// Copyright (c) 1997-2000 Max-Planck-Institute Saarbruecken (Germany). // All rights reserved. // // This file is part of CGAL (www.cgal.org). // You can redistribute it and/or modify it under the terms of the GNU // General Public License as published by the Free Software Foundation, // either version 3 of the License, or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: GPL-3.0+ // // // Author(s) : Michael Seel #ifndef CGAL_NEF_2_GENINFO_H #define CGAL_NEF_2_GENINFO_H #include #define CGAL_DEPRECATED_HEADER "" #define CGAL_DEPRECATED_MESSAGE_DETAILS \ "Something like boost::any or boost::variant should be used instead." #include #include #include /*{\Moptions outfile=geninfo.man}*/ /*{\Moptions constref=yes}*/ /*{\Manpage {geninfo} {T} {Information association via GenPtr} {}}*/ template struct geninfo { typedef void* GenPtr; /*{\Mdefinition |\Mname| encapsulates information association via generic pointers of type |GenPtr (=void*)|. An object |t| of type |T| is stored directly in a variable |p| of type |GenPtr| if |sizeof(T)| is not larger than |sizeof(GenPtr)| (also called word size). Otherwise |t| is allocated on the heap and referenced via |p|. This class encapsulates the technicalities, however the user always has to obey the order of its usage: |create|-|access/const_access|-|clear|. On misuse memory problems occur.}*/ /*{\Moperations 2 1}*/ #ifdef CGAL_USE_FORMER_GENINFO static void create(GenPtr& p) /*{\Mstatic create a slot for an object of type |T| referenced via |p|.}*/ { if (sizeof(T) <= sizeof(GenPtr)) new((void*)(&p)) T; if (sizeof(T) > sizeof(GenPtr)) p = (GenPtr) new T; } static T& access(GenPtr& p) /*{\Mstatic access an object of type |T| via |p|. \precond |p| was initialized via |create| and was not cleared via |clear|.}*/ { if (sizeof(T) <= sizeof(GenPtr)) return *(T*)(&p); else return *(T*)p; } static const T& const_access(const GenPtr& p) /*{\Mstatic read-only access of an object of type |T| via |p|. \precond |p| was initialized via |create| and was not cleared via |clear|.}*/ { if (sizeof(T) <= sizeof(GenPtr)) return *(const T*)(&p); else return *(const T*)p; } static void clear(GenPtr& p) /*{\Mstatic clear the memory used for the object of type |T| via |p|. \precond |p| was initialized via |create|.}*/ { if (sizeof(T) <= sizeof(GenPtr)) ((T*)(&p))->~T(); if (sizeof(T) > sizeof(GenPtr)) delete (T*) p; p=0; } #else //CGAL_USE_FORMER_GENINFO static void create(GenPtr& p) { p = (GenPtr) new T; } static T& access(GenPtr& p) { return *(T*)p; } static const T& const_access(const GenPtr& p) { return *(const T*)p; } static void clear(GenPtr& p){ delete (T*) p; p=0; } #endif //CGAL_USE_FORMER_GENINFO }; /*{\Mexample In the first example we store a pair of boolean values which normally fit into one word. Thus there will no heap allocation take place. \begin{Mverb} struct A { bool a,b }; GenPtr a; geninfo::create(a); A& a_access = geninfo::access(a); geninfo::clear(a); \end{Mverb} The second example uses the heap scheme as two longs do not fit into one word. \begin{Mverb} struct B { long a,b }; GenPtr b; geninfo::create(b); B& b_access = geninfo::access(b); geninfo::clear(b); \end{Mverb} Note that usage of the scheme takes away with the actual check for the type size. Even more important this size might depend on the platform which is used to compile the code and thus the scheme enables platform independent programming.}*/ #endif //GENINFO_H