// Copyright (c) 2000 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Herve Bronnimann, Mariette Yvinec #ifndef CGAL_CONSTRUCTIONS_KERNEL_FTC3_H #define CGAL_CONSTRUCTIONS_KERNEL_FTC3_H #include #include namespace CGAL { template < class FT > CGAL_KERNEL_INLINE void midpointC3( const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, FT &x, FT &y, FT &z) { x = (px + qx) / 2; y = (py + qy) / 2; z = (pz + qz) / 2; } template < class FT > void barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1, const FT &p2x, const FT &p2y, const FT &p2z, FT &x, FT &y, FT &z) { FT w2 = 1 - w1; x = w1 * p1x + w2 * p2x; y = w1 * p1y + w2 * p2y; z = w1 * p1z + w2 * p2z; } template < class FT > void barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1, const FT &p2x, const FT &p2y, const FT &p2z, const FT &w2, FT &x, FT &y, FT &z) { FT sum = w1 + w2; CGAL_kernel_assertion(sum != 0); x = (w1 * p1x + w2 * p2x) / sum; y = (w1 * p1y + w2 * p2y) / sum; z = (w1 * p1z + w2 * p2z) / sum; } template < class FT > void barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1, const FT &p2x, const FT &p2y, const FT &p2z, const FT &w2, const FT &p3x, const FT &p3y, const FT &p3z, FT &x, FT &y, FT &z) { FT w3 = 1 - w1 - w2; x = w1 * p1x + w2 * p2x + w3 * p3x; y = w1 * p1y + w2 * p2y + w3 * p3y; z = w1 * p1z + w2 * p2z + w3 * p3z; } template < class FT > void barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1, const FT &p2x, const FT &p2y, const FT &p2z, const FT &w2, const FT &p3x, const FT &p3y, const FT &p3z, const FT &w3, FT &x, FT &y, FT &z) { FT sum = w1 + w2 + w3; CGAL_kernel_assertion(sum != 0); x = (w1 * p1x + w2 * p2x + w3 * p3x) / sum; y = (w1 * p1y + w2 * p2y + w3 * p3y) / sum; z = (w1 * p1z + w2 * p2z + w3 * p3z) / sum; } template < class FT > void barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1, const FT &p2x, const FT &p2y, const FT &p2z, const FT &w2, const FT &p3x, const FT &p3y, const FT &p3z, const FT &w3, const FT &p4x, const FT &p4y, const FT &p4z, FT &x, FT &y, FT &z) { FT w4 = 1 - w1 - w2 - w3; x = w1 * p1x + w2 * p2x + w3 * p3x + w4 * p4x; y = w1 * p1y + w2 * p2y + w3 * p3y + w4 * p4y; z = w1 * p1z + w2 * p2z + w3 * p3z + w4 * p4z; } template < class FT > void barycenterC3(const FT &p1x, const FT &p1y, const FT &p1z, const FT &w1, const FT &p2x, const FT &p2y, const FT &p2z, const FT &w2, const FT &p3x, const FT &p3y, const FT &p3z, const FT &w3, const FT &p4x, const FT &p4y, const FT &p4z, const FT &w4, FT &x, FT &y, FT &z) { FT sum = w1 + w2 + w3 + w4; CGAL_kernel_assertion(sum != 0); x = (w1 * p1x + w2 * p2x + w3 * p3x + w4 * p4x) / sum; y = (w1 * p1y + w2 * p2y + w3 * p3y + w4 * p4y) / sum; z = (w1 * p1z + w2 * p2z + w3 * p3z + w4 * p4z) / sum; } template < class FT > void centroidC3( const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &rx, const FT &ry, const FT &rz, const FT &sx, const FT &sy, const FT &sz, FT &x, FT &y, FT &z) { x = (px + qx + rx + sx) / 4; y = (py + qy + ry + sy) / 4; z = (pz + qz + rz + sz) / 4; } template < class FT > void centroidC3( const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &rx, const FT &ry, const FT &rz, FT &x, FT &y, FT &z) { x = (px + qx + rx) / 3; y = (py + qy + ry) / 3; z = (pz + qz + rz) / 3; } template < class FT > CGAL_KERNEL_MEDIUM_INLINE FT squared_radiusC3(const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &rx, const FT &ry, const FT &rz, const FT &sx, const FT &sy, const FT &sz) { // Translate p to origin to simplify the expression. FT qpx = qx-px; FT qpy = qy-py; FT qpz = qz-pz; FT qp2 = CGAL_NTS square(qpx) + CGAL_NTS square(qpy) + CGAL_NTS square(qpz); FT rpx = rx-px; FT rpy = ry-py; FT rpz = rz-pz; FT rp2 = CGAL_NTS square(rpx) + CGAL_NTS square(rpy) + CGAL_NTS square(rpz); FT spx = sx-px; FT spy = sy-py; FT spz = sz-pz; FT sp2 = CGAL_NTS square(spx) + CGAL_NTS square(spy) + CGAL_NTS square(spz); FT num_x = determinant(qpy,qpz,qp2, rpy,rpz,rp2, spy,spz,sp2); FT num_y = determinant(qpx,qpz,qp2, rpx,rpz,rp2, spx,spz,sp2); FT num_z = determinant(qpx,qpy,qp2, rpx,rpy,rp2, spx,spy,sp2); FT den = determinant(qpx,qpy,qpz, rpx,rpy,rpz, spx,spy,spz); CGAL_kernel_assertion( ! CGAL_NTS is_zero(den) ); return (CGAL_NTS square(num_x) + CGAL_NTS square(num_y) + CGAL_NTS square(num_z)) / CGAL_NTS square(2 * den); } template < class FT > CGAL_KERNEL_MEDIUM_INLINE FT squared_radiusC3(const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &sx, const FT &sy, const FT &sz) { // Translate s to origin to simplify the expression. FT psx = px-sx; FT psy = py-sy; FT psz = pz-sz; FT ps2 = CGAL_NTS square(psx) + CGAL_NTS square(psy) + CGAL_NTS square(psz); FT qsx = qx-sx; FT qsy = qy-sy; FT qsz = qz-sz; FT qs2 = CGAL_NTS square(qsx) + CGAL_NTS square(qsy) + CGAL_NTS square(qsz); FT rsx = psy*qsz-psz*qsy; FT rsy = psz*qsx-psx*qsz; FT rsz = psx*qsy-psy*qsx; FT num_x = ps2 * determinant(qsy,qsz,rsy,rsz) - qs2 * determinant(psy,psz,rsy,rsz); FT num_y = ps2 * determinant(qsx,qsz,rsx,rsz) - qs2 * determinant(psx,psz,rsx,rsz); FT num_z = ps2 * determinant(qsx,qsy,rsx,rsy) - qs2 * determinant(psx,psy,rsx,rsy); FT den = determinant(psx,psy,psz, qsx,qsy,qsz, rsx,rsy,rsz); CGAL_kernel_assertion( den != 0 ); return (CGAL_NTS square(num_x) + CGAL_NTS square(num_y) + CGAL_NTS square(num_z)) / CGAL_NTS square(2 * den); } template CGAL_KERNEL_MEDIUM_INLINE void plane_from_pointsC3(const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &rx, const FT &ry, const FT &rz, FT &pa, FT &pb, FT &pc, FT &pd) { FT rpx = px-rx; FT rpy = py-ry; FT rpz = pz-rz; FT rqx = qx-rx; FT rqy = qy-ry; FT rqz = qz-rz; // Cross product rp * rq pa = rpy*rqz - rqy*rpz; pb = rpz*rqx - rqz*rpx; pc = rpx*rqy - rqx*rpy; pd = - pa*rx - pb*ry - pc*rz; } template CGAL_KERNEL_MEDIUM_INLINE void plane_from_point_directionC3(const FT &px, const FT &py, const FT &pz, const FT &dx, const FT &dy, const FT &dz, FT &pa, FT &pb, FT &pc, FT &pd) { // d is the normal direction pa = dx; pb = dy; pc = dz; pd = -dx*px - dy*py - dz*pz; } template CGAL_KERNEL_MEDIUM_INLINE void point_on_planeC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd, FT &x, FT &y, FT &z) { x = y = z = 0; FT abs_pa = CGAL::abs(pa); FT abs_pb = CGAL::abs(pb); FT abs_pc = CGAL::abs(pc); // to avoid badly defined point with an overly large coordinate when // the plane is almost orthogonal to one axis, we use the largest // scalar coordinate instead of always using the first non-null if (abs_pa >= abs_pb && abs_pa >= abs_pc) x = -pd/pa; else if (abs_pb >= abs_pa && abs_pb >= abs_pc) y = -pd/pb; else z = -pd/pc; } template CGAL_KERNEL_MEDIUM_INLINE void projection_planeC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd, const FT &px, const FT &py, const FT &pz, FT &x, FT &y, FT &z) { // the equation of the plane is Ax+By+Cz+D=0 // the normal direction is (A,B,C) // the projected point is p-lambda(A,B,C) where // A(x-lambda A) + B(y-lambda B) + C(z-lambda C) + D = 0 FT num = pa*px + pb*py + pc*pz + pd; FT den = pa*pa + pb*pb + pc*pc; FT lambda = num / den; x = px - lambda * pa; y = py - lambda * pb; z = pz - lambda * pc; } template < class FT > CGAL_KERNEL_INLINE FT squared_distanceC3( const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz) { return CGAL_NTS square(px-qx) + CGAL_NTS square(py-qy) + CGAL_NTS square(pz-qz); } template < class FT > CGAL_KERNEL_INLINE FT squared_radiusC3( const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz) { return squared_distanceC3(px, py, pz, qx, qy, qz) / 4; } template < class FT > CGAL_KERNEL_INLINE FT scaled_distance_to_directionC3(const FT &pa, const FT &pb, const FT &pc, const FT &px, const FT &py, const FT &pz) { return pa*px + pb*py + pc*pz; } template < class FT > CGAL_KERNEL_INLINE FT scaled_distance_to_planeC3( const FT &pa, const FT &pb, const FT &pc, const FT &pd, const FT &px, const FT &py, const FT &pz) { return pa*px + pb*py + pc*pz + pd; } template < class FT > CGAL_KERNEL_INLINE FT scaled_distance_to_planeC3( const FT &ppx, const FT &ppy, const FT &ppz, const FT &pqx, const FT &pqy, const FT &pqz, const FT &prx, const FT &pry, const FT &prz, const FT &px, const FT &py, const FT &pz) { return determinant(ppx-px,ppy-py,ppz-pz, pqx-px,pqy-py,pqz-pz, prx-px,pry-py,prz-pz); } template < class FT > CGAL_KERNEL_INLINE void bisector_of_pointsC3(const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, FT &a, FT &b, FT &c, FT &d) { a = 2*(px - qx); b = 2*(py - qy); c = 2*(pz - qz); d = CGAL_NTS square(qx) + CGAL_NTS square(qy) + CGAL_NTS square(qz) - CGAL_NTS square(px) - CGAL_NTS square(py) - CGAL_NTS square(pz); } template < class FT > void bisector_of_planesC3(const FT &pa, const FT &pb, const FT &pc, const FT &pd, const FT &qa, const FT &qb, const FT &qc, const FT &qd, FT &a, FT &b, FT &c, FT &d) { // We normalize the equations of the 2 planes, and we then add them. FT n1 = CGAL_NTS sqrt(CGAL_NTS square(pa) + CGAL_NTS square(pb) + CGAL_NTS square(pc)); FT n2 = CGAL_NTS sqrt(CGAL_NTS square(qa) + CGAL_NTS square(qb) + CGAL_NTS square(qc)); a = n2 * pa + n1 * qa; b = n2 * pb + n1 * qb; c = n2 * pc + n1 * qc; d = n2 * pd + n1 * qd; // Care must be taken for the case when this produces a degenerate line. if (a == 0 && b == 0 && c == 0) { a = n2 * pa - n1 * qa; b = n2 * pb - n1 * qb; c = n2 * pc - n1 * qc; d = n2 * pd - n1 * qd; } } template < class FT > FT squared_areaC3(const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &rx, const FT &ry, const FT &rz) { // Compute vectors pq and pr, then the cross product, // then 1/4 of its squared length. FT dqx = qx-px; FT dqy = qy-py; FT dqz = qz-pz; FT drx = rx-px; FT dry = ry-py; FT drz = rz-pz; FT vx = dqy*drz-dqz*dry; FT vy = dqz*drx-dqx*drz; FT vz = dqx*dry-dqy*drx; return (CGAL_NTS square(vx) + CGAL_NTS square(vy) + CGAL_NTS square(vz))/4; } template void determinants_for_weighted_circumcenterC3( const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, const FT &rx, const FT &ry, const FT &rz, const FT &rw, const FT &sx, const FT &sy, const FT &sz, const FT &sw, FT &num_x, FT &num_y, FT &num_z, FT& den) { // translate origin to p // and compute determinants for weighted_circumcenter and // circumradius FT qpx = qx - px; FT qpy = qy - py; FT qpz = qz - pz; FT qp2 = CGAL_NTS square(qpx) + CGAL_NTS square(qpy) + CGAL_NTS square(qpz) - qw + pw; FT rpx = rx - px; FT rpy = ry - py; FT rpz = rz - pz; FT rp2 = CGAL_NTS square(rpx) + CGAL_NTS square(rpy) + CGAL_NTS square(rpz) - rw + pw; FT spx = sx - px; FT spy = sy - py; FT spz = sz - pz; FT sp2 = CGAL_NTS square(spx) + CGAL_NTS square(spy) + CGAL_NTS square(spz) - sw + pw; num_x = determinant(qpy,qpz,qp2, rpy,rpz,rp2, spy,spz,sp2); num_y = determinant(qpx,qpz,qp2, rpx,rpz,rp2, spx,spz,sp2); num_z = determinant(qpx,qpy,qp2, rpx,rpy,rp2, spx,spy,sp2); den = determinant(qpx,qpy,qpz, rpx,rpy,rpz, spx,spy,spz); } template void determinants_for_circumcenterC3(const FT &px, const FT &py, const FT &pz, const FT &qx, const FT &qy, const FT &qz, const FT &rx, const FT &ry, const FT &rz, const FT &sx, const FT &sy, const FT &sz, FT &num_x, FT &num_y, FT &num_z, FT& den) { // translate origin to p // and compute determinants for weighted_circumcenter and // circumradius FT qpx = qx - px; FT qpy = qy - py; FT qpz = qz - pz; FT qp2 = CGAL_NTS square(qpx) + CGAL_NTS square(qpy) + CGAL_NTS square(qpz); FT rpx = rx - px; FT rpy = ry - py; FT rpz = rz - pz; FT rp2 = CGAL_NTS square(rpx) + CGAL_NTS square(rpy) + CGAL_NTS square(rpz); FT spx = sx - px; FT spy = sy - py; FT spz = sz - pz; FT sp2 = CGAL_NTS square(spx) + CGAL_NTS square(spy) + CGAL_NTS square(spz); num_x = determinant(qpy,qpz,qp2, rpy,rpz,rp2, spy,spz,sp2); num_y = determinant(qpx,qpz,qp2, rpx,rpz,rp2, spx,spz,sp2); num_z = determinant(qpx,qpy,qp2, rpx,rpy,rp2, spx,spy,sp2); den = determinant(qpx,qpy,qpz, rpx,rpy,rpz, spx,spy,spz); } template < class FT> void weighted_circumcenterC3(const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, const FT &rx, const FT &ry, const FT &rz, const FT &rw, const FT &sx, const FT &sy, const FT &sz, const FT &sw, FT &x, FT &y, FT &z) { // this function computes the weighted circumcenter point only // Translate p to origin and compute determinants FT num_x, num_y, num_z, den; determinants_for_weighted_circumcenterC3(px, py, pz, pw, qx, qy, qz, qw, rx, ry, rz, rw, sx, sy, sz, sw, num_x, num_y, num_z,den); CGAL_assertion( ! CGAL_NTS is_zero(den) ); FT inv = FT(1)/(FT(2) * den); x = px + num_x*inv; y = py - num_y*inv; z = pz + num_z*inv; } template < class FT> void weighted_circumcenterC3(const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, const FT &rx, const FT &ry, const FT &rz, const FT &rw, const FT &sx, const FT &sy, const FT &sz, const FT &sw, FT &x, FT &y, FT &z, FT &w) { // this function computes the weighted circumcenter point // and the squared weighted circumradius // Translate p to origin and compute determinants FT num_x, num_y, num_z, den; determinants_for_weighted_circumcenterC3(px, py, pz, pw, qx, qy, qz, qw, rx, ry, rz, rw, sx, sy, sz, sw, num_x, num_y, num_z, den); CGAL_assertion( ! CGAL_NTS is_zero(den) ); FT inv = FT(1)/(FT(2) * den); x = px + num_x*inv; y = py - num_y*inv; z = pz + num_z*inv; w = (CGAL_NTS square(num_x) + CGAL_NTS square(num_y) + CGAL_NTS square(num_z)) * CGAL_NTS square(inv) - pw; } template< class FT > FT squared_radius_orthogonal_sphereC3( const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, const FT &rx, const FT &ry, const FT &rz, const FT &rw, const FT &sx, const FT &sy, const FT &sz, const FT &sw) { // this function computes the squared weighted circumradius only // Translate p to origin and compute determinants FT num_x, num_y, num_z, den; determinants_for_weighted_circumcenterC3(px, py, pz, pw, qx, qy, qz, qw, rx, ry, rz, rw, sx, sy, sz, sw, num_x, num_y, num_z,den); CGAL_assertion( ! CGAL_NTS is_zero(den) ); FT inv = FT(1)/(FT(2) * den); return (CGAL_NTS square(num_x) + CGAL_NTS square(num_y) + CGAL_NTS square(num_z)) * CGAL_NTS square(inv) - pw; } template void determinants_for_weighted_circumcenterC3( const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, const FT &rx, const FT &ry, const FT &rz, const FT &rw, FT &num_x, FT &num_y, FT &num_z, FT &den) { // translate origin to p and compute determinants for weighted_circumcenter // and circumradius // Translate s to origin to simplify the expression. FT qpx = qx - px; FT qpy = qy - py; FT qpz = qz - pz; FT qp2 = CGAL_NTS square(qpx) + CGAL_NTS square(qpy) + CGAL_NTS square(qpz) - qw + pw; FT rpx = rx - px; FT rpy = ry - py; FT rpz = rz - pz; FT rp2 = CGAL_NTS square(rpx) + CGAL_NTS square(rpy) + CGAL_NTS square(rpz) - rw + pw; FT sx = qpy*rpz - qpz*rpy; FT sy = qpz*rpx - qpx*rpz; FT sz = qpx*rpy - qpy*rpx; // The following determinants can be developped and simplified. // // FT num_x = determinant(qpy,qpz,qp2, // rpy,rpz,rp2, // sy,sz,FT(0)); // FT num_y = determinant(qpx,qpz,qp2, // rpx,rpz,rp2, // sx,sz,FT(0)); // FT num_z = determinant(qpx,qpy,qp2, // rpx,rpy,rp2, // sx,sy,FT(0)); num_x = qp2 * determinant(rpy,rpz,sy,sz) - rp2 * determinant(qpy,qpz,sy,sz); num_y = qp2 * determinant(rpx,rpz,sx,sz) - rp2 * determinant(qpx,qpz,sx,sz); num_z = qp2 * determinant(rpx,rpy,sx,sy) - rp2 * determinant(qpx,qpy,sx,sy); den = determinant(qpx,qpy,qpz, rpx,rpy,rpz, sx,sy,sz); } template < class FT > void weighted_circumcenterC3(const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, const FT &rx, const FT &ry, const FT &rz, const FT &rw, FT &x, FT &y, FT &z) { // this function computes the weighted circumcenter point only // Translate p to origin and compute determinants FT num_x, num_y, num_z, den; determinants_for_weighted_circumcenterC3(px, py, pz, pw, qx, qy, qz, qw, rx, ry, rz, rw, num_x, num_y, num_z, den); CGAL_assertion( den != FT(0) ); FT inv = FT(1) / (FT(2) * den); x = px + num_x*inv; y = py - num_y*inv; z = pz + num_z*inv; } template < class FT > void weighted_circumcenterC3(const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, const FT &rx, const FT &ry, const FT &rz, const FT &rw, FT &x, FT &y, FT &z, FT &w) { // this function computes the weighted circumcenter and // the weighted squared circumradius // Translate p to origin and compute determinants FT num_x, num_y, num_z, den; determinants_for_weighted_circumcenterC3(px, py, pz, pw, qx, qy, qz, qw, rx, ry, rz, rw, num_x, num_y, num_z, den); CGAL_assertion( den != FT(0) ); FT inv = FT(1) / (FT(2) * den); x = px + num_x*inv; y = py - num_y*inv; z = pz + num_z*inv; w = (CGAL_NTS square(num_x) + CGAL_NTS square(num_y) + CGAL_NTS square(num_z)) *CGAL_NTS square(inv) - pw; } template< class FT > CGAL_MEDIUM_INLINE FT squared_radius_smallest_orthogonal_sphereC3( const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, const FT &rx, const FT &ry, const FT &rz, const FT &rw) { // this function computes the weighted squared circumradius only // Translate p to origin and compute determinants FT num_x, num_y, num_z, den; determinants_for_weighted_circumcenterC3(px, py, pz, pw, qx, qy, qz, qw, rx, ry, rz, rw, num_x, num_y, num_z, den); CGAL_assertion( den != FT(0) ); FT inv = FT(1)/(FT(2) * den); return (CGAL_NTS square(num_x) + CGAL_NTS square(num_y) + CGAL_NTS square(num_z)) * CGAL_NTS square(inv) - pw; } template < class FT > void weighted_circumcenterC3(const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, FT &x, FT &y, FT &z) { // this function computes the weighted circumcenter point only FT qpx = qx - px; FT qpy = qy - py; FT qpz = qz - pz; FT qp2 = CGAL_NTS square(qpx) + CGAL_NTS square(qpy) + CGAL_NTS square(qpz); FT inv = FT(1) / (FT(2) * qp2); FT alpha = 1 / FT(2) + (pw-qw) * inv; x = px + alpha * qpx; y = py + alpha * qpy; z = pz + alpha * qpz; } template < class FT > void weighted_circumcenterC3(const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, FT &x, FT &y, FT &z, FT &w) { // this function computes the weighted circumcenter point and // the weighted circumradius FT qpx = qx - px; FT qpy = qy - py; FT qpz = qz - pz; FT qp2 = CGAL_NTS square(qpx) + CGAL_NTS square(qpy) + CGAL_NTS square(qpz); FT inv = FT(1) / (FT(2) * qp2); FT alpha = 1 / FT(2) + (pw-qw) * inv; x = px + alpha * qpx; y = py + alpha * qpy; z = pz + alpha * qpz; w = CGAL_NTS square(alpha) * qp2 - pw; } template< class FT > CGAL_MEDIUM_INLINE FT squared_radius_smallest_orthogonal_sphereC3( const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw) { // this function computes the weighted circumradius only FT qpx = qx - px; FT qpy = qy - py; FT qpz = qz - pz; FT qp2 = CGAL_NTS square(qpx) + CGAL_NTS square(qpy) + CGAL_NTS square(qpz); FT inv = FT(1) / (FT(2) * qp2); FT alpha = 1 / FT(2) + (pw-qw) * inv; return CGAL_NTS square(alpha)*qp2 - pw; } template< class FT > FT power_productC3(const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw) { // computes the power product of two weighted points FT qpx = qx - px; FT qpy = qy - py; FT qpz = qz - pz; FT qp2 = CGAL_NTS square(qpx) + CGAL_NTS square(qpy) + CGAL_NTS square(qpz); return qp2 - pw - qw ; } template < class RT , class We> void radical_axisC3(const RT &px, const RT &py, const RT &pz, const We & /* pw */, const RT &qx, const RT &qy, const RT &qz, const We & /* qw */, const RT &rx, const RT &ry, const RT &rz, const We & /* rw */, RT &a, RT &b, RT& c ) { RT dqx=qx-px, dqy=qy-py, dqz=qz-pz, drx=rx-px, dry=ry-py, drz=rz-pz; //il manque des tests... a = RT(1)*determinant(dqy, dqz, dry, drz); b = - RT(1)*determinant(dqx, dqz, drx, drz); c = RT(1)*determinant(dqx, dqy, drx, dry); } // function used in critical_squared_radiusC3 // power ( t, tw) with respect to // circle orthogonal (p,pw), (q,qw), (r,rw), (s,sw) template < class FT> FT power_to_orthogonal_sphereC3(const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, const FT &rx, const FT &ry, const FT &rz, const FT &rw, const FT &sx, const FT &sy, const FT &sz, const FT &sw, const FT &tx, const FT &ty, const FT &tz, const FT &tw) { //to get the value of the determinant // We translate the points so that t becomes the origin. FT dpx = px - tx; FT dpy = py - ty; FT dpz = pz - tz; FT dpt = CGAL_NTS square(dpx) + CGAL_NTS square(dpy) + CGAL_NTS square(dpz) - pw + tw ; FT dqx = qx - tx; FT dqy = qy - ty; FT dqz = qz - tz; FT dqt = CGAL_NTS square(dqx) + CGAL_NTS square(dqy) + CGAL_NTS square(dqz) - qw + tw; FT drx = rx - tx; FT dry = ry - ty; FT drz = rz - tz; FT drt = CGAL_NTS square(drx) + CGAL_NTS square(dry) + CGAL_NTS square(drz) - rw + tw; FT dsx = sx - tx; FT dsy = sy - ty; FT dsz = sz - tz; FT dst = CGAL_NTS square(dsx) + CGAL_NTS square(dsy) + CGAL_NTS square(dsz) - sw + tw; return determinant(dpx, dpy, dpz, dpt, dqx, dqy, dqz, dqt, drx, dry, drz, drt, dsx, dsy, dsz, dst); } // compute the critical weight tw // where weighted point t is orthogonal to weighted points p, q,r,s template < class FT> FT power_distance_to_power_sphereC3(const FT &px, const FT &py, const FT &pz, const FT &pw, const FT &qx, const FT &qy, const FT &qz, const FT &qw, const FT &rx, const FT &ry, const FT &rz, const FT &rw, const FT &sx, const FT &sy, const FT &sz, const FT &sw, const FT &tx, const FT &ty, const FT &tz, const FT & ) { // the 5x5 det is a linear function of tw ff(tw)= ff(0) + tw ff(1) // the critical value for tw is - ff(0)/( ff(1) - ff(0)) FT ff0 = power_to_orthogonal_sphereC3(px, py, pz, pw, qx, qy, qz, qw, rx, ry, rz, rw, sx, sy, sz, sw, tx, ty, tz, FT(0)); FT ff1 = power_to_orthogonal_sphereC3(px, py, pz, pw, qx, qy, qz, qw, rx, ry, rz, rw, sx, sy, sz, sw, tx, ty, tz, FT(1)); return -ff0/(ff1 - ff0); } // I will use this to test if the radial axis of three spheres // intersect the triangle formed by the centers. // // resolution of the system (where we note c the center) // // | dc^2 = cw + rw // // | (dp-dc)^2 = pw + cw // // | (dq-dc)^2 = qw + cw // // | dc = Lamdba*dp + Mu*dq // FT FT2(2); // FT dpx = px-rx; // FT dpy = py-ry; // FT dpz = pz-rz; // FT dp = CGAL_NTS square(dpx)+CGAL_NTS square(dpy)+CGAL_NTS square(dpz); // FT dpp = dp-pw+rw; // FT dqx = qx-rx; // FT dqy = qy-ry; // FT dqz = qz-rz; // FT dq = CGAL_NTS square(dqx)+CGAL_NTS square(dqy)+CGAL_NTS square(dqz); // FT dqq = dq-qw+rw; // FT dpdq = dpx*dqx+dpy*dqy+dpz*dqz; // FT denom = FT2*(dp*dq-CGAL_NTS square(dpdq)); // FT Lambda = (dpp*dq-dqq*dpdq)/denom; // FT Mu = (dqq*dp-dpp*dpdq)/denom; // return (CGAL_NTS square(Lambda)*dp+CGAL_NTS square(Mu)*dq // + FT2*Lambda*Mu*dpdq - rw); } //namespace CGAL #endif // CGAL_CONSTRUCTIONS_KERNEL_FTC3_H