// Copyright (c) 1998 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Geert-Jan Giezeman #ifndef CGAL_SQUARED_DISTANCE_UTILS_H #define CGAL_SQUARED_DISTANCE_UTILS_H #include #include namespace CGAL { namespace internal { template bool is_null(const typename K::Vector_2 &v, const K&) { typedef typename K::RT RT; return v.hx()==RT(0) && v.hy()==RT(0); } template typename K::RT wdot(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K&) { return (u.hx()*v.hx() + u.hy()*v.hy()); } template typename K::RT wdot_tag(const typename K::Point_2 &p, const typename K::Point_2 &q, const typename K::Point_2 &r, const K&, const Cartesian_tag&) { return (p.x() - q.x()) * (r.x() - q.x()) + (p.y() - q.y()) * (r.y() - q.y()); } template typename K::RT wdot_tag(const typename K::Point_2 &p, const typename K::Point_2 &q, const typename K::Point_2 &r, const K&, const Homogeneous_tag&) { return (p.hx() * q.hw() - q.hx() * p.hw()) * (r.hx() * q.hw() - q.hx() * r.hw()) + (p.hy() * q.hw() - q.hy() * p.hw()) * (r.hy() * q.hw() - q.hy() * r.hw()); } template typename K::RT wdot(const typename K::Point_2 &p, const typename K::Point_2 &q, const typename K::Point_2 &r, const K& k) { typedef typename K::Kernel_tag Tag; Tag tag; return wdot_tag(p, q, r, k, tag); } template typename K::RT wcross(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K&) { return (typename K::RT)(u.hx()*v.hy() - u.hy()*v.hx()); } template inline typename K::RT wcross_tag(const typename K::Point_2 &p, const typename K::Point_2 &q, const typename K::Point_2 &r, const K&, const Homogeneous_tag&) { return CGAL::determinant( p.hx(), q.hx(), r.hx(), p.hy(), q.hy(), r.hy(), p.hw(), q.hw(), r.hw()); } template inline typename K::FT wcross_tag(const typename K::Point_2 &p, const typename K::Point_2 &q, const typename K::Point_2 &r, const K&, const Cartesian_tag&) { return (q.x()-p.x())*(r.y()-q.y()) - (q.y()-p.y())*(r.x()-q.x()); } template typename K::RT wcross(const typename K::Point_2 &p, const typename K::Point_2 &q, const typename K::Point_2 &r, const K& k) { typedef typename K::Kernel_tag Tag; Tag tag; return wcross_tag(p, q, r, k, tag); } template inline bool is_acute_angle(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K& k) { typedef typename K::RT RT; return RT(wdot(u, v, k)) > RT(0) ; } template inline bool is_straight_angle(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K& k) { typedef typename K::RT RT; return RT(wdot(u, v, k)) == RT(0) ; } template inline bool is_obtuse_angle(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K& k) { typedef typename K::RT RT; return RT(wdot(u, v, k)) < RT(0) ; } template inline bool is_acute_angle(const typename K::Point_2 &p, const typename K::Point_2 &q, const typename K::Point_2 &r, const K& k) { typedef typename K::RT RT; return RT(wdot(p, q, r, k)) > RT(0) ; } template inline bool is_straight_angle(const typename K::Point_2 &p, const typename K::Point_2 &q, const typename K::Point_2 &r, const K& k) { typedef typename K::RT RT; return RT(wdot(p, q, r, k)) == RT(0) ; } template inline bool is_obtuse_angle(const typename K::Point_2 &p, const typename K::Point_2 &q, const typename K::Point_2 &r, const K& k) { typedef typename K::RT RT; return RT(wdot(p, q, r, k)) < RT(0) ; } template inline bool counterclockwise(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K& k) { typedef typename K::RT RT; return RT(wcross(u,v, k)) > RT(0); } template inline bool left_turn(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K& k) { typedef typename K::RT RT; return RT(wcross(u,v, k)) > RT(0); } template inline bool clockwise(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K& k) { typedef typename K::RT RT; return RT(wcross(u,v, k)) < RT(0); } template inline bool right_turn(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K& k) { typedef typename K::RT RT; return RT(wcross(u,v, k)) < RT(0); } template inline bool collinear(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K& k) { typedef typename K::RT RT; return RT(wcross(u,v, k)) == RT(0); } /* the ordertype, right_turn, left_turn and collinear routines for points are defined elsewhere. */ template inline bool same_direction_tag(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K&, const Cartesian_tag&) { typedef typename K::FT FT; const FT& ux = u.x(); const FT& uy = u.y(); if (CGAL_NTS abs(ux) > CGAL_NTS abs(uy)) { return CGAL_NTS sign(ux) == CGAL_NTS sign(v.x()); } else { return CGAL_NTS sign(uy) == CGAL_NTS sign(v.y()); } } template inline bool same_direction_tag(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K&, const Homogeneous_tag&) { typedef typename K::RT RT; const RT& uhx = u.hx(); const RT& uhy = u.hy(); if (CGAL_NTS abs(uhx) > CGAL_NTS abs(uhy)) { return CGAL_NTS sign(uhx) == CGAL_NTS sign(v.hx()); } else { return CGAL_NTS sign(uhy) == CGAL_NTS sign(v.hy()); } } template inline bool same_direction(const typename K::Vector_2 &u, const typename K::Vector_2 &v, const K& k) { typedef typename K::Kernel_tag Tag; Tag tag; return same_direction_tag(u,v, k, tag); } } // namespace internal } //namespace CGAL #endif // CGAL_SQUARED_DISTANCE_UTILS_H