// Copyright (c) 2001-2004 // Utrecht University (The Netherlands), // ETH Zurich (Switzerland), // INRIA Sophia-Antipolis (France), // Max-Planck-Institute Saarbruecken (Germany), // and Tel-Aviv University (Israel). All rights reserved. // // This file is part of CGAL (www.cgal.org); you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; either version 3 of the License, // or (at your option) any later version. // // Licensees holding a valid commercial license may use this file in // accordance with the commercial license agreement provided with the software. // // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. // // $URL$ // $Id$ // SPDX-License-Identifier: LGPL-3.0+ // // // Author(s) : Sylvain Pion // Menelaos Karavelas #ifndef CGAL_HOMOGENEOUS_CONVERTER_H #define CGAL_HOMOGENEOUS_CONVERTER_H // This file contains the definition of a kernel converter, based on // Homogeneous representation. It should work between *Homogeneous // and *Homogeneous, provided you give an RT converter from A to C, // and an FT converter from B to D. #include #include #include #include #include namespace CGAL { template , class FT_Converter = NT_converter > class Homogeneous_converter : public Enum_converter { private: typedef Enum_converter Base; public: typedef K1 Source_kernel; typedef K2 Target_kernel; typedef RT_Converter Ring_number_type_converter; typedef FT_Converter Field_number_type_converter; using Base::operator(); Bbox_2 operator()(const Bbox_2& b) { return b; } Bbox_3 operator()(const Bbox_3& b) { return b; } typename K2::RT operator()(const typename K1::RT &a) const { return c(a); } typename K2::FT operator()(const typename K1::FT &a) const { return c(a); } typename K2::Point_2 operator()(const typename K1::Point_2 &a) const { return k.construct_point_2_object()(rc(a.hx()), rc(a.hy()), rc(a.hw())); } typename K2::Weighted_point_2 operator()(const typename K1::Weighted_point_2 &a) const { return k.construct_weighted_point_2_object()(operator()(a.point()), operator()(a.weight()), rc(a.hw())); } typename K2::Vector_2 operator()(const typename K1::Vector_2 &a) const { return k.construct_vector_2_object()(rc(a.hx()), rc(a.hy()), rc(a.hw())); } typename K2::Direction_2 operator()(const typename K1::Direction_2 &a) const { return k.construct_direction_2_object()(rc(a.dx()), rc(a.dy())); } typename K2::Segment_2 operator()(const typename K1::Segment_2 &a) const { return k.construct_segment_2_object()(operator()(a.source()), operator()(a.target())); } typename K2::Line_2 operator()(const typename K1::Line_2 &a) const { return k.construct_line_2_object()(rc(a.a()), rc(a.b()), rc(a.c())); } typename K2::Ray_2 operator()(const typename K1::Ray_2 &a) const { return k.construct_ray_2_object()(operator()(a.source()), operator()(a.second_point())); } typename K2::Circle_2 operator()(const typename K1::Circle_2 &a) const { return k.construct_circle_2_object()(operator()(a.center()), fc(a.squared_radius()), a.orientation()); } typename K2::Triangle_2 operator()(const typename K1::Triangle_2 &a) const { return k.construct_triangle_2_object()(operator()(a.vertex(0)), operator()(a.vertex(1)), operator()(a.vertex(2))); } typename K2::Iso_rectangle_2 operator()(const typename K1::Iso_rectangle_2 &a) const { return k.construct_iso_rectangle_2_object()(operator()((a.min)()), operator()((a.max)()), 0); } typename K2::Point_3 operator()(const typename K1::Point_3 &a) const { return k.construct_point_3_object()(rc(a.hx()), rc(a.hy()), rc(a.hz()), rc(a.hw())); } typename K2::Vector_3 operator()(const typename K1::Vector_3 &a) const { return k.construct_vector_3_object()(rc(a.hx()), rc(a.hy()), rc(a.hz()), rc(a.hw())); } typename K2::Direction_3 operator()(const typename K1::Direction_3 &a) const { return k.construct_direction_3_object()(rc(a.dx()), rc(a.dy()), rc(a.dz())); } typename K2::Segment_3 operator()(const typename K1::Segment_3 &a) const { return k.construct_segment_3_object()(operator()(a.source()), operator()(a.target())); } typename K2::Line_3 operator()(const typename K1::Line_3 &a) const { return k.construct_line_3_object()(operator()(a.point()), operator()(a.direction())); } typename K2::Ray_3 operator()(const typename K1::Ray_3 &a) const { return k.construct_ray_3_object()(operator()(a.source()), operator()(a.second_point())); } typename K2::Sphere_3 operator()(const typename K1::Sphere_3 &a) const { return k.construct_sphere_3_object()(operator()(a.center()), fc(a.squared_radius()), a.orientation()); } typename K2::Circle_3 operator()(const typename K1::Circle_3 &a) const { return k.construct_circle_3_object()(operator()(a.center()), fc(a.squared_radius()), operator()(a.supporting_plane())); } typename K2::Triangle_3 operator()(const typename K1::Triangle_3 &a) const { return k.construct_triangle_3_object()(operator()(a.vertex(0)), operator()(a.vertex(1)), operator()(a.vertex(2))); } typename K2::Tetrahedron_3 operator()(const typename K1::Tetrahedron_3 &a) const { return k.construct_tetrahedron_3_object()(operator()(a.vertex(0)), operator()(a.vertex(1)), operator()(a.vertex(2)), operator()(a.vertex(3))); } typename K2::Plane_3 operator()(const typename K1::Plane_3 &a) const { return k.construct_plane_3_object()(rc(a.a()), rc(a.b()), rc(a.c()), rc(a.d())); } typename K2::Iso_cuboid_3 operator()(const typename K1::Iso_cuboid_3 &a) const { return k.construct_iso_cuboid_3_object()(operator()((a.min)()), operator()((a.max)()), 0); } private: RT_Converter rc; FT_Converter fc; K2 k; }; // Specialization when converting to the same kernel, // to avoid making copies. template < class K, class C1, class C2 > class Homogeneous_converter { public: template < typename T > const T& operator()(const T&t) const { return t; } }; } //namespace CGAL #endif // CGAL_HOMOGENEOUS_CONVERTER_H