distance){ dists[i] = r.max_coord(i)-(*qit); distance = the_weights[i] * (dists[i]); } } } } else { for (unsigned int i = 0; qit != qe; ++qit, ++i) { if ((*qit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0)){ dists[i] = r.max_coord(i)-(*qit); distance += the_weights[i] * std::pow(dists[i],power); } else{ dists[i] = (*qit)-r.min_coord(i); distance += the_weights[i] * std::pow(dists[i],power); } } }; return distance; } inline FT new_distance(FT dist, FT old_off, FT new_off, int cutting_dimension) const { FT new_dist; if (power == FT(0)) { if (the_weights[cutting_dimension]*CGAL::abs(new_off) > dist) new_dist= the_weights[cutting_dimension]*CGAL::abs(new_off); else new_dist=dist; } else { new_dist = dist + the_weights[cutting_dimension] * (std::pow(CGAL::abs(new_off),power)-std::pow(CGAL::abs(old_off),power)); } return new_dist; } inline FT transformed_distance(FT d) const { if (power <= FT(0)) return d; else return std::pow(d,power); } inline FT inverse_of_transformed_distance(FT d) const { if (power <= FT(0)) return d; else return std::pow(d,1/power); } }; // class Weighted_Minkowski_distance } // namespace CGAL #endif // CGAL_WEIGHTED_MINKOWSKI_DISTANCE_H